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A maximin characterisation of the escape rate of
non-expansive mappings in metrically convex spaces

Stéphane Gaubert∗ Guillaume Vigeral†

August 1, 2011

Abstract

We establish a maximin characterisation of the linear escape rate of the orbits of
a non-expansive mapping on a complete (hemi-)metric space, under a mild form of
Busemann’s non-positive curvature condition (we require a distinguished family of
geodesics with a common origin to satisfy a convexity inequality). This characterisa-
tion, which involves horofunctions, generalises the Collatz-Wielandt characterisation
of the spectral radius of a non-negative matrix. It yields as corollaries a theorem of
Kohlberg and Neyman (1981), concerning non-expansive maps in Banach spaces, a
variant of a Denjoy-Wolff type theorem of Karlsson (2001), together with a refine-
ment of a theorem of Gunawardena and Walsh (2003), concerning order-preserving
positively homogeneous self-maps of symmetric cones. An application to zero-sum
stochastic games is also given.

1 Introduction
A self-map T of a metric space (X, d) is non-expansive if d(T (x), T (y)) 6 d(x, y). A general
problem consists in studying the asymptotic behaviour of the orbits of T . This is moti-
vated in particular by the celebrated theorem of Denjoy and Wolff [Den26,Wol26a,Wol26b]
on the iteration of holomorphic self-maps of the unit disk (these maps are non-expansive in
Poincare’s metric). Other motivations arise from the cases of non-expansive self-maps of
Banach spaces and of self-maps of cones that are non-expansive in Hilbert’s, Thompson’s
or Riemannian metric, which have received a considerable attention, due in particular to
applications in game theory [RS01,NS04], discrete event systems [Gun03], quadratic opti-
mal control or filtering [Bou95], and non-linear Perron-Frobenius theory [Nus88]. Several
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Denjoy-Wolff type results, either in the setting of metric spaces, or concerning the special
case of cones have appeared, see in particular [Bea97,Kar01,AGLN06,Nus07,Lin07]. The
reader may consult the monograph [RS05] for an overview of the field.

In this paper, we consider the linear escape rate

ρ(T ) = lim
k→∞

d(x, T k(x))

k
.

The latter always exists, by a standard subadditive argument. Our main result is the
following maximin characterisation of the escape rate.

Theorem 1. Let T be a non-expansive self-map of a complete metrically star shaped
hemi-metric space (X, d). Then,

inf
y∈X

d(y, T (y)) = ρ(T ) = max
h

inf
x∈X

h(T (x))− h(x) , (1.1)

where the maximum, which is attained, is taken over the set of Martin functions h of
(X, d). If in addition the hemi-metric d is bounded from below (in particular, if d is a
metric), and if ρ(T ) > 0, then any function attaining the maximum is a horofunction.

Let us explain the terminology. Hemi-metrics are analogous to metrics, but d(x, y)
and d(y, x) may differ. Their definition is a variation of that of weak metrics in [PT09].
The notion of metrically star shaped space is the object of Definition 5 below. It requires
a distinguished family of geodesics with a common origin to satisfy a convexity inequality.
Hence, it is a mild form of Busemann’s classical non-positive curvature condition [Pap05].
Martin functions and horofunctions are special Lipschitz functions of constant 1 which
arise when compactifying the hemi-metric space (X, d). The set of horofunctions (the
horoboundary) provides an abstract boundary of X. See §2.3 for details.

Theorem 1 is inspired by the classical Collatz-Wielandt characterisation of the Perron
root ρ(M) of a n× n non-negative matrix M . The latter shows that

inf
y∈intRn

+

max
16i6n

(My)i
yi

= ρ(M) = max
u∈Rn

+
u6=0

min
16i6n
ui 6=0

(Mu)i
ui

. (1.2)

Here, R+ denotes the set of real non-negative numbers, and so Rn
+ is the standard positive

cone. Nussbaum showed in [Nus86] that the latter formula holds more generally when the
map y 7→ My is replaced by a non-linear continuous order-preserving T of the standard
positive cone. When T preserves the interior of this cone, it is non-expansive in the
(reverse) Funk hemi-metric [PT09,Wal08] defined on this interior by

RFunk(x, y) := log sup
16i6n

yi
xi

.

Thus,
RFunk(T (x), T (y)) 6 RFunk(x, y) , ∀x, y ∈ intRn

+ .

The Collatz-Wielandt formula and its non-linear extension in [Nus86] will be shown to be
special instances of the maximin formula (1.1).
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Theorem 1 is also motivated by the case of a Banach space X. Then, one may consider
the limit

lim
k→∞

T k(x)/k . (1.3)

For instance, in the setting of zero-sum games, T is the dynamic programming or Shapley
operator [Sha53] (which acts on a Banach space of continuous functions equipped with
the sup-norm), and the latter expression represents the limit of the mean payoff per time
unit as a function of the initial position, when the horizon of the game tends to infinity,
see §3.3 for more background.

A theorem of Pazy [Paz71] shows that the limit (1.3) does exist if X is a Hilbert
space; further improvements, under suitable strict convexity assumptions were done by
Reich[Rei73] and then by Kohlberg and Neyman [KN81]: the limit exists in the weak
(resp. strong) topology if X is reflexive and strictly convex (resp. if the norm of the dual
space X? is Fréchet differentiable). Without strict convexity, the limit may not exist, even
when X is finite dimensional, however, a general result of Kohlberg and Neyman [KN81]
(Corollary 20 below) shows that there is always a linear form ϕ ∈ X? of norm 1 such that

ϕ(T k(x)) > ϕ(x) + kρ(T )

holds for all k ∈ N, where
ρ(T ) := inf

y∈X
d(y, T (y))

is precisely the term at the left-hand side of (1.1). The theorem of Kohlberg and Neyman
may also be thought of as a special case of Theorem 1. Indeed, any horofunction h
attaining the maximum in (1.1) satisfies

h(T k(x)) > h(x) + kρ(T ) ,∀x ∈ X (1.4)

for all k ∈ N. We shall see that the Kohlberg-Neyman theorem follows readily from
this result. We shall also recover as corollaries a generalisation of a result of Gaubert and
Gunawardena [GG04] (Corollary 23) concerning Shapley operators, as well as a refinement
of a result of Gunawardena and Walsh [GW03] valid in symmetric cones, Corollary 32
below.

Theorem 1 turns out to be related to a Denjoy-Wolff type theorem of Karlsson [Kar01],
Theorem 25 below. Karlsson showed that an inequality similar to (1.4) holds. He used
a general subadditivity argument, which does not require any non-positive curvature
condition. The statement of [Kar01] assumes the metric space to be proper, i.e., closed
balls to be compact, but this assumption can be relaxed by defining horofunctions with
respect to the topology of pointwise convergence as we do here. However, there are
essential discrepancies between (1.4) and the result of [Kar01]: the term ρ(T ) is replaced
there by the linear escape rate ρ(T ), and the horofunction h depends on the choice of the
point x, whereas it does not in (1.4). We shall see that without a non-positive curvature
condition, the formula (1.4) may not hold (we give an example in which ρ(T ) > ρ(T )
and h necessarily depends on x). Hence, the maximin Theorem 1 holds only under more
restrictive circumstances than the Denjoy-Wolff type result of Karlsson. By comparison,
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the interest of the more special Theorem 1 lies in its strong duality nature: it allows one
to certify that ρ(T ) < α, or dually, that ρ(T ) > β, by exhibiting an element y ∈ X such
that d(y, T (y)) < α, or dually a Martin function h such that infx∈X h(T (x))− h(x) > β.
It should be noted in this respect that when X is a Banach space with a polyhedral norm,
the horoboundary admits a simple effective description, see [KMN06,Wal07,AGW09].

2 Definitions and preliminary results

2.1 Metrically star-shaped spaces

Definition 2. We say that δ : X×X → R is a hemi-metric on a set X if the two following
conditions are satisfied for all (x, y, z) ∈ X3:

a) δ(x, z) 6 δ(x, y) + δ(y, z)

b) δ(x, y) = δ(y, x) = 0 if and only if x = y.

We then say that (X, δ) is a hemi-metric space.

Notice that a hemi-metric is generally not a metric, since it is neither symmetric nor
non-negative. This definition is closely related to the one of a weak metric in [PT09], in
which δ is required to be non-negative. The last condition of the definition corresponds to
the weak separation condition in the latter reference. We allow δ to take negative values in
order to deal with order-preserving positively homogeneous self-maps of cones (Section 4).

To any hemi-metric, one can canonically associate a metric by the following lemma.

Lemma 3. For any hemi-metric δ, the function d(x, y) = max(δ(x, y), δ(y, x)) is a metric
on X.

