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Abstract: We observe n heteroscedastic stochastic processes where, for
any v ∈ {1, . . . , n}, a convolution product of an unknown function f and
a known function gv is corrupted by Gaussian noise. Under a particular
ordinary smooth assumption on g1, . . . , gn, we aim to estimate the d-th
derivatives of f from the observations. We consider an adaptive estimator
based on a particular wavelet block thresholding: the ”BlockJS estimator”.
Taking the mean integrated squared error (MISE), we prove that it achieves
near optimal rates of convergence over a wide range of smoothness classes.
The theory is illustrated with some numerical examples. Performance com-
parisons with some others methods existing in the literature are provided.
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1. Motivations

1.1. Problem statement

We observe n stochastic processes Y1(t), . . . , Yn(t), t ∈ [0, 1] where, for any
v ∈ {1, . . . , n},

dYv(t) = (f ⋆ gv)(t)dt+ ǫdWv(t), t ∈ [0, 1], n ∈ N∗, (1)

ǫ > 0 is the noise level, (f ⋆gv)(t) =
∫ 1

0 f(t−u)gv(u)du denotes the convolution,
W1(t), . . . ,Wn(t) are n unobserved independent standard Brownian motions, for
any v ∈ {1, . . . , n}, gv : [0, 1] → R is a known function and f : [0, 1] → R is an
unknown function. We assume that f and g1, . . . , gn belong to L2

per([0, 1]) = {h;
h is 1-periodic on [0, 1] and

∫ 1

0 h
2(t)dt < ∞}. The goal is to estimate f (or an

unknown quantity depending on f) from Y1(t), . . . , Yn(t), t ∈ [0, 1].
Remark that, when g1 = · · · = gn, we can rewrite (1) as

dỸ (t) = (f ⋆ g)(t)dt+ ǫn−1/2dW̃ (t), t ∈ [0, 1], (2)

where Ỹ (t) = (1/n)
∑n

v=1 Yv(t), g = g1 and W̃ (t) = (1/n1/2)
∑n

v=1Wv(t) is
standard Brownian motion. Then (2) becomes a standard deconvolution problem
in the field of function estimation. Results on the estimation on f can be found in
[6], [5], [18], [4] and [9]. When g1, . . . , gn are not necessary equals, the estimation
of f has been investigated by [14], [21, 22]. [14], [21, 22] develop adaptive wavelet
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thresholding estimators (hard thresholding in [14] and block thresholding in
[21, 22]) under various assumptions on g1, . . . , gn (typically, ordinary smooth
case and supersmooth case). Moreover, [14], [21, 22] establish minimax rates of
convergence under the mean integrated squared error (MISE) over Besov balls.

In this paper, considering a particular ordinary smooth case on g1, . . . , gn, we
propose some extensions of [21, 22, Theorems 1 and 2] from (1). In particular,
we focus on a more general problem: estimate the d-th derivative of f : f (d)

with d ∈ N (we set f (0) = f). This is of interest to detect possible bumps,
concavity or convexity properties of f . Such derivatives estimation problems
have already been investigated from several standard nonparametric models. If
we only consider wavelet methods, we refer to [10] for (2) and [24], [7] and [8]

for density estimation problems. We develop an adaptive wavelet estimator f̂ of
f (d). It is constructed from a periodised Meyer wavelet basis and a particular
block thresholding rule known under the named of BlockJS. It can be viewed
as a refinement of the one in [22, (2.9)]. Recent developments on BlockJS can
be found in [3], [2], [25] and [11]. Adopting the minimax approach under the
MISE of Besov balls, we investigate the upper bounds of our estimator. We
prove that they are near optimal by the determination of the lower bounds.
From a practical point of view, for the case d = 0, we prove that it gives better
result than the one of [22, (2.9)]. Moreover, when d ∈ {1, 2, . . .}, some numerical
examples are provided.

1.2. Paper organization

The paper is organized as follows. Section 2 clarifies the assumptions made
on g1, . . . , gn. In Section 3, we present wavelets and Besov balls. The BlockJS
estimator is defined in Section 4. Section 5 is devoted to the results. Simulations
are set in Section 6. The proofs are postponed in Section 7.

2. On our ordinary smooth assumption

First of all, note that any function h ∈ L2
per([0, 1]) can be represented by its

Fourier series
h(t) =

∑

ℓ∈Z

F(h)(ℓ)e2iπℓt, t ∈ [0, 1],

where the equality is intended in mean-square convergence sense, and Fℓ(h)
denotes the Fourier coefficient given by

F(h)(ℓ) =

∫ 1

0

h(x)e−2iπℓxdx, ℓ ∈ Z,

whenever this integral exists. The notation · will be used for the complex
conjugate.

In this study, we focus on the following particular ordinary smooth assump-
tion on g1, . . . , gn: we suppose that there exist three constants, cg > 0, Cg > 0
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and δ > 1, and n positive real numbers σ1, . . . , σn such that, for any x ∈ R and
any v ∈ {1, . . . , n},

cg
1

(1 + σ2
vx

2)δ/2
≤ |F(gv)(x)| ≤ Cg

1

(1 + σ2
vx

2)δ/2
. (3)

This assumption controls the decay of the Fourier coefficients of g1, . . . , gn, and
thus the smoothness of g1, . . . , gn. It is a standard hypothesis usually adopted in
the field of nonparametric estimation for deconvolution problems. See e.g. [23],
[16] and [18].

Example: let υ1, . . . , υn be n positive real numbers. For any v ∈ {1, . . . , n},
consider the square integrable 1-periodic function g defined by

gv(x) =
1

υv

∑

m∈Z

e−|x+m|/υv , x ∈ [0, 1].

