On the Hausdorff dimension of Julia sets of some real polynomials
Résumé
We show that the supremum for $c$ real of the Hausdorff dimension of the Julia set of the polynomial $z\mapsto z^d+c$ ($d$ is an even natural number) is greater than $2d/(d+1)$.
Domaines
Systèmes dynamiques [math.DS]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...