Proof. Verifying that d is symmetric and satisfies the triangular inequality is easy. The
positivity of d comes from the fact that for all x and y, 0 = δ(x, x) 6 δ(x, y) + δ(y, x).
Finally, if d(x, y) = 0 then both δ(x, y) and δ(y, x) are non-positive so by the same
argument they are both null, thus x = y.

In the sequel, X is equipped with the topology induced by the metric d. We shall say
that (X, δ) is complete when the associated metric space (X, d) is complete.

Definition 4. A geodesic joining a point x ∈ X to a point y ∈ X is a map γ : [0, 1]→ X
such that γ(0) = x, γ(1) = y, and such that for all 0 6 s 6 t 6 1,

δ(γ(s), γ(t)) = (t− s)δ(x, y).

Definition 5. We say that (X, δ) is metrically star-shaped with centre x◦ if there exists
a family of geodesics {γy}y∈X , such that γy joins the centre x◦ to the point y, and such
that the following inequality is satisfied for every (y, z) ∈ X2 and s ∈ [0, 1]:

δ (γy(s), γz(s)) 6 sδ(y, z). (2.1)

If the hemi-metric δ is not a metric, we also require that for any y, the quantity δ(y, γy(s))
tends to 0 as s goes to 1.
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The condition (2.1) is a form of metric convexity [Pap05]. In particular any Busemann
space [Pap05] is metrically star-shaped, but our definition is less demanding since we only
require the inequality (2.1) to be satisfied for one specific choice of geodesics.

Example 6. Any Banach space (X, ‖ · ‖) is metrically star-shaped with respect to any
centre x◦ : it suffices to take the straight lines as geodesics, i.e., for any choice of centre
x◦, the choice of γy(s) = x◦+ s(y− x◦) yields a metrically star shaped space. Notice that
some Banach spaces are not Busemann spaces [Pap05].

The next example relies on the following notion.

Definition 7. A map p from a Banach space (X, ‖ · ‖) to R is a hemi-norm if it can be
written as

p(z) = sup
φ∈E

φ(z) (2.2)

where E is a bounded subset of the dual space X?, and

p(z) = p(−z) = 0 =⇒ z = 0 . (2.3)

A hemi-norm is always Lipschitz. It is easily verified that if p is a hemi-norm, then
δ(x, y) := p(y − x) is a hemi-metric. Note that Condition (2.3) holds if and only if the
orthogonal set of E is reduced to the zero vector. As in the case of Banach spaces,
(X, δ) is metrically star shaped: it suffices to choose the straight lines as geodesics. We
shall say that the hemi-norm is compatible with the Banach space (X, ‖ · ‖) if ‖z‖ =
max(p(z), p(−z)). Then, the metric d obtained from δ is the one associated to the norm
of X, and in particular, the hemi-metric space (X, δ) is complete.

Example 8. The norm of the Banach space X is a special case of compatible hemi-norm,
in which

p(z) = ‖z‖ = sup
φ∈B?

ψ(z)

where B? is the dual unit ball of X?. Then, by Bauer maximum principle [AB06, The-
orem 7.69], the supremum is attained at some extreme point of B?, so the set E arising
in the definition of the hemi-norm (see Equation 2.2) can be taken to be either B? or the
set of extreme points of B?.

Example 9. A useful example of hemi-norm is the following. Let Ω denote a compact
topological space, let X = C (Ω) denote the Banach space of continuous functions from Ω
to R, equipped with the sup-norm. Consider δ(x, y) = t(y−x), where t denotes the “top”
operator which gives the maximum of a function, i.e.,

t(x) = max
ω∈Ω

x(ω) .

The metric d obtained from δ is the sup-norm. We can take for E the set of evaluations
functions {eω, ω ∈ Ω} with eω(x) = x(ω).

Example 10. Another class of examples concern symmetric cones, which include cones of
positive semidefinite matrices. We shall discuss them further in Section 4.
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2.2 Non-expansive mappings

In this section we consider a metrically star-shaped space (X, δ) with centre x◦, as well
as a map T : X → X that is non-expansive with respect to the hemi-metric δ, meaning
that for all (x, y) ∈ X2,

δ(T (x), T (y)) 6 δ(x, y).

Definition 11. To each non-expansive mapping T , we associate the two following quan-
tities:

ρ(T ) = inf
x∈X

δ (x, T (x)) , (2.4)

ρ(T ) = lim
k→+∞

δ
(
x, T k(x)

)
k

= inf
k>1

δ
(
x, T k(x)

)
k

. (2.5)

Thus, the number ρ(T ) measures the linear escape rate of the orbits of T . It is well
defined. Indeed, for any x ∈ X, since T is non-expansive, the sequence uk = δ

(
x, T k(x)

)
is subadditive, meaning that uk+l 6 uk + ul for all k, l > 1, and so, a classical argument
(see [Bow08, Lemma 1.18]) shows that the limit limk→+∞ k

−1δ
(
x, T k(x)

)
does exist and

is equal to infk>1 k
−1δ

(
x, T k(x)

)
. Moreover, since

δ
(
x, T k(x)

)
6 δ(x, y) + δ

(
y, T k(y)

)
+ δ

(
T k(y), T k(x)

)
6 δ(x, y) + δ(y, x) + δ

(
y, T k(y)

)
the limit is independent of the choice of x ∈ X.

Lemma 12. The following inequality is satisfied for any non-expansive mapping T :

ρ(T ) 6 ρ(T ).

Proof. Observe that for any x ∈ X and k > 1,

δ
(
x, T k(x)

)
6

k−1∑
l=0

δ
(
T l(x), T l+1(x)

)
6 kδ(x, T (x))

and take the infimum on both k and x.

2.3 The horofunction boundary

The horofunction boundary of a metric space was defined by Gromov [Gro81]. See
also [BGS85], [Bal95, Ch. II] and [Rie02]. In fact, the same construction can be performed
with a hemi-metric. The details can be found in [AGW09], in which a horofunction-like
boundary is defined for discrete optimal control problems, by analogy with the Martin
compactification arising in the theory of Markov processes. See also [IM07].

Let us fix an arbitrary point x̄ ∈ X (the basepoint). We define a map i from X to the
set functions from X to R by associating to any x ∈ X the following function i(x):

i(x) : y → [i(x)](y) := δ(x̄, x)− δ(y, x).
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Using the triangular inequality, we get that, for all x, y ∈ X,

−δ(y, x̄) 6 [i(x)](y) 6 δ(x̄, y)

Hence, the set i(X) := {i(x) | x ∈ X} can be identified to a subset of the product space∏
y∈X [−δ(y, x̄), δ(x̄, y)] ⊂ RX . By Tychonoff’s theorem, the later space is compact for the

product topology. Hence, the closure of i(X) in the topology of pointwise convergence
(which is the same as the product topology) is compact. We denote by M this closure.
The elements of the boundary H := M \ i(X) are called horofunctions. We will call
Martin functions the elements of M (the Martin space). Note that the choice of the
basepoint is irrelevant (changing the basepoint translates all the Martin functions by the
same constant).
Remark 13. The term of horofunction is sometimes used in a more restrictive sense, to
denote what is also called a Busemann function, which is a horofunction obtained as
the limit of a family of functions (i(xs))s>0 taken along an "infinite geodesic" (xs)s>0,
see [Rie02]. Note also the sign in the definition of i(x) (which implies, in the Banach
space case, that the map i(x) is concave). This sign is chosen consistently with potential
theory (the opposite of the distance is the analogue of the Martin kernel). In the metric
geometry literature, the opposite choice is most often made.
Remark 14. The horofunctions are often defined as the closure of i(X) in the topology
of uniform convergence on bounded sets; indeed, the injection x 7→ i(x) is continuous for
this topology, and this injection is an embedding if X is a complete geodesic space [Bal95,
Ch. II]. It can be checked that every map i(x) is Lipschitz of constant 1 with respect
to the metric d, and so, by the Ascoli-Arzela theorem, the closure of i(X) in this sense
is compact as soon as X is proper (meaning that every closed ball is compact). In the
present work, we do not requireX to be proper, but define rather M as the closure of i(X)
in the topology of pointwise convergence, so that M is always compact. Note however
that the injection x 7→ i(x) may not be an embedding from X to M (the topology on M
is too weak in general, so the inverse of the map x 7→ i(x) may not be continuous).
Remark 15. The topology of the Martin space is metrisable as soon as X is a countable
union of compact sets, see for instance [AGW09, Remark 7.10]. Then, every horofunction
is the limit of a sequence of functions i(xm), where xm is a sequence of elements of X.

3 The main result and some of its consequences

3.1 The main result

We shall derive Theorem 1 from the following result.