Then, for any x ∈ R, F(gv)(l) = 2
(
1 + 4π2l2υ2v

)−1
and (3) is satisfied with

δ = 2 and σv = 2πυv.
In the sequel, we set

ρn =

n∑

v=1

1

(1 + σ2
v)

δ
. (4)

For technical reason, we suppose that ρn ≥ e.

3. Wavelets and Besov balls

3.1. Periodized Meyer Wavelets

We consider an orthonormal wavelet basis generated by dilations and transla-
tions of a ”father” Meyer-type wavelet φ and a ”mother” Meyer-type wavelet
ψ. The features of such wavelets are:

• the Fourier transforms of φ and ψ have bounded support. More precisely,
we have

{
supp (F(φ)) ⊂ [−4π3−1, 4π3−1],

supp (F(ψ)) ⊂ [−8π3−1,−2π3−1] ∪ [2π3−1, 8π3−1],
(5)

where supp denotes the support and, for any h ∈ L2
per([0, 1]), F(h) denotes

the Fourier transform of h defined by

F(h)(x) =

∫ 1

0

h(x)e−2iπxydy, x ∈ R.

• (φ, ψ) is r-regular for a chosen r ∈ N, i.e. φ ∈ Cr, ψ ∈ Cr and, for any
u ∈ {0, . . . , r},

∫ ∞

−∞

xuψ(x)dx = 0. (6)
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A consequence of (5) and (6) is that, for any m ∈ N and any u ∈ {0, . . . , r},
sup
x∈R

(|φ(u)(x)|
(
x2 + 1

)m
) <∞, sup

x∈R

(|ψ(u)(x)|
(
x2 + 1)m

)
<∞. (7)

For the purposes of this paper, we use the periodised wavelet bases on the unit
interval. For any x ∈ [0, 1], any integer j and any k ∈ {0, . . . , 2j − 1}, let

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k)

be the elements of the wavelet basis, and

φperj,k (x) =
∑

ℓ∈Z

φj,k(x− l), ψper
j,k (x) =

∑

ℓ∈Z

ψj,k(x− l),

their periodised versions. There exists an integer τ such that the collection ζ
defined by

ζ =
{
φperτ,k (.), k ∈ {0, . . . , 2τ − 1}; ψper

j,k (.), j ≥ τ, k ∈ {0, . . . , 2j − 1}
}

constitutes an orthonormal basis of L2
per([0, 1]). In what follows, the superscript

”per” will be suppressed from the notations for convenience.
Then, for any m ≥ τ , a function h ∈ L2

per([0, 1]) can be expanded into a
wavelet series as

h(x) =

2m−1∑

k=0

αm,kφm,k(x) +

∞∑

j=m

2j−1∑

k=0

βj,kψj,k(x), x ∈ [0, 1],

where

αm,k =

∫ 1

0

h(t)φm,k(t)dt, βj,k =

∫ 1

0

h(t)ψj,k(t)dt. (8)

For further details about Meyer-type wavelets and wavelet decomposition, see
[13], [26] and [27].

3.2. Besov balls

Let M > 0, s > 0, p ≥ 1 and r ≥ 1. We say that a function h belongs to the
Besov ball Bs

p,r(M) if and only if there exists a constantM∗ > 0 (depending on
M) such that the associated wavelet coefficients (8) satisfy

2τ(1/2−1/p)

(
2τ−1∑

k=0

|ατ,k|p
)1/p

+




∞∑

j=τ


2j(s+1/2−1/p)




2j−1∑

k=0

|βj,k|p



1/p



r


1/r

≤M∗. (9)

with a smoothness parameter s > 0, and the norm parameters: 0 < p ≤ ∞ and
0 < r ≤ ∞. For a particular choice of parameters s, p and r, these sets contain
the Hölder and Sobolev balls. See [20].
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4. BlockJS estimator

We suppose that f (d) ∈ L2
per([0, 1]) and that (3) is satisfied (δ refers to this as-

sumption). We now present the considered adaptive procedure for the estimation
of f (d). Let j1 and j2 be the integers defined by

j1 = ⌊log2(log ρn)⌋, j2 = ⌊(1/(2δ + 2d+ 1)) log2(ρn/ log ρn)⌋,

where, for any a ∈ R, ⌊a⌋ denotes the whole number part of a. For any j ∈
{j1, . . . , j2}, set L = ⌊log ρn⌋ and Aj = {1, . . . , 2jL−1}. For any K ∈ Aj , we
consider the set

Bj,K = {k ∈ {0, . . . , 2j − 1}; (K − 1)L ≤ k ≤ KL− 1}.

We define the Block James-Stein estimator (BlockJS) by

f̂(x) =

2j1−1∑

k=0

α̂j1,kφj1,k(x) +

j2∑

j=j1

∑

K∈Aj

∑

k∈Bj,K

β̂∗
j,kψj,k(x), x ∈ [0, 1], (10)

where

β̂∗
j,k = β̂j,k

(
1− λǫ2ρn

−122j(δ+d)

1
L

∑
k∈Bj,K

|β̂j,k|2

)

+

,

with, for any a ∈ R, (a)+ = max(a, 0), λ > 0,

α̂j1,k =
1

ρn

n∑

v=1

1

(1 + σ2
v)

δ

∑

ℓ∈Dj1

(2πiℓ)d
F (φj1,k)(ℓ)

F(gv)(ℓ)

∫ 1

0

e−2πiℓtdYv(t)

and

β̂j,k =
1

ρn

n∑

v=1

1

(1 + σ2
v)

δ

∑

ℓ∈Cj

(2πiℓ)d
F (ψj,k)(ℓ)

F(gv)(ℓ)

∫ 1

0

e−2πiℓtdYv(t).

