A maximin characterization of the escape rate of non-expansive mappings in metrically convex spaces - Archive ouverte HAL
Article Dans Une Revue Mathematical Proceedings of the Cambridge Philosophical Society Année : 2012

A maximin characterization of the escape rate of non-expansive mappings in metrically convex spaces

Résumé

We establish a maximin characterisation of the linear escape rate of the orbits of a non-expansive mapping on a complete (hemi-)metric space, under a mild form of Busemann's non-positive curvature condition (we require a distinguished family of geodesics with a common origin to satisfy a convexity inequality). This characterisation, which involves horofunctions, generalises the Collatz-Wielandt characterisation of the spectral radius of a non-negative matrix. It yields as corollaries a theorem of Kohlberg and Neyman (1981), concerning non-expansive maps in Banach spaces, a variant of a Denjoy-Wolff type theorem of Karlsson (2001), together with a refinement of a theorem of Gunawardena and Walsh (2003), concerning order-preserving positively homogeneous self-maps of symmetric cones. An application to zero-sum stochastic games is also given.
Fichier principal
Vignette du fichier
1012.4765v3.pdf (671.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00661863 , version 1 (20-01-2012)

Identifiants

Citer

Stéphane Gaubert, Guillaume Vigeral. A maximin characterization of the escape rate of non-expansive mappings in metrically convex spaces. Mathematical Proceedings of the Cambridge Philosophical Society, 2012, 152 (2), pp.341-363. ⟨10.1017/S0305004111000673⟩. ⟨hal-00661863⟩
583 Consultations
427 Téléchargements

Altmetric

Partager

More