Theorem 16. Let (X, δ) be a complete metrically star-shaped hemi-metric space, and let
T : X → X be non-expansive. Then there exists a Martin function h ∈M such that for
all x ∈ X,

h(T (x)) > h(x) + ρ(T ) .

Moreover, if δ is bounded from below (in particular, if δ is a metric) and if ρ(T ) > 0, then
h is necessarily a horofunction.
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Proof. Let x◦ and {γy}y∈X as in Definition 5; for any α ∈ [0, 1[ denote by rα : X → X the
function y → γy(α) and recall that rα is α-contracting by definition. By completeness,
we can thus define for any α the point yα ∈ X as the only solution of the fixed point
equation

T (rα(yα)) = yα.

Then for any x ∈ X,

δ(x, yα)− δ (T (x), yα) = δ(x, yα)− δ (T (x), T (rα(yα)))

> δ(x, yα)− δ (x, rα(yα)) (by non-expansiveness)
> δ(x, yα)− δ (x, rα(x))− δ (rα(x), rα(yα))

> (1− α)δ(x, yα)− δ (x, rα(x)) (since rα is an α-contraction)
> (1− α)δ(x◦, yα)− (1− α)δ(x◦, x)− δ (x, rα(x))

= δ(rα(yα), yα)− (1− α)δ(x◦, x)− δ (x, rα(x))

> δ (T (rα(yα), T (yα)))− (1− α)δ(x◦, x)− δ (x, rα(x))

(by non-expansiveness)
= δ (yα, T (yα)))− (1− α)δ(x◦, x)− δ (x, rα(x))

> ρ(T )− (1− α)δ(x◦, x)− δ (x, rα(x)) .

Since the space M is compact, the family of functions (i(yα))0<α<1 admits a limit point
h ∈ M as α tends to 1. Passing to the limit in the previous inequality, and using the
additional assumption in Definition 5, we deduce that −h(x) + h(T (x)) > ρ(T ).

Assume now by contradiction that δ is bounded from below, that ρ(T ) > 0, and
that h = i(z) for some z ∈ X. Then, we deduce from h(T (x)) > h(x) + ρ(T ) and
h(y) = −δ(y, z) + δ(b, z) that

−δ(T k(x), z) + δ(x, z) > kρ(T ) .

The right-hand side of this expression tends to +∞ as k tends to infinity, but the left-hand
side of this expression is bounded above independently of k, since δ(T k(x), z) is bounded
from below. This is impossible, hence, h ∈ H is a horofunction. (More generally, the
same argument shows that for any net of functions (i(xβ))β∈B converging to h, the net
(xβ)β∈B cannot have a bounded subnet.)

We obtain as immediate consequences the following corollaries:

Corollary 17. Let X, δ and T be as in Theorem 16. Then, there exists a Martin function
h ∈M such that for all x ∈ X,

h(T k(x)) > h(x) + kρ(T ) . (3.1)

Moreover, if δ is bounded from below and if ρ(T ) > 0, then h is necessarily a horofunction.

Corollary 18. If the assumptions of Theorem 16 are satisfied, then ρ(T ) = ρ(T ).

8



Proof. We deduce from (3.1) that

ρ(T ) 6
1

k

(
h(T k(x))− h(x)

)
6
δ(x, T k(x))

k

which yields ρ(T ) 6 ρ(T ). Then, the result follows by Lemma 12.

Theorem 1 follows readily by combining Theorem 16 and Corollary 18.

3.2 The Kohlberg-Neyman theorem revisited

We now apply Theorem 16 to non-expansive self-maps of a Banach space X, and more
generally, to those maps that are non-expansive in a compatible hemi-norm, as defined in
Section 2.1.

Theorem 19. Let (X, ‖ · ‖) be a Banach space, and let

p(z) = sup
φ∈E

φ(z)

be a compatible hemi-norm, where E is a bounded subset of the dual space X?. Let T be
non-expansive for δ. Then, for every x ∈ X, there exists a linear form φ in the weak-star
closure of E such that for every k ∈ N,

φ(T k(x)) > φ(x) + kρ(T ).

Proof. Let cloE denote the closure of E in the weak-star topology. Observe that, for all
u ∈ X,

p(u) = sup
φ∈cloE

φ(u) .

Since E is bounded, cloE is weak-star compact, and so, the map φ 7→ φ(u) attains its
maximum on cloE.

Fix now x and y in X. It follows from the previous discussion that for all z ∈ X,

i(y)(z)− i(y)(x) = p(y − x)− p(y − z) = φ(y − x)− p(y − z)

for some φ ∈ cloE, independent of z, and so

i(y)(z)− i(y)(x) 6 φ(y − x)− φ(y − z) = φ(z − x).

In other words, φ is in the super-differential of i(y) at point x.
Let h be the Martin function that appears in Corollary 17; h = limD i(yd) for some net

(yd)d∈D. By the previous observation, for every d ∈ D we can find an element φd ∈ cloE
such that for every k ∈ N,

i(yd)(T
k(x))− i(yd)(x) 6 φd(T

k(x)− x).

Taking the limit along some subnet, we can find a linear form φ in cloE such that for
every k ∈ N,

h(T k(x))− h(x) 6 φ(T k(x)− x).

Since by Corollary 17 h(T k(x))− h(x) > kρ(T ), the theorem is established.
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We now recover the following result.

Corollary 20 (Kohlberg and Neyman [KN81,Ney03]). Let (X, ‖ · ‖) be a Banach space,
let T : X → X be non-expansive and assume that ρ(T ) > 0. Then for any x ∈ X, there
exists a continuous linear form φ of norm one, such that

φ(T k(x)) > φ(x) + kρ(T ) (3.2)

for all k ∈ N. Moreover, φ can be taken in the weak-star closure of the set of extreme
points of the dual unit ball.

Proof. We apply Theorem 19, taking E to be the set of extreme points of the dual unit
ball. This gives a φ in the weak-star closure of E satisfying (3.2). In particular ‖φ‖? 6 1.
Moreover, ρ(T ) 6 limk→∞ k

−1φ(T k(x) − x) 6 ‖φ‖?ρ(T ), and since ρ(T ) = ρ(T ) > 0,
1 6 ‖φ‖?, which shows that ‖φ‖? = 1.

Actually, the assumption that ρ(T ) > 0 can be dispensed with in the finite dimension
case:

Corollary 21. Let (X, ‖ · ‖) be a finite dimensional Banach space, and let T : X → X
be non-expansive. Then for any x ∈ X, there exists a linear form φ of norm one, in the
closure of the set of extreme points of the unit ball, such that

φ(T k(x)) > φ(x) + kρ(T ) (3.3)

for all k ∈ N.

Proof. The proof is similar to the one of Corollary 20. We still take E as the set of extreme
points of the dual unit ball, which belongs to the dual unit sphere, and we conclude since
the unit sphere of a finite dimensional Banach space is closed.

Remark 22. The case in which ρ(T ) = 0, in finite dimension, has been studied in particular
by Lins in [Lin09], who proved that either T has a fixed point or there exists a linear form
ϕ of norm 1 such that ϕ(T k(x)) → +∞ for all x ∈ X. This result is established by
showing first that in the latter case, there is a horofunction h such that h(T k(x))→ +∞
as k tends to ∞ (modulo a change of sign convention for horofunctions). As noted in
Remark 3.1 of [Lin09], the construction of the linear form ϕ from the horofunction h
relies essentially on a sub-differentiability argument. An argument of the same nature is
used here to derive Corollary 21 from Theorem 16. Note however that Corollary 21 and
the existence of the horofunction in [Lin09] are independent results (none of them can be
recovered from the other one).

3.3 Application to Shapley operators

In this section Ω is a compact topological space, and X = C (Ω) is the Banach space of
continuous functions from Ω to R, endowed with the sup norm. We will be interested in
functions T : X → X that are order-preserving, meaning that

x 6 y =⇒ T (x) 6 T (y)

10



where 6 denotes the canonical partial order on functions. We shall say that T commutes
with the addition of a constant if

T (λ+ x) = λ+ T (x), ∀λ ∈ R ,

where λ+ x denotes the function ω 7→ λ+ x(ω).
As in Example 9, we set t(x) := maxω∈Ω x(ω) and consider δ(x, y) = t(y − x). Recall

that δ is a hemi-metric compatible with the sup norm and that (X, δ) is metrically star-
shaped.

It is easy to see that T is order-preserving and commutes with the addition of a
constant if and only if

t(T (x)− T (y)) 6 t(x− y)

for all x and y, meaning that T is non-expansive for δ (see in particular [GK95], or [LS05]).
For this special hemi-metric δ, we denote by ρ+(T ) and ρ+(T ) the quantities defined

in (2.4) and (2.5). Theorem 16 and Corollary 18 imply that

ρ+(T ) = lim
k→+∞

max
ω∈Ω

T k(x)(ω)− x(ω)

k
= ρ+(T ) = inf

y∈X
max
ω∈Ω

(T (y)(ω)− y(ω))

for all x in X.
We next derive from Theorem 19 the following generalisation of a result established

in [GG04] when Ω is finite.