Here,

Dj1 = supp (F(φj1,0)) = supp (F (φj1,k)) ,

Cj = supp (F(ψj,0)) = supp (F (ψj,k)) .

For the original construction of BlockJS (i.e. in the standard Gaussian noise
model), we refer to [1].

Remark 4.1. The sets Aj and Bj,K are chosen such that
⋃

K∈Aj
Bj,K =

{0, . . . , 2j − 1}, for any (K,K ′) ∈ A2
j with K 6= K ′, Bj,K ∩ Bj,K′ = ∅ and

Card(Bj,K) = L = ⌊log ρn⌋.
Remark 4.2. Notice that, thanks to (5), for any j ∈ {j1, . . . , j2}, we have

{
Dj1 ⊂ [−4π3−12j1 , 4π3−12j1 ],

Cj ⊂ [−8π3−12j ,−2π3−12j] ∪ [2π3−12j , 8π3−12j ].
(11)
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5. Results

5.1. Main results

Theorem 5.1 below determines the rates of convergence achieved by f̂ under the
MISE over Besov balls.

Theorem 5.1. Consider the model (1) and recall that we want to estimate f (d)

with d ∈ N. Assume that (φ, ψ) is r-regular for some r ≥ d and (3) is satisfied.

Let f̂ be the estimator defined by (10) with a large enough λ. Then there exists
a constant C > 0 such that, for any M > 0, p ≥ 1, r ≥ 1, s > 1/p and n large
enough, we have

sup
f(d)∈Bs

p,r(M)

E

(∫ 1

0

(
f̂(x) − f (d)(x)

)2
dx

)
≤ Cϕn,

where

ϕn =

{
ρ−2s/(2s+2δ+2d+1)
n , if p ≥ 2,

(log ρn/ρn)
2s/(2s+2δ+2d+1), if p ∈ [1, 2), s > (1/p− 1/2)(2δ + 2d+ 1).

Theorem 5.1 can be proved by using a more general theorem: [11, Theorem
3.1]. To apply this result, two conditions on the wavelet coeffcients estimators are
required: a moment condition and a concentration condition. They are presented
in Propositions 5.2 and 5.3 below.

It is natural to address the following question: is it ϕn the optimal rate of
convergence ? Theorem 5.2 below gives the answer.

Theorem 5.2. Consider the model (1) and recall that we want to estimate f (d)

with d ∈ N. Assume that (3) is satisfied. Then there exists a constant c > 0 such
that, for any M > 0, p ≥ 1, r ≥ 1, s > 1/p and n large enough, we have

inf
f̃

sup
f(d)∈Bs

p,r(M)

E

(∫ 1

0

(
f̃(x) − f (d)(x)

)2
dx

)
≥ cϕ∗

n,

where

ϕ∗
n = (ρ∗n)

−2s/(2s+2δ+2d+1), ρ∗n =

n∑

v=1

σ−2δ
v .

Theorem 5.2 shows that the rate of convergence ϕn achieved by f̂ is near
optimal. Near is only due to the case π ∈ [1, 2) and s > (1/p− 1/2)(2δ+2d+1)
where there is an extra logarithmic term.

Theorems 5.1 and 5.2 prove that f̂ is near optimal in the minimax sense.
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5.2. Auxiliary results

In the three following result, we consider the framework of Theorem 5.1 and,

for any integer j ≥ τ and k ∈ {1, . . . , 2j − 1}, we set αj,k =
∫ 1

0
f (d)(t)φj,k(t)dt

and βj,k =
∫ 1

0 f
(d)(t)ψj,k(t)dt, the wavelet coefficients (8) of f (d).

Proposition 5.1 (Gaussian distribution on the wavelet coefficient estimators).
For any integer j ≥ τ and k ∈ {0, . . . , 2j − 1}, we have

α̂j,k ∼ N


αj,k, ǫ

2 1

ρ2n

n∑

v=1

1

(1 + σ2
v)

2δ

∑

ℓ∈Dj

(2πℓ)2d
|F (φj,k) (ℓ)|2
|F(gv)(ℓ)|2




and

β̂j,k ∼ N


βj,k, ǫ2

1

ρ2n

n∑

v=1

1

(1 + σ2
v)

2δ

∑

ℓ∈Cj

(2πℓ)2d
|F (ψj,k) (ℓ)|2
|F(gv)(ℓ)|2


 .

Proposition 5.2 (Moment condition).

• There exists a constant C > 0 such that, for any integer j ≥ τ and k ∈
{0, . . . , 2j − 1},

E
(
|α̂j1,k − αj1,k|2

)
≤ Cǫ222(δ+d)j1ρ−1

n ,

• There exists a constant C > 0 such that, for any integer j ≥ τ and k ∈
{0, . . . , 2j − 1},

E

(
|β̂j,k − βj,k|4

)
≤ Cǫ424(δ+d)jρ−2

n .

Proposition 5.3 (Concentration condition). There exists a constant λ > 0
such that, for any j ∈ {j1, . . . , j2}, any K ∈ Aj and n large enough,

P





 ∑

k∈Bj,K

|β̂j,k − βj,k|2



1/2

≥ λ2(δ+d)j(log ρn/ρn)
1/2


 ≤ ρ−2

n .

