Wavelet-based estimation of the derivatives of a function from a heteroscedastic multichannel convolution model - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Wavelet-based estimation of the derivatives of a function from a heteroscedastic multichannel convolution model

Résumé

We observe $n$ heteroscedastic stochastic processes where, for any $v\in\{1,\ldots,n\}$, a convolution product of an unknown function $f$ and a known function $g_v$ is corrupted by Gaussian noise. Under a particular ordinary smooth assumption on $g_1,\ldots,g_n$, we aim to estimate the $d$-th derivatives of $f$ from the observations. We consider an adaptive estimator based on a particular wavelet block thresholding: the "BlockJS estimator". Taking the mean integrated squared error (MISE), we prove that it achieves near optimal rates of convergence over a wide range of smoothness classes. The theory is illustrated with some numerical examples. Performance comparisons with some others methods existing in the literature are provided.
Fichier principal
Vignette du fichier
dec-multi.pdf (1.07 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00661544 , version 1 (19-01-2012)
hal-00661544 , version 2 (26-03-2012)
hal-00661544 , version 3 (13-03-2013)

Identifiants

  • HAL Id : hal-00661544 , version 1

Citer

Fabien Navarro, Christophe Chesneau, Jalal M. Fadili, Taoufik Sassi. Wavelet-based estimation of the derivatives of a function from a heteroscedastic multichannel convolution model. 2012. ⟨hal-00661544v1⟩
421 Consultations
193 Téléchargements

Partager

More