Corollary 23. Let Ω be a compact topological space, and let X = C (Ω) be the Banach
space of continuous functions from Ω to R, endowed with the sup norm. Suppose that
T : X → X is order-preserving and commutes with the addition of a constant. Then for
every x ∈ X, there exists ω+ ∈ Ω such that,

T k(x)(ω+) > x(ω+) + kρ+(T ) (3.4)

for all k ∈ N.

Proof. We apply Theorem 19 to the hemi-norm p(z) = t(z), taking for E the set of
evaluation functions eω, ω ∈ Ω. Since Ω is compact, the set E is weak-star closed, so that
the linear form φ in Theorem 19 can be written as φ = eω+ for some ω+ ∈ E.

Order-preserving maps T commuting with the addition of a constant arise as Shapley
operators in game theory. Suppose now that Ω, A and B are three compact metric spaces,
that g is a continuous function from A×B ×Ω to R, and that q : A×B ×Ω→ ∆(Ω) is
continuous, where ∆(Ω), the set of probabilities on Ω, is endowed with the weak topology.
Then the Shapley operator of the two-player, zero-sum stochastic game with state space
Ω, action sets A and B, payoff g, and transition probability q, is defined as

T (x)(ω) = sup
µ∈∆(A)

inf
ν∈∆(B)

{∫
A×B

[
g(a, b, ω) +

∫
Ω

q(dw′|a, b, ω)x(ω′)

]
µ(da)ν(db)

}
= inf

ν∈∆(B)
sup

µ∈∆(A)

{∫
A×B

[
g(a, b, ω) +

∫
Ω

q(dw′|a, b, ω)x(ω′)

]
µ(da)ν(db)

}
.

11



The map T is order-preserving and commutes with the addition of a constant. It is shown
in [MSZ94,Now03] that it preserves C (Ω). Then, Tk(0)(ω)

k
represents the average reward

per time unit if both players play optimally in the k-stage game and if the starting state
is ω. Thus, Corollary 23 shows that there is an initial state ω+ which is the best for the
maximising player in the long term. In particular Tk(0)(ω+)

k
converges as k goes to infinity.

Remark 24. To every result concerning the hemi-norm t corresponds a dual result con-
cerning the hemi-norm b(x) := −t(−x) = minω∈Ω x(ω). In particular,

ρ−(T ) := lim
k→+∞

min
ω∈Ω

T k(x)(ω)− x(ω)

k
= ρ−(T ) := sup

y∈X
min
ω∈Ω

(T (y)(ω)− y(ω))

Moreover, there exists ω− ∈ Ω satisfying

T k(x)(ω−) 6 x(ω−) + kρ−(T )

for all k ∈ N. This is readily deduced by applying Corollary 23 to the map x→ −T (−x).

3.4 Comparison with a theorem of Karlsson

Theorem 16 should be compared with the following result. (Recall that a metric space is
proper if every closed ball is compact.)

Theorem 25 (Karlsson [Kar01, Th. 3.3]). If T is a non-expansive self-map of a proper
metric space (X, δ), then, for all x ∈ X, there exists a horofunction h (depending on x),
such that

h(T k(x)) > h(x) + kρ(T ) ,

holds for all k > 1.

Note first two differences in the statements of Theorem 16 and of Karlsson’s theorem:
we require a metric convexity assumption whereas Karlsson does not; Karlsson makes
the general assumption that the metric space is proper whereas we do not. Actually, the
compactness issue appears to be a mere technicality: it can be checked that the proof
of Theorem 25 remains valid even if X is not proper if one defines horofunctions with
respect to the topology of pointwise convergence as we do here (see Remark 14).

A key difference however lies in the conclusions of both results. In Theorem 16, horo-
functions are independent of the choice of x, whereas in Karlsson’s result, the horofunction
does depend on x. Note also that inequalities involving ρ(T ) as in Theorem 16 and Corol-
lary 17 are stronger than their counterparts involving ρ(T ) since ρ(T ) > ρ(T ). This is
illustrated in Example 26 below, in which we consider a non-star-shaped space for which
Theorem 25 applies but not Theorem 16. This example shows that the assumptions of
Theorem 16 cannot be weakened : it is primordial that the space X is metrically star-
shaped. Hence, Theorem 16 and Karlsson’s result are incomparable: the latter holds
under more general circumstances, but the former yields a stronger conclusion.
Example 26. Let T := R(mod1) be the torus with its canonical metric dT; and let X =
T× R, with the metric

d((x, t), (x′, t′)) := dT(x, x′) + |t− t′| .

12



Let α ∈ (0, 1
2
) \Q, and consider the mapping T : X → X,

T (x, t) = (x+ α, t+ 1)

which is non-expansive for the metric d. It is straightforward to check that ρ(T ) = 1
but ρ(T ) = 1 + α, so inequation (3.1) cannot be satisfied (otherwise one would have
ρ(T ) = ρ(T ) by Corollary 18).

In fact we prove that it is not even true that there exists a function h ∈M such that
for all x,

h(T k(x, t)) > h(x, t) + kρ(T ), ∀k ∈ N. (3.5)

Fix a basepoint (x̄, t̄) in X. Since the metric on X = T × R is the sum of the two
metrics (T, dT ) and (R, | · |), we can write any Martin function h of X as the sum

h(x, t) = h1(x) + h2(t)

where h1 ∈ is a Martin function of (T, dT ) and h2 is a Martin function of (R, | · |),
relatively to the basepoints x̄ and t̄, respectively (see Prop. 9.1 in [AGW09]). The only
Martin functions on T are h1(x) = −dT(x, y) +dT(x̄, y) with y ∈ T. The Martin functions
of (R, | · |) are either of the form h2(t) = −|t − s| + |t̄ − s|, with s ∈ R, or the affine
functions h2(t) = t − t̄ and h2 = −(t − t̄). We search a Martin function h such that, for
any (x, t) ∈ X,

h(T k(x, t)) > h(x, t) + k, ∀k ∈ N (3.6)

i.e.,

h1(x+ kα) + h2(t+ k) > h1(x) + h2(t) + k, ∀k ∈ N. (3.7)

Any Martin function h1 is bounded. If h2 is of the form h2(t) = −|t − s| + |t̄ − s| or
h2(t) = −(t − t̄), then, for a fixed (x, t), the left-hand side of (3.7) remains bounded
from above as k → ∞, whereas the right-hand side of (3.7) tends to infinity. The only
possibility is thus h2(t) = t− t̄. In that case, (3.7) becomes

h1(x+ kα)− h1(x) > 0.

Since the sequence (x + kα)k∈N is dense in T, and since h1 is continuous, we have that
h1(x) 6 infy∈T h1(y). This is true for any x ∈ T, so h1 is constant. But there are no
constant Martin function of (T, dT).

Karlsson’s result shows however that for any choice of (x, t) ∈ X, there exists a
horofunction h (depending on (x, t)) such that (3.6) is satisfied.

4 A Denjoy-Wolff type theorem for order-preserving
homogeneous self-maps of symmetric cones

4.1 The reverse Funk metric

In this section, we recall or establish preliminary results concerning cones. We consider a
(closed, convex and pointed) cone C in Rn with non-empty interior X := intC. We equip
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C with the partial order defined by x 6 y if y − x ∈ C. For all x, y ∈ C \ {0}, we set

M(y/x) := inf{λ > 0 | λx > y}, m(y/x) := sup{λ > 0 | λx 6 y} .

Since C is closed, as soon as the two latter sets are non-empty, their respective infimum
and supremum are attained; in particular, M(y/x) and m(y/x) are finite and positive.

The (reverse) Funk hemi-metric on the interior of C is defined by

RFunk(x, y) := logM(y/x) .

More generally, we shall use the notation RFunk(x, y) as soon as x, y ∈ C \ {0} are such
that µx > y for some µ > 0. The terminology “Funk metric” is borrowed from [PT09,
Wal08]; it refers to [Fun29]. The map δ := RFunk is easily checked to be a hemi-metric on
intC. Indeed: δ(x, y) is finite since x is in the interior of C; the triangular inequality and
the fact that δ(x, x) = 0 for any x ∈ X are easy to verify since C is pointed; the fact that
δ(y, x) = δ(y, x) = 0 =⇒ x = y follows from the fact that C is closed and pointed. The
term “reverse” is by opposition to the hemi-metric (x, y) 7→ δ(y, x) which has a different
horoboundary [Wal08].