6. Simulations results

In the following simulation study we consider the problem of estimating one of
the derivatives of a function f from the heteroscedastic multichannel deconvo-
lution model (1). Three test functions (“Wave”, “Parabolas” and “TimeShifted-
Sine”, initially introduced in [19]) representing different degrees of smoothness
were used (see Fig 1). The “Wave” function was used to illustrate the perfor-
mances of our estimator for smooth function. Note that the “Parabolas” function
has big jumps in its second derivative.
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Fig 1. Original Signals (a): Wave. (b): Parabolas. (c): TimeShiftedSine.

We have compared the numerical performance of BlockJS to state-of-the-
art classical thresholding methods of the litterature. In particular we consider
the block estimator of [22] and two term-by-term thresholding methods. The
first one is the classical hard thresholding and the other one corresponds to the
non-negative garrote (introduced in wavelet estimation by [17]). In the sequel,
we name the estimator of [22] by ’BlockH’, the one of [17] by ’TermJS’ and
our estimator by ’BlockJS’. The performance of the estimators are measured in

terms of peak signal-to-noise ratio (PSNR = 20 log10
n‖f‖∞

‖f̂−f‖2
) in decibels (dB).

The known function gv corresponds to a Laplace distribution and was used
throughout all experiments.

6.1. Monochannel simulation

As an example of homoscedastic monochannel reconstruction (i.e. n = 1), we
show in Fig 2 estimates obtained using the BlockJS method from T = 4096
equispaced values generated according to (1) with blurred signal-to-noise ratio
equal to 25 (BSNR = 10 log10 ‖f ⋆ gv‖/ǫ2). For d = 0, the results are very
effective for each test function. Note that the higher the index of the derivative
increases, the harder it is to reconstruct fully the corresponding derivative. This
is a consequence of computing the derivative of the noisy blurred signal in the
frequency domain and the inverse Fourier transform that increases dramatically
the high frequencies.

We then have compared the performance of our adaptive wavelet estimator
with BlockH. The blurred signals were corrupted by a zero-mean white Gaussian
noise such that the blurred signal-to-noise ratio ranged from 10 to 40 dB. The
results are depicted in Fig 3 for d = 0, d = 1 and d = 2 respectively. One can
see that our BlockJS thresholding estimator produce quite accurate estimates of
f , f ′ and f ′′ for each test signals. These results clearly show that our approach
compares favorably to BlockH and that BlockJS has good adaptive properties
over a wide range of BSNR in the monochannel setting.
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Fig 2. Original (dashed) and estimated signals (solid) using the BlockJS thresholding esti-
mator based on the (a) noisy blurred observations for (b): d = 0. (c): d = 1 (d): d = 2. From
left to right Wave, Parabolas and TimeShiftedSine.
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Fig 3. PSNR values as a function of the initial BSNR from 10 replications for (a): Wave.
(b): Parabolas. (c): TimeShiftedSine from top to bottom d = 0, 1, 2.
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Fig 4. Original Signals (dashed black) and estimate for σv = v (dashed blue) and σv randomly
generated (solid blue) from n = 10-channels. (a)-(c): noisy blurred observations (sample of 3
curves out of 10). (g): zoom on Parabolas. (h): zoom on TimeShiftedSine.

6.2. Multichannel simulation

We would like to stress the fact that some choices of σ1, . . . , σn can severely
deteriorate the performance of the estimators. To illustrate this, we showed
an example of multichannel estimates (in Fig 4) obtained using the BlockJS
method from T = 4096 equispaced values with BSNR= 25, σv = v (dashed
blue) and σv randomly generated in (0,+∞) (solid blue). We can see a significant
PSNR improvement up to 6.85 dB for the first derivative of TimeShiftedSine.
Note that this improvement is marginal (about 0.60 dB) for the most regular
test signal (i.e. Wave).

We concluded this simulation study by a comparison to the different methods
used. For each test function, T = 4096 equally spaced samples on [0, 1] were
generated according to (1).
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BSNRin = 40
d = 0 d = 1 d = 2

n 10 20 50 100 10 20 50 100 10 20 50 100

Wave
BlockJS 72.16 74.92 76.94 77.91 43.02 35.00 37.52 35.66 32.33 29.14 30.41 23.06
BlockH 67.90 70.63 73.47 72.14 31.90 27.15 30.16 30.29 28.95 26.28 22.40 16.38
TermJS 70.27 73.03 74.28 73.53 35.24 30.42 33.39 32.23 31.35 27.84 23.75 18.77
TermH 67.49 69.33 67.08 66.84 26.00 24.55 28.07 27.48 28.59 22.56 16.83 15.23
TimeShiftedSine
BlockJS 71.55 70.83 74.41 74.63 41.74 40.10 38.22 38.20 28.02 32.60 30.55 28.00
BlockH 65.08 68.07 70.89 67.82 33.59 31.45 31.29 33.64 24.77 29.19 20.15 17.57
TermJS 68.12 69.43 72.04 70.65 35.80 34.79 34.99 36.83 26.73 28.72 23.75 22.02
TermH 62.30 66.04 65.67 64.50 26.62 28.01 30.04 33.62 24.00 19.76 17.69 16.01
Parabolas
BlockJS 64.10 64.13 68.62 69.31 39.61 39.10 34.34 35.76 22.75 22.78 22.46 22.15
BlockH 62.07 63.47 67.84 67.14 35.34 33.21 28.04 31.68 22.23 22.88 20.46 18.56
TermJS 63.45 63.90 68.33 68.04 37.62 34.74 31.78 34.29 22.65 22.78 21.26 19.32
TermH 61.70 63.07 63.52 63.00 29.92 28.30 27.59 31.17 22.33 19.74 15.21 14.78