The quantities M(y/x) and m(y/x) can be expressed in terms of the extreme rays of
the dual cone C?. The latter is the set of continuous linear forms taking non-negative
values on C. For each cone K, ExtrK denotes the set of representatives of the extreme
rays of K (i.e., the non-zero vectors belonging to these extreme rays).

Lemma 27. Let x, y, z ∈ C \ {0} be such that µx > y and z > νx for some µ, ν > 0.
Then,

M(y/x) = sup
ϕ∈C?, ϕ(x)6=0

ϕ(y)

ϕ(x)
= sup

ϕ∈ExtrC?, ϕ(x)6=0

ϕ(y)

ϕ(x)
, (4.1)

m(z/x) = inf
ϕ∈C?, ϕ(x)6=0

ϕ(z)

ϕ(x)
= inf

ϕ∈ExtrC?, ϕ(x)6=0

ϕ(z)

ϕ(x)
. (4.2)

Moreover, when x ∈ intC, the latter suprema are attained, and the condition that ϕ(x) 6= 0
can be replaced by ϕ ∈ C? \ {0}. When z ∈ intC, the latter infima are attained.

This result is somehow standard. We include the proof for the convenience of the
reader.

Proof. Since C = (C?)?, the inequality λx > y, i.e., λx− y ∈ C, is equivalent to ϕ(λx−
y) > 0, for all ϕ ∈ C?, from which the first equality in (4.1) follows.

Let now recall that if u is in the interior of C, and if ϕ ∈ C? \ {0}, then, ϕ(u) cannot
vanish. Indeed, we can find a ball B centred at 0, such that u + z ∈ C for all z ∈ B. If
ϕ(u) = 0, then, 0 6 ϕ(u± z) = ±ϕ(z) holds for all z ∈ B, and so ϕ = 0.

Choose now a vector u ∈ intC, and define Σu := {ϕ ∈ C? | ϕ(u) = 1}. Observe
that Σu is compact and convex, and that each extreme ray of C can be identified to the
unique extreme point of Σu which generates this ray. Let λ̄ denote the value of the last
supremum in (4.1), so that the inequality λ̄ϕ(x) > ϕ(y) holds for all extreme points ϕ of
Σu. Since every element ϕ of Σu is a barycentre of extreme points of Σu, we deduce that
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the same inequality holds for all points ϕ of Σu, which shows that λ̄ coincides with the
first supremum in (4.1).

The arguments to establish (4.2) are dual.
Finally, when x ∈ intC, we consider the map J : Σx → R, ϕ 7→ ϕ(y)/ϕ(x) = ϕ(y).

Since J is linear, it attains its maximum at an extreme point of the compact convex set
Σx, which implies that both suprema in (4.1) are attained. Similarly, when z ∈ intC, we
note that every ϕ ∈ Σz maximising ϕ(x) attains the first infimum in (4.2), and so, the
second infimum is attained at an extreme point of Σz.

Walsh showed in [Wal08] that the horoboundary of intC in the (reverse) Funk hemi-
metric coincides with the space of rays contained in the Euclidean boundary of C.

Proposition 28 ([Wal08, Prop. 2.5]). Let C be a closed convex pointed cone of non-
empty interior in a finite dimensional Banach space, with basepoint x̄. Then, any Martin
function h for the (reverse) RFunk hemi-metric corresponds to a vector u ∈ C \ {0},

h(x) = −RFunk(x, u) + RFunk(x̄, u) ,∀x ∈ intC, (4.3)

and h is a horofunction if and only if u ∈ ∂C \ {0}.

We shall also be interested in the following variant of the Funk hemi-metric, considered
by Papadopoulos and Troyanov [PT09]:

RFunk+(x, y) := max(RFunk(x, y), 0) .

The map RFunk+ is easily seen to be a hemi-metric. The following simple application of
the arguments of [Wal08] characterises the boundary of the hemi-metric RFunk+.

Proposition 29. Let C be a closed convex pointed cone of non-empty interior in a finite
dimensional Banach space. Then, the Martin space for the RFunk+ hemi-metric consists
of the functions (4.3), with u ∈ C \ {0}, together with the functions

h(x) = −RFunk+(x, u) + RFunk+(x̄, u) ,∀x ∈ intC, (4.4)

with u ∈ C, and an element is a horofunction if and only if it is of the form (4.3), with
u ∈ C \ {0}, or of the form (4.4) with u ∈ ∂C.

Proof. Any function h of the Martin space is the pointwise limit of a sequence of functions
hm : x 7→ −RFunk+(x, zm) + RFunk+(x̄, zm), where (zm)m>1 is a sequence of elements
of intC. If ‖zm‖ → ∞ as m tends to infinity, then, for all x ∈ intC, RFunk(x, zm) also
tends to infinity, and so RFunk+(x, zm) = RFunk(x, zm) for m large enough. Then, the
result of [Wal08] shows that h = limm hm is of the form (4.3), for some u ∈ C \ {0}. It
remains to examine the case in which zm contains a bounded subsequence. Then, possibly
after replacing zm by a subsequence, we may assume that zm converges to a point u ∈ C.
Using the fact established in [Wal08] that for x ∈ intC, RFunk(x, y) is continuous in the
second argument y ∈ C, we deduce that hm converges to the function (4.4). Finally, the
characterisation of the horofunctions is straightforward.

15



The metric dT associated to the Funk hemi-metric,

dT (x, y) = max(RFunk(x, y),RFunk(y, x))

is called the Thompson metric. We recall that for this metric, the map

γy(s) =
βs − αs

βαs − αβs + βs − αs
x◦ +

βs − αs

βαs − αβs + βs − αs
y (4.5)

with β = exp(RFunk(x◦, y)) and α = exp(−RFunk(y, x◦)) is a (straight line) geodesic
joining x◦ to y, see [Nus88]. However, as shown in [NW04], this choice of geodesics does not
satisfy Busemann’s non-positive curvature condition (even when C = R3

+). Actually, it is
shown in [NW04] that only a weaker inequality is valid. The latter inequality is optimal
(it is straightforward to find explicit counter examples to the convexity inequality).

However, when C is the cone S+
n of n × n positive semi-definite matrices, there is

a different choice of geodesics between any pair of matrices Z, Y in the interior of C,
involving geometric means:

γY (s) = Z
1
2

(
Z−

1
2Y Z−

1
2

)s
Z

1
2 . (4.6)

See in particular [Nus88,NW04]. The latter are indeed known to be geodesics in Thomp-
son’s and Hilbert’s metric. Note that when Z is the identity matrix, this geodesic seen
with logarithmic glasses is a straight line: log γY (s) = s log Y . The general form of the
geodesic is obtained by considering the linear transformation X 7→ Z−1/2XZ−1/2, which is
an automorphism of the cone of positive definite matrices, isometric both in Thompson’s
and Hilbert’s metric, and sending Z to the identity. This construction actually makes
sense more generally when C is a symmetric cone [FK94], meaning that C is self-dual
(C = C?), and that the group of automorphisms leaving invariant the interior of C acts
transitively on this interior. Symmetric cones include in particular the Lorentz cones, the
cones of real or complex positive semidefinite matrices, and Cartesian products of such
cones. It is shown in [GW03] that the metric convexity property of Definition 5 holds for
any symmetric cone, for the latter choice of geodesics, for any choice of the centre, both
for the Thompson and Hilbert metric. A similar observation was made by Lawson and
Lim [LL07b]. Actually, the arguments in [GW03] apply as well to the Funk and RFunk+

hemi-metrics. Hence, the present results apply to those self-maps of the interior of a
symmetric cone that are non-expansive in any of the previously mentioned hemi-metrics.