BSNRin = 25
d = 0 d = 1 d = 2

n 10 20 50 100 10 20 50 100 10 20 50 100

Wave
BlockJS 56.97 58.19 62.01 63.11 28.62 23.69 21.46 21.91 20.87 18.18 17.97 15.67
BlockH 52.43 54.03 57.91 56.87 21.07 17.41 16.74 17.29 17.03 15.96 15.45 13.39
TermJS 55.14 56.10 59.70 58.55 23.13 20.29 19.01 18.73 19.30 21.76 14.18 13.24
TermH 52.39 52.25 52.61 52.36 18.14 16.94 15.95 19.38 16.21 18.99 11.94 11.77
TimeShiftedSine
BlockJS 58.36 56.59 60.13 61.29 23.61 25.00 23.64 22.60 21.11 19.78 19.07 13.70
BlockH 51.73 53.21 56.10 54.81 18.83 16.98 17.41 18.56 16.28 15.88 15.81 13.02
TermJS 54.51 55.05 56.88 55.87 18.24 19.80 22.01 22.30 19.28 17.86 18.19 13.80
TermH 50.43 51.60 50.48 49.15 17.36 14.35 18.56 23.12 15.89 19.41 16.84 13.24
Parabolas
BlockJS 51.40 54.44 56.82 57.63 26.37 29.35 20.81 21.88 15.53 19.63 15.79 15.29
BlockH 47.72 50.73 54.27 52.82 18.56 20.67 14.29 17.52 13.26 17.47 14.65 12.72
TermJS 49.71 52.77 54.72 54.45 21.60 21.99 17.89 20.11 14.21 21.11 12.72 13.87
TermH 47.08 50.62 48.80 48.77 16.18 14.97 13.70 20.24 22.10 20.87 12.54 10.72

BSNRin = 10
d = 0 d = 1 d = 2

n 10 20 50 100 10 20 50 100 10 20 50 100

Wave
BlockJS 42.04 43.29 47.04 48.16 18.10 16.70 15.63 15.63 15.78 16.64 14.63 12.65
BlockH 37.48 39.16 42.94 38.57 14.91 13.46 13.03 15.22 14.23 15.27 12.20 11.79
TermJS 40.23 41.22 44.74 43.63 15.53 14.42 14.59 15.43 15.59 15.78 12.47 11.93
TermH 37.46 37.35 37.70 37.59 13.37 12.30 13.29 15.05 16.78 12.88 11.41 10.85
TimeShiftedSine
BlockJS 43.44 41.75 45.20 46.39 18.61 17.83 16.62 16.61 15.64 17.66 14.12 12.02
BlockH 36.97 38.40 41.17 39.93 15.17 12.76 12.92 14.16 13.61 15.86 12.04 11.07
TermJS 39.60 40.35 42.00 41.00 15.53 15.03 15.22 15.44 15.80 14.62 12.54 11.21
TermH 35.68 37.17 35.78 34.42 12.61 12.35 13.85 14.58 17.07 12.80 11.35 10.76
Parabolas
BlockJS 37.00 40.27 42.25 43.13 15.99 15.49 13.73 14.45 12.02 13.83 12.30 11.25
BlockH 33.16 36.20 39.60 38.19 13.49 12.31 11.29 12.91 12.30 14.69 12.09 11.04
TermJS 35.00 38.22 39.97 39.76 13.85 13.14 12.48 14.03 13.58 14.81 11.95 11.16
TermH 32.46 35.95 34.18 34.26 11.57 11.56 12.93 14.01 14.67 13.54 10.77 11.04

Table 1

Comparison of average PSNR in decibels (dB) over ten realizations for d = 0 (left), d = 1
(middle) and d = 2 (right). From top to bottom BSNRin = 40, 25, 10.
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Table 1 shows that BlockJS uniformly outperforms the others methods in
almost all cases in terms of peak signal-to-noise ratio (PSNR). Not surpris-
ingly, the derivative estimation with BSNRin equal to 10 seems to be pretty
hard, especially for “Parabolas” (which has big jumps in its second derivative,
see Fig. 3: (d)). Indeed, computing the derivative in the frequency domain de-
grades the PSNR of the estimations, since the high frequency components are
dominated by the noise.

This numerical study confirms that under the heteroscedastic multichannel
deconvolution model BlockJS thresholding wavelet estimator is very efficient.

Conclusion and perspectives

In this work, an adaptive wavelet block thresholding estimator was constructed
to estimate one of the derivative of a function f from the heteroscedastic multi-
channel deconvolution model. Under ordinary smooth assumption on g1, . . . , gn,
it was proved that it is nearly optimal in the minimax sense. The practical com-
parisons to state-of-the art methods have demonstrated the usefulness and the
efficiency of adaptive block thresholding methods in estimating a function f and
its first derivatives in the functional deconvolution setting.

It would be interesting to consider the case where gv are unknown, which is
the case in many practical situations. Another interesting perspective would be
to extend our results to a multidimensional setting. These aspects need further
investigations that we leave for a future work.

7. Proofs

In the following proofs, c and C denote positive constants which can take dif-
ferent values for each mathematical term.