Remark 30. When C = S+
n is the cone of positive semi-definite matrices, when x ∈ intC,

and y ∈ C \ {0}, M(y/x) coincides with the maximal eigenvalue of the symmetric matrix
v := x−1/2yx−1/2. Moreover, denoting by w the (rank one) orthogonal projector on any
eigenline corresponding to this eigenvalue, one can check that the linear form ϕ(u) :=
tr(x−1/2wx−1/2u) attains the supremum in (4.1). When x ∈ C \ {0}, with y 6 µx for
some µ > 0, a maximising linear form ϕ can be constructed in the same way, replacing
x−1/2 by the square root of the Moore-Penrose inverse of x. A dual argument allows one to
construct a linear form attaining the infimum in (4.2). Note also that these constructions
can be easily adapted to the case of a symmetric cone C.
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Remark 31. In the case of the cone of symmetric positive definite matrices, the Thompson,
Hilbert, Funk, and RFunk+ hemi-metrics all have the following form

δν(A,B) := ν(log Spec(A−1B)) = ν(log λ1, . . . , log λn) A,B ∈ intS+
n ,

where ν is a symmetric function Rn → R (by symmetric, we mean that ν is invariant by
permutation of its variables), Spec(M) denotes the sequence of eigenvalues of a matrix
M , counted with multiplicities, so that λ1, · · · , λn denote the eigenvalues of the matrix
A−1B (which are real and positive since A and B are positive definite). The previously
listed hemi-metrics are obtained by taking for ν the following maps, Rn → R,

µ 7→ max
16i6n

|µi|, µ 7→ max
16i,j6n

|µi − µj|, µ 7→ max
16i6n

µi, µ 7→ max(max
16i6n

µi, 0) ,

respectively. We may consider more generally any symmetric hemi-norm ν. Then, the
corresponding map δν can be checked to be a hemi-metric, which is of Finsler type [Nus94].
Indeed, measuring the length of a vector Y in the tangent space of S+

n at point X by the
hemi-norm ν(Spec(X−1Y )), we get

δν(A,B) = inf
β

∫ 1

0

ν(Spec(β(s)−1β̇(s))ds ,

the infimum being taken over the set of curves β from [0, 1] to the interior of the cone, such
that β(0) = A and β(1) = B. We recover as special cases of this construction the invariant
Riemannian metric [Mos55] (ν is the Euclidean norm), the log p-Schatten metric [FF04]
(ν is the `p norm), as well as metrics arising from symmetric Gauge functions [Bha03] (the
latter are symmetric hemi-norms that are invariant by a change of sign of each variable,
and take positive values except at the origin). For any choice of symmetric hemi-metric
ν, the map (4.6) yields a family of geodesics for the hemi-metric δν joining a centre Z
to any matrix Y , for which intS+

n is a metrically star shaped space. This can be proved
along the lines of [Bha03], where the same property is established in the special case in
which ν is a symmetric Gauge function. The reader may also consult [ACS00,GW03], in
which the significance of several matrix inequalities in terms of non-positive curvature is
brought to light.

A number of non-linear maps, including discrete Riccati operators (Example 40 below),
are known to be non-expansive in various metrics δν , see [Bou95,LW94,LL08,LL07a].

4.2 A Denjoy-Wolff type theorem

We shall now consider specifically the case of order-preserving and positively homogeneous
maps. A self-map T of C is order-preserving if x 6 y =⇒ T (x) 6 T (y). It is positively
homogeneous (of degree one) if T commutes with the product by a positive constant.
These notions make sense more generally if T is only defined on a subset of C invariant
by any such product. It is readily checked that a self-map T of the interior of C is order-
preserving and positively homogeneous if and only if it is non-expansive in the Funk
metric.
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Corollary 32. Let T be an order-preserving and positively homogeneous self-map of the
interior of a symmetric cone C, and let

ρ(T ) := inf
y∈intC

RFunk(y, T (y)) .

Then, for all x ∈ intC,

ρ(T ) = ρ(T ) := lim
k→∞

RFunk(x, T k(x))

k

and there exists an extreme ray of C, such that for any element w in this ray,

log〈w, T k(x)〉 > log〈w, x〉+ kρ(T ).

Here, 〈·, ·〉 denotes the scalar product of the Euclidean space in which C is self-dual.

Proof. The map T is non-expansive in the Funk metric. By Corollary 18, ρ(T ) = ρ(T ).
Let h be the Martin function appearing in Theorem 16. Then, there exists a sequence of
elements of intC, (zm)m>1 such that i(zm) converges to h. Let us now fix x ∈ intC. Since
C = C?, any element ϕ of an extreme ray of C? can be written as ϕ(y) = 〈w, y〉 where
w is an element of an extreme ray of C. Then, it follows from Lemma 27 that for all m,
there exists an element wm ∈ ExtrC such that

RFunk(x, zm) = log
〈wm, zm〉
〈wm, x〉

.

A ray of C is known to be extreme if and only if it contains a primitive idempotent of
the associated Jordan algebra [FK94, Prop. IV.3.2]. Moreover, the set of these primitive
idempotents is compact (Exercise 5 of Chap. 4 in [FK94]). Since the previous property
is invariant by a scaling of wm, we may assume that each wm is a primitive idempotent,
and so, possibly after extracting a subsequence, we may assume that wm converges to a
primitive idempotent w, which therefore belongs to an extreme ray of C. For all k > 0,
we get

log〈w, T k(x)〉 − log〈w, x〉 = lim
m

log〈wm, T k(x)〉 − log〈wm, x〉

> lim
m
−RFunk(T k(x), zm) + RFunk(x, zm)

= h(T k(x))− h(x) > kρ(T )

which concludes the proof.

We next point out a variant of Corollary 32 concerning order-preserving and sub-
homogeneous self-maps of the interior of a symmetric cone. Recall that sub-homogeneous
means that for all x ∈ intC and λ > 1, T (λx) 6 λT (x). Order-preserving and sub-
homogeneous maps are easily seen to be characterised by the following property

RFunk+(T (x), T (y)) 6 RFunk+(x, y) .
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Corollary 33. Let T be an order-preserving and sub-homogeneous self-map of the interior
of a symmetric cone C, and let

ρ(T ) := inf
y∈intC

RFunk+(y, T (y)) .

Then, for all x ∈ intC,

ρ(T ) = ρ(T ) := lim
k→∞

RFunk+(x, T k(x))

k

and, if ρ(T ) > 0, there exists an extreme ray of C, such that for any element w in this
ray,

log〈w, T k(x)〉 > log〈w, x〉+ kρ(T ).

Proof. Since the hemi-metric RFunk+ is bounded from below, the observation made at
the end of the proof of Theorem 16 shows that if zm is any sequence of points of intC such
that i(zm) converges to the Martin function h in this theorem, then, the sequence zm must
be such that ‖zm‖ → ∞. Then, it follows from the characterisation of the boundary of
the RFunk+ metric (proof of Proposition 29) that h, which cannot be of the form (4.4), is
necessarily of the form (4.3). Therefore, we conclude as in the proof of Corollary 32.

Remark 34. Corollary 32 should be compared with a related result of Gunawardena
and Walsh [GW03, Th. 1], in which the map T is only required to be non-expansive
in Thompson’s metric. Then, it is shown that all the accumulation points of the sequence
(log T k(x))/k belong to the same face of a ball which respect to the norm in the tangent
space of C at point x.

Remark 35. Lins established a Denjoy-Wolff theorem of a different nature in [Lin07],
concerning self-maps of a polyhedral domain that are non-expansive in Hilbert’s metric.

4.3 The Collatz-Wielandt theorem

We now show that the Collatz-Wielandt formula (1.2) is a special case of the maximin
formula (1.1).

If T is an order preserving and positively sub-homogeneous self-map of the interior of
a (closed, convex and pointed) cone C in a finite dimensional vector space, we define the
radial extension T̂ of T to the closed cone C by

T̂ (x) := lim
ε→0+

T (x+ εz), ∀x ∈ C ,

where z is any point in the interior of C. One verifies that this definition is independent
of the choice of z; equivalently, we may define T̂ (x) as inf{T (y) | y − x ∈ intC}. The
order preserving and positively (sub-)homogeneous character of T carries over to T̂ . It is
shown in [BNS03] that T does not necessarily have a continuous extension to C, but that
it always does if C is polyhedral.
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Lemma 36. Let T be an order-preserving and positively sub-homogeneous self-map of the
interior of a (convex closed and pointed) cone C in a finite dimensional vector space, and
consider the Martin function h in (4.3) associated to a vector u ∈ C \ {0}. Then, for all
λ ∈ R,(

∀x ∈ intC, h(T (x))− h(x) > λ
)
⇐⇒

(
∀γ > 0, T̂ (γu) > γ exp(λ)u

)
. (4.7)

Proof. Since, h(T (x))− h(x) = −RFunk(T (x), u) + RFunk(x, u), the left-hand side con-
dition in (4.7) holds if and only if

u 6 exp
(
− λ+ RFunk(x, u)

)
T (x), ∀x ∈ intC . (4.8)

For ε > 0 and γ > 0, define xε := γu + εz, where z is a given element in intC. Then,
RFunk(xε, u) 6 RFunk(γu, u) = − log γ. Taking x = xε in (4.8), and letting ε tend to
zero, we get

u 6 exp(−λ)γ−1T̂ (γu) ,

and so, the condition at the right-hand side of (4.7) holds. Conversely, fix x ∈ intC, and
choose γ such that γ RFunk(x, u) > 1. We have

γu 6 exp(−λ)T̂ (γu) (using the right-hand side of (4.7))

6 exp(−λ)T̂ (γ exp(RFunk(x, u))x) (since T̂ is order preserving)

6 exp(−λ)γ exp(RFunk(x, u))T̂ (x) (since T̂ is sub-homogeneous)
= γ exp(−λ+ RFunk(x, u))T (x) .

Cancelling γ, we arrive at (4.8).

Observe that when T is positively sub-homogeneous, the following recession map

T̂r : C → C, T̂r(x) = lim
γ→∞

γ−1T̂ (γx) = inf
γ>0

γ−1T̂ (γx) (4.9)

is well defined. Of course, T̂ = T̂r if T is positively homogeneous. We now arrive at the
following corollary of Theorem 1, which extends the Collatz-Wielandt formula (1.2).

Corollary 37. Let T be an order-preserving and positively sub-homogeneous self-map of
the interior of a symmetric cone in a finite dimensional vector space, and assume that

ρ(T ) := lim
k→∞

log RFunk(x, T k(x))

k
> 0 . (4.10)

Then,

inf
y∈intC

max
w∈ExtrC

log
〈w, T (y)〉
〈w, y〉

= ρ(T ) = max
u∈C\{0}

min
w∈ExtrC
〈w,u〉6=0

log
〈w, T̂r(u)〉
〈w, u〉

. (4.11)

Moreover, when T is positively homogeneous, the same conclusion remains valid even
when the condition ρ(T ) > 0 does not hold.
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Proof. We apply Theorem 16 to the space X := intC equipped with the hemi-metric
δ := RFunk+. Let us denote by ρ+(T ) the escape rate of T in this hemi-metric, so that

ρ+(T ) = inf
y∈intC

RFunk+(y, T (y)) . (4.12)

Since RFunk+ = max(RFunk, 0), the hemi-metrics RFunk and RFunk+ coincide as soon
as RFunk+ or RFunk is positive. Hence, ρ(T ) > 0 implies that ρ+(T ) = ρ(T ) and that the
term RFunk+(y, T (y)) in (4.12) can be replaced by RFunk(y, T (y)). Together with (4.1),
this gives the first equality in (4.11).

We observed in the proof of Corollary 33 that when the escape rate in the RFunk+

hemi-metric is positive, the corresponding horofunction h in Theorem 16 is necessarily of
the form (4.3). Since the limit coincides with the infimum in the definition of the recession
function (see (4.9)), the right-hand side condition in (4.7) is equivalent to

T̂r(u) > exp(λ)u .

Then, using Lemma 36, we rewrite the maximin characterisation in Theorem 16 as

ρ(T ) = max
h

inf
x∈intC

h(T (x))− h(x)

= max{λ | ∃u ∈ C \ {0}, T̂r(u) > exp(λ)u}

= max
u∈C\{0}

log inf
w∈ExtrC 〈w,u〉6=0

〈w, T̂r(u)〉
〈w, u〉

(by (4.2)).

Moreover, it follows from Remark 30 that the latter infimum is attained.
Finally, when T is positively homogeneous, we equip the space intC with the hemi-

metric RFunk instead of RFunk+. Then, the first equality in (4.11) follows readily from
Theorem 16 and (4.1) (the assumption that ρ(T ) > 0 is not needed any more), and the
proof of the second inequality is unchanged.

Remark 38. The characterisation (4.11) can be rewritten equivalently as

ρ(T ) = log inf{µ > 0 | ∃y ∈ intC, T (y) 6 µy} (4.13)

= log max{µ > 0 | ∃u ∈ C \ {0}, T̂r(u) > µu} . (4.14)

Remark 39. When C is the standard positive cone, and T is a continuous order preserving
and positively homogeneous self-map of the closed cone C, Nussbaum [Nus86] showed that

ρ(T ) = log max{µ > 0 | ∃u ∈ C \ {0}, T (u) = µu} ,

which is more accurate than (4.14). Moreover, some of the results of [Nus86] have been
extended in [MPN02] to more general (normal, possibly infinite dimensional) cones. How-
ever, Corollary 37 is applicable when T is only defined on the interior of the cone and
does not extend continuously to its boundary (this situation does occur in practice, see
the discussion in [BNS03] of the matrix harmonic mean).
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Example 40. We finally illustrate the previous Denjoy-Wolff type results with an example
originating from quadratic optimal control. Let A,B be n×n positive semidefinite matri-
ces, and let M be a n× n invertible matrix. Consider the following discrete time Riccati
operator, which is a self-map of the interior of the cone S+

n of n× n positive semidefinite
symmetric matrices,

T (X) = A+M(B +X−1)−1M∗ ,

where M∗ denotes the transpose of M . We refer the reader to [Bou95, LW94, LL08] for
more background on these maps. In particular, T is order-preserving, and, as shown by
Liverani and Wojtkowski [LW94], T is non-expansive in the Thompson metric. We noted
above that the latter property, together with the preservation of order, implies that T is
positively sub-homogeneous, and so, Corollaries 33 and 37 apply to the map T .

If the matrices A and B are positive definite, then T is known to be a strict contraction
in Thompson metric [LW94]. It follows that T has a unique fixed point in intS+

n to which
every orbit converges. In particular, the escape rate ρ(T ) is zero.

We next examine a more interesting case in which B is of rank one, leading to a
positive escape rate. Assume that n = 2, write B = vv∗ for some (column) vector v, and
assume that M is of the form M = αI, with α > 1, where I is the identity matrix.

We claim that ρ(T ) = 2 logα. To see this, let u denote a non-zero vector orthogonal to
v, and consider U = uu∗. Then, it is easily checked that the radial extension of T satisfies
T̂ (γU) = A + α2γU for all γ > 0, and so, T̂r(U) = α2U . Using (4.14), we deduce that
ρ(T ) > 2 logα. To show that the equality holds, we observe that T (X) 6 A + MXM∗.
Hence, for all s > 0, T (sI) 6 A + α2sI 6 (λ1(A)s−1 + α2)sI, where λ1(A) denotes
the maximal eigenvalue of A, which by (4.13), implies that ρ(T ) 6 log(λ1(A)s−1 + α2).
Letting s tend to infinity, we arrive at ρ(T ) 6 2 logα, and so ρ(T ) = 2 logα.

A possible choice of the horofunction h appearing in Theorem 16 is

h(X) = −RFunk(X,U) + RFunk(I, U) ,

where the basepoint is the identity matrix I. Then, the linear form x 7→ 〈w, x〉 constructed
in the proof of Corollary 33 can be checked to be X 7→ 〈U,X〉 (or any scalar multiple of
this form).

For n = 2, the cone of positive semidefinite matrices S+
n has the shape of a Lorentz

(ice-cream) cone. Then, the superlevel set h(X) > λ is nothing but the interior of the
translated Lorentz cone exp(λ− RFunk(I, U))U + S+

2 . This is illustrated in Figure 1.
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recent observations.

References
[AB06] C.D. Aliprantis and K.C. Border. Infinite dimensional analysis. Springer,

2006.

22



Figure 1: Theorem 16 applied to a discrete Riccati operator on the cone of positive definite
matrices intS+

2 (Example 40). The horoballs (superlevel sets) of the horofunction h are
nested cones (in green) intersecting the cone S+

2 (in blue) along the ray generated by the
matrix U . The map T sends every horoball h > λ to the horoball h > λ+ρ(T ). Three such
horoballs are represented, with apices U , α2U , α4U , corresponding to λ = 0, ρ(T ), 2ρ(T ),
respectively.

[ACS00] E. Andruchow, G. Corach, and D. Stojanoff. Geometrical significance of
Löwner-Heinz inequality. Proc. Amer. Math. Soc., 128(4):1031–1037, 2000.

[AGLN06] M. Akian, S. Gaubert, B. Lemmens, and R. Nussbaum. Iteration of order
preserving subhomogeneous maps on a cone. Math. Proc. Cambridge Philos.
Soc., 140(01):157–176, 2006.

[AGW09] M. Akian, S. Gaubert, and C. Walsh. The max-plus Martin boundary. Doc.
Math., 14:195–240, 2009.

[Bal95] W. Ballmann. Lecture on spaces of nonpositive curvature. Birkhäuser, 1995.

[Bea97] A. F. Beardon. The dynamics of contractions. Ergodic Theory Dynam. Sys-
tems, 17(6):1257–1266, 1997.

[BGS85] W. Ballmann, M. Gromov, and V. Schroeder. Manifolds of nonpositive curva-
ture, volume 61 of Progress in Mathematics. Birkhäuser Boston Inc., Boston,
MA, 1985.

[Bha03] R. Bhatia. On the exponential metric increasing property. Linear Algebra
Appl., 375:211–220, 2003.

[BNS03] A. D. Burbanks, R. D. Nussbaum, and C. T. Sparrow. Extension of order-
preserving maps on a cone. Proc. Roy. Soc. Edinburgh Sect. A, 133(1):35–59,
2003.