7.1. Proofs of the auxiliary results

Proof of Proposition 5.1. Let us prove the second point, the first one can be
proved in a similar way. For any ℓ ∈ Z and any v ∈ {1, . . . , n}, F (f ⋆ gv) (ℓ) =
F(f)(ℓ)F(gv)(ℓ). Therefore, if we set

yℓ,v =

∫ 1

0

e−2πiℓtdYv(t), eℓ,v =

∫ 1

0

e−2πiℓtdWv(t),

It follows from (1) that

yℓ,v = F(f)(ℓ)F(gv)(ℓ) + ǫeℓ,v. (12)

Note that, since f is 1-periodic, for any u ∈ {0, . . . , d}, f (u) is 1-periodic
and f (u)(0) = f (u)(1). By d integrations by parts, for any ℓ ∈ Z, we have
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F(f (d))(ℓ) = (2πiℓ)dF(f)(ℓ). The Plancherel-Parseval theorem gives

βj,k =

∫ 1

0

f (d)(t)ψj,k(t)dt =
∑

ℓ∈Cj

F(f (d))(ℓ)F (ψj,k)(ℓ)

=
∑

ℓ∈Cj

(2πiℓ)dF(f)(ℓ)F (ψj,k)(ℓ).

Using (12), we have

β̂j,k =
1

ρn

n∑

v=1

1

(1 + σ2
v)

δ

∑

ℓ∈Cj

(2πiℓ)d
F (ψj,k)(ℓ)

F(gv)(ℓ)
F(f)(ℓ)F(gv)(ℓ)

+ ǫ
1

ρn

n∑

v=1

1

(1 + σ2
v)

δ

∑

ℓ∈Cj

(2πiℓ)d
F (ψj,k)(ℓ)

F(gv)(ℓ)
eℓ,v

=
∑

ℓ∈Cj

(2πiℓ)dF(f)(ℓ)F (ψj,k)(ℓ)

+ ǫ
1

ρn

n∑

v=1

1

(1 + σ2
v)

δ

∑

ℓ∈Cj

(2πiℓ)d
F (ψj,k)(ℓ)

F(gv)(ℓ)
eℓ,v

= βj,k + ǫ
1

ρn

n∑

v=1

1

(1 + σ2
v)

δ

∑

ℓ∈Cj

(2πiℓ)d
F (ψj,k)(ℓ)

F(gv)(ℓ)
eℓ,v.

Since (e−2πiℓ.)ℓ∈Z is an orthnormal basis of L2
per([0, 1]) and W1(t), . . . ,Wn(t)

are i.i.d. standard Brownian motions,
(∫ 1

0 e
−2πiℓtdWv(t)

)
(ℓ,v)∈Z×{1,...,n}

is a se-

quence of i.i.d. random variables with the common distribution N (0, 1). There-
fore

β̂j,k ∼ N


βj,k, ǫ2

1

ρ2n

n∑

v=1

1

(1 + σ2
v)

2δ

∑

ℓ∈Cj

(2πℓ)2d
|F (ψj,k) (ℓ)|2
|F(gv)(ℓ)|2


 .

Proposition 5.1 is proved.

�

Proof of Proposition 5.2. Let us prove the second point, the first one can be
proved in a similar way. Let us recall that, by Proposition 5.1, for any j ∈
{j1, . . . , j2} and any k ∈ {0, . . . , 2j − 1}, we have

β̂j,k − βj,k ∼ N
(
0, ρ−2

n σ2
j,k

)
, (13)

where

σ2
j,k = ǫ2

n∑

v=1

1

(1 + σ2
v)

2δ

∑

ℓ∈Z

(2πℓ)2d
|F (ψj,k) (ℓ)|2
|F(gv)(ℓ)|2

. (14)
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Due to (3) and (11), for any v ∈ {1, . . . , n}, we have

sup
ℓ∈Cj

(
(2πℓ)2d

|F(gv)(ℓ)|2
)

≤ C sup
ℓ∈Cj

(
(2πℓ)2d

(
1 + σ2

vℓ
2
)δ)

≤ C(1 + σ2
v) sup

ℓ∈Cj

(
(2πℓ)2d

(
1 + ℓ2

)δ)

≤ C(1 + σ2
v)2

2(δ+d)j. (15)

It follows from (15) and the Plancherel-Parseval theorem that

σ2
j,k ≤ ǫ2

n∑

v=1

1

(1 + σ2
v)

2δ
sup
ℓ∈Cj

(
(2πℓ)2d

|F(gv)(ℓ)|2
)∑

ℓ∈Cj

|F (ψj,k) (ℓ)|2

≤ Cǫ222(δ+d)j

(
n∑

v=1

1

(1 + σ2
v)

δ

)
∑

ℓ∈Cj

|F (ψj,k) (ℓ)|2



= Cǫ222(δ+d)jρn

∫ ∞

−∞

|F (ψj,k) (y)|2dy

= Cǫ222(δ+d)jρn

∫ 1

0

|ψj,k(x)|2dx = Cǫ2ρn2
2(δ+d)j. (16)

Putting (13), (14) and (16) together, we obtain

E

(
|β̂j,k − βj,k|4

)
≤ C(ǫ222(δ+d)jρnρ

−2
n )2 = Cǫ424(δ+d)jρ−2

n .

Proposition 5.2 is proved.

�

Proof of Proposition 5.3. We need the Cirelson inequality presented in Lemma
7.1 below.

Lemma 7.1 ([12]). Let (ϑt)t∈D be a centered Gaussian process. If

E

(
sup
t∈D

ϑt

)
≤ N, sup

t∈D
V (ϑt) ≤ V

then, for any x > 0, we have

P

(
sup
t∈D

ϑt ≥ x+N

)
≤ exp

(
− x2

2V

)
.

For the sake of simplicity, set

Vj,k = β̂j,k − βj,k.

Recall that, by Proposition 5.1, we have Vj,k ∼ N
(
0, ρ−2

n σ2
j,k

)
, where σ2

j,k is de-

fined by (14). Consider the set Ω defined by Ω = {a = (ak) ∈ C;
∑

k∈Bj,K
|ak|2 ≤
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1}. For any a ∈ Ω, let Z(a) be the centered Gaussian process defined by

Z(a) =
∑

k∈Bj,K

akVj,k

= ǫ
1

ρn

n∑

v=1

1

(1 + σ2
v)

δ

∑

ℓ∈Cj

(2πiℓ)d
eℓ,v

F(gv)(ℓ)

∑

k∈Bj,K

akF (ψj,k) (ℓ).

By an argument of duality, we have

sup
a∈Ω

Z(a) =


 ∑

k∈Bj,K

|Vj,k|2



1/2

=


 ∑

k∈Bj,K

|β̂j,k − βj,k|2



1/2

.

Now, let us determine the values of N and V which appeared in the Cirelson
inequality.

Value of N . Using the Hölder inequality and (16), we obtain

E

(
sup
a∈Ω

Z(a)

)
= E





 ∑

k∈Bj,K

|Vj,k|2



1/2

 ≤


 ∑

k∈Bj,K

E
(
|Vj,k|2

)



1/2

≤ C


ρ−2

n

∑

k∈Bj,K

σ2
j,k




1/2

≤ C
(
ρ−2
n ǫ2ρn2

2(δ+d)j Card(Bj,K)
)1/2

= Cǫ2(δ+d)jρ−1/2
n

Hence N = Cǫ2(δ+d)j(log ρn/ρn)
1/2.

Value of V . Note that, for any (ℓ, ℓ′) ∈ Z2 and any (v, v′) ∈ {1, . . . , n}2,
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E (eℓeℓ′) =

{
1 if ℓ = ℓ′ and v = v′,

0 otherwise,
it comes

sup
a∈Ω

V(Z(a)) = sup
a∈Ω

E




∣∣∣∣∣∣

∑

k∈Bj,K

akVj,k

∣∣∣∣∣∣

2



= sup
a∈Ω

E


 ∑

k∈Bj,K

∑

k′∈Bj,K

akak′Vj,kVj,k′




= ǫ2ρ−2
n sup

a∈Ω

∑

k∈Bj,K

∑

k′∈Bj,K

akak′

∑

ℓ∈Cj

∑

ℓ′∈Cj

n∑

v′=1

n∑

v=1

1

(1 + σ2
v)

δ

1

(1 + σ2
v′ )δ

×

(2πiℓ)d

F(gv)(ℓ)
F(ψj,k)(ℓ)

(2πiℓ′)d

F(gv′)(ℓ′)
F(ψj,k′ )(ℓ′)E (eℓ,veℓ′,v′)

= ǫ2ρ−2
n sup

a∈Ω

∑

k∈Bj,K

∑

k′∈Bj,K

akak′

∑

ℓ∈Cj

n∑

v=1

1

(1 + σ2
v)

2δ

(2πℓ)2d

|F(gv)(ℓ)|2
F (ψj,k)(ℓ)F(ψj,k′ )(ℓ)

= ǫ2ρ−2
n sup

a∈Ω

∑

ℓ∈Cj

n∑

v=1

1

(1 + σ2
v)

2δ

(2πℓ)2d

|F(gv)(ℓ)|2

∣∣∣∣∣∣

∑

k∈Bj,K

akF (ψj,k) (ℓ)

∣∣∣∣∣∣

2

. (17)

For any a ∈ Ω, the Plancherel-Parseval theorem gives

∑

ℓ∈Cj

∣∣∣∣∣∣

∑

k∈Bj,K

akF(ψj,k)(ℓ)

∣∣∣∣∣∣

2

=
∑

ℓ∈Cj

∣∣∣∣∣∣
F


 ∑

k∈Bj,K

akψj,k


 (ℓ)

∣∣∣∣∣∣

2

=

∫ ∞

−∞

∣∣∣∣∣∣
F


 ∑

k∈Bj,K

akψj,k


 (y)

∣∣∣∣∣∣

2

dy =

∫ 1

0

∣∣∣∣∣∣

∑

k∈Bj,K

akψj,k(x)

∣∣∣∣∣∣

2

dx

=
∑

k∈Bj,K

|ak|2 ≤ 1. (18)

Putting (17), (15) and (18) together, we have

sup
a∈Ω

V(Z(a)) ≤ Cǫ2ρ−1
n 22(δ+d)j sup

a∈Ω

∑

ℓ∈Cj

∣∣∣∣∣∣

∑

k∈Bj,K

akF (ψj,k) (ℓ)

∣∣∣∣∣∣

2

≤ Cǫ2ρ−1
n 22(δ+d)j .

Hence V = Cǫ2ρ−1
n 22(δ+d)j.

Taking λ large enough and x = 2−1λǫ2(δ+d)j(log ρn/ρn)
1/2, the Cirelson in-
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equality described in Lemma 7.1 yields

P





 ∑

k∈Bj,K

|Vj,k|2



1/2

≥ λǫ2(δ+d)j(log ρn/ρn)
1/2




≤ P





 ∑

k∈Bj,K

|Vj,k|2



1/2

≥ 2−1λǫ2(δ+d)j(log ρn/ρn)
1/2 +N




= P

(
sup
a∈Ω

Z(a) ≥ x+N

)
≤ exp

(
−x2/(2V )

)
≤ exp

(
−Cλ2 log ρn

)

≤ ρ−2
n .

Proposition 5.3 is proved.