[Bou95] Ph. Bougerol. Almost sure stabilizability and Riccati’s equation of linear sys-
tems with random parameters. SIAM J. Control Optim., 33(3):702–717, 1995.

23



[Bow08] R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeomor-
phisms, volume 470 of Lecture Notes in Mathematics. Springer-Verlag, Berlin,
revised edition, 2008.

[Den26] A. Denjoy. Sur l’itération des fonctions analytiques. C.R. Acad. Sci. Paris,
182:255–257, 1926.

[FF04] S. Friedland and P. J. Freitas. p-metrics on GL(m,C)/Un and their busemann
compactifications. Linear Algebra Appl., 376:1–18, 2004.

[FK94] J. Faraut and A. Korányi. Analysis on symmetric cones. Oxford Mathematical
Monographs. The Clarendon Press Oxford University Press, New York, 1994.

[Fun29] P. Funk. Über Geometrien, bei denen die Geraden die Kürzesten sind. Math.
Ann., 101(1):226–237, 1929.

[GG04] S. Gaubert and J. Gunawardena. The Perron-Frobenius theorem for homo-
geneous, monotone functions. Trans. Amer. Math. Soc., 356(12):4931–4950,
2004.

[GK95] J. Gunawardena and M. Keane. On the existence of cycle times for some
nonexpansive maps. Technical report, Citeseer, 1995.

[Gro81] M. Gromov. Hyperbolic manifolds, groups and actions. In Riemann surfaces
and related topics: Proceedings of the 1978 Stony Brook Conference (State
Univ. New York, Stony Brook, N.Y., 1978), volume 97 of Ann. of Math. Stud.,
pages 183–213, Princeton, N.J., 1981. Princeton Univ. Press.

[Gun03] J. Gunawardena. From max-plus algebra to nonexpansive maps: a nonlinear
theory for discrete event systems. Theoret. Comput. Sci., 293(1):141–167,
2003.

[GW03] J. Gunawardena and C. Walsh. Iterates of maps which are non-expansive
in Hilbert’s projective metric. Kybernetika (Prague), 39(2):193–204, 2003.
Special issue on max-plus algebras (Prague, 2001).

[IM07] H. Ishii and H. Mitake. Representation formulas for solutions of Hamilton-
Jacobi equations with convex Hamiltonians. Indiana Univ. Math. J.,
56(5):2159–2183, 2007.

[Kar01] A. Karlsson. Non-expanding maps and Busemann functions. Ergodic Theory
Dynam. Systems, 21(5):1447–1457, 2001.

[KMN06] A. Karlsson, V. Metz, and G. A. Noskov. Horoballs in simplices and Minkowski
spaces. Int. J. Math. Math. Sci., pages Art. ID 23656, 20, 2006.

[KN81] E. Kohlberg and A. Neyman. Asymptotic behavior of nonexpansive mappings
in normed linear spaces. Israel J. Math., 38(4):269–275, 1981.

24



[Lin07] B. Lins. A Denjoy–Wolff theorem for Hilbert metric nonexpansive maps on
polyhedral domains. Math. Proc. Cambridge Philos. Soc., 143(01):157–164,
2007.

[Lin09] B. Lins. Asymptotic behavior of nonexpansive mappings in finite dimensional
normed spaces. Proc. Amer. Math. Soc., 137(7):2387–2392, 2009.

[LL07a] J. Lawson and Yongdo Lim. A Birkhoff contraction formula with applications
to Riccati equations. SIAM J. Control Optim., 46(3):930–951, 2007.

[LL07b] J. Lawson and Yongdo Lim. Metric convexity of symmetric cones. Osaka J.
Math., 44(4):795–816, 2007.

[LL08] Hosoo Lee and Yongdo Lim. Invariant metrics, contractions and nonlinear
matrix equations. Nonlinearity, 28:857–878, 2008.

[LS05] B. Lemmens and M. Scheutzow. On the dynamics of sup-norm nonexpansive
maps. Ergodic Theory Dynam. Systems, 25(3):861–871, 2005.

[LW94] C. Liverani and M. P. Wojtkowski. Generalization of the Hilbert metric to the
space of positive definite matrices. Pacific J. Math., 166(2):339–355, 1994.

[Mos55] G.D. Mostow. Some new decomposition theorems for semisimple groups. Mem-
oirs Amer. Math. Soc., 14:31–54, 1955.

[MPN02] J. Mallet-Paret and Roger Nussbaum. Eigenvalues for a class of homoge-
neous cone maps arising from max-plus operators. Discrete Contin. Dyn.
Syst., 8(3):519–562, 2002.

[MSZ94] J.-F. Mertens, S. Sorin, and S. Zamir. Repeated games. core reprint dps 9420,
9421 and 9422. Center for Operation Research and Econometrics, Universite
Catholique De Louvain, Belgium, 1994.

[Ney03] A. Neyman. Stochastic games and nonexpansive maps. In Stochastic games
and applications (Stony Brook, NY, 1999), volume 570 of NATO Sci. Ser. C
Math. Phys. Sci., pages 397–415. Kluwer Acad. Publ., Dordrecht, 2003.

[Now03] A.S. Nowak. Zero-sum stochastic games with Borel state spaces. Stochastic
games and applications, page 77, 2003.

[NS04] A. Neyman and S. Sorin. Stochastic games and applications. Kluwer Academic
Publishers, 2004.

[Nus86] R. D. Nussbaum. Convexity and log convexity for the spectral radius. Linear
Algebra Appl., 73:59–122, 1986.

[Nus88] R. D. Nussbaum. Hilbert’s projective metric and iterated nonlinear maps.
Mem. Amer. Math. Soc., 75(391):iv+137, 1988.

25



[Nus94] R. D. Nussbaum. Finsler structures for the part metric and hilbert’s projective
metric and applications to ordinary differential equations. Differential and
Integral Equations, 7(6):1649–1707, 1994.

[Nus07] R. D. Nussbaum. Fixed point theorems and Denjoy-Wolff theorems for
Hilbert’s projective metric in infinite dimensions. Topol. Methods Nonlinear
Anal., 29(2):199–249, 2007.

[NW04] R. D. Nussbaum and C. Walsh. A metric inequality for the Thompson and
Hilbert geometries. J. Inequalities Pure Appl. Math., 5(3), 2004.

[Pap05] A. Papadopoulos. Metric spaces, convexity and nonpositive curvature. Euro-
pean Mathematical Society, 2005.

[Paz71] A. Pazy. Asymptotic behavior of contractions in Hilbert space. Israel J. Math.,
9(2):235–240, 1971.

[PT09] A. Papadopoulos and M. Troyanov. Weak Finsler structures and the Funk
weak metric. Math. Proc. Cambridge Philos. Soc., 147(2):419–437, 2009.

[Rei73] S. Reich. Asymptotic behavior of contractions in Banach spaces. J. Math.
Anal. Appl., 44:57–70, 1973.

[Rie02] M. A. Rieffel. Group C∗-algebras as compact quantum metric spaces. Doc.
Math., 7:605–651, 2002.

[RS01] D. Rosenberg and S. Sorin. An operator approach to zero-sum repeated games.
Israel J. Math., 121(1):221–246, 2001.

[RS05] S. Reich and D. Shoikhet. Nonlinear semigroups, fixed points, and geometry
of domains in Banach spaces. Imperial College Press, London, 2005.

[Sha53] L.S. Shapley. Stochastic games. Proceedings of the National Academy of Sci-
ences of the United States of America, 39(10):1095, 1953.

[Wal07] C. Walsh. The horofunction boundary of finite-dimensional normed spaces.
Math. Proc. Cambridge Philos. Soc., 142(3):497–507, 2007.

[Wal08] C. Walsh. The horofunction boundary of the Hilbert geometry. Adv. Geom.,
8(4):503–529, 2008.

[Wol26a] J. Wolff. Sur l’itération des fonctions bornées. C.R. Acad. Sci. Paris, 182:200–
201, 1926.

[Wol26b] J. Wolff. Sur une généralisation d’un théorème de Schwarz. C.R. Acad. Sci.
Paris, 182-183:918–920, 500–502, 1926.

26


	1 Introduction
	2 Definitions and preliminary results
	2.1 Metrically star-shaped spaces
	2.2 Non-expansive mappings
	2.3 The horofunction boundary

	3 The main result and some of its consequences
	3.1 The main result
	3.2 The Kohlberg-Neyman theorem revisited
	3.3 Application to Shapley operators
	3.4 Comparison with a theorem of Karlsson

	4 A Denjoy-Wolff type theorem for order-preserving homogeneous self-maps of symmetric cones
	4.1 The reverse Funk metric
	4.2 A Denjoy-Wolff type theorem
	4.3 The Collatz-Wielandt theorem