�

Putting Propositions 5.2 and 5.3 in [11, Theorem 3.1], we end the proof of
Theorem 5.1.

�

Proof of Theorem 5.2. Let us now present a consequence of the Fano lemma.

Lemma 7.2. Let m ∈ N∗ and A be a sigma algebra on the space Ω. For any
i ∈ {0, . . . ,m}, let Ai ∈ A such that, for any (i, j) ∈ {0, . . . ,m}2 with i 6= j,

Ai ∩ Aj = ∅.

Let (Pi)i∈{0,...,m} be m+ 1 probability measures on (Ω, A). Then

sup
i∈{0,...,m}

Pi (A
c
i ) ≥ min

(
2−1, exp(−3e−1)

√
m exp(−χm)

)
,

where

χm = inf
v∈{0,...,m}

1

m

∑

k∈{0,...,m}
k 6=v

K(Pk,Pv),

and K is the Kullbak-Leibler divergence defined by

K(P,Q) =

{∫
ln
(

dP
dQ

)
dP if P << Q,

∞ otherwise.

The proof of Lemma 7.2 can be found in [15, Lemma 3.3]. For further details
and applications of the Fano lemma, see [25].
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Consider the Besov balls Bs
π,r(M) (see (9)). Let j0 be an integer suitably

chosen below. For any ε = (εk)k∈{0,...,2j0−1} ∈ {0, 1}2j0 and d ∈ N∗, set

hε(x) = M∗2
−j0(s+1/2)

2j0−1∑

k=0

εk
1

(d− 1)!

∫ x

0

(x− y)d−1ψj0,k(y)dy,

x ∈ [0, 1],

(and, if d = 0, set hε(x) = M∗2
−j0(s+1/2)

∑2j0−1
k=0 εkψj0,k(x), x ∈ [0, 1]). Notice

that, due to (7), hε exists and, since ψj0,k is 1-periodic, hε is also 1-periodic.
Using the Cauchy formula for repeated integration, we have

h(d)ε (x) =M∗2
−j0(s+1/2)

2j0−1∑

k=0

εkψj0,k(x), x ∈ [0, 1].

So, for any j ≥ τ and any k ∈ {0, . . . , 2j − 1}, the (mother) wavelet coefficient

of h
(d)
ε is

βj,k =

∫ 1

0

h(d)ε (x)ψj,k(x)dx =

{
M∗εk2

−j0(s+1/2), if j = j0,

0, otherwise.

Therefore h
(d)
ε ∈ Bs

p,r(M). The Varshamov-Gilbert theorem (see [25, Lemma

2.7]) asserts that there exist a set Ej0 =
{
ε(0), . . . , ε(Tj0 )

}
and two constants, c ∈

]0, 1[ and α ∈]0, 1[, such that, for any u ∈ {0, . . . , Tj0}, ε(u) = (ε
(u)
k )k∈{0,...,2j0−1} ∈

{0, 1}2j0 and any (u, v) ∈ {0, . . . , Tj0}2 with u < v, the following hold:

2j0−1∑

k=0

|ε(u)k − ε
(v)
k | ≥ c2j0 , Tj0 ≥ eα2

j0
.

Considering such a Ej0 , for any (u, v) ∈ {0, . . . , Tj0}2 with u 6= v, we have

(∫ 1

0

(
h
(d)

ε(u)(x)− h
(d)

ε(v)
(x)
)2
dx

)1/2

= c2−j0(s+1/2)




2j0−1∑

k=0

∣∣∣ε(u)k − ε
(v)
k

∣∣∣
2




1/2

= c2−j0(s+1/2)




2j0−1∑

k=0

∣∣∣ε(u)k − ε
(v)
k

∣∣∣




1/2

≥ 2δj0 ,

where
δj0 = c2j0/22−j0(s+1/2) = c2−j0s.
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Using the Markov inequality, for any estimator f̃ of f (d), we have

δ−2
j0

sup
f(d)∈Bs

π,r(M)

E

(∫ 1

0

(
f̃(x)− f (d)(x)

)2
dx

)
≥ sup

u∈{0,...,Tj0}

Ph
ε(u)

(Ac
u) = p,

where

Au =

{(∫ 1

0

(
f̃(x) − h

(d)

ε(u)(x)
)2
dx

)1/2

< δj0

}

and Pf is the distribution of (1). Notice that, for any (u, v) ∈ {0, . . . , Tj0}2
with u 6= v, Au ∩ Av = ∅. Lemma 7.2 applied to the probability measures(
Ph

ε(u)

)
u∈{0,...,Tj0}

gives

p ≥ min
(
2−1, exp(−3e−1)

√
Tj0 exp(−χTj0

)
)
, (19)

where

χTj0
= inf

v∈{0,...,Tj0}

1

Tj0

∑

u∈{0,...,Tj0}
u6=v

K
(
Ph

ε(u)
,Ph

ε(v)

)
.

Let us now bound χTj0
. For any functions f1 and f2 in L2

per([0, 1]), we have

K (Pf1 ,Pf2) =
1

2ǫ2

n∑

v=1

∫ 1

0

((f1 ⋆ gv)(x) − (f2 ⋆ gv)(x))
2
dx

=
1

2ǫ2

n∑

v=1

∫ 1

0

(((f1 − f2) ⋆ gv)(x))
2
dx.

The Plancherel-Parseval theorem yields

K (Pf1 ,Pf2) =
1

2ǫ2

n∑

v=1

∫ ∞

−∞

|F((f1 − f2) ⋆ gv)(x)|2dx

=
1

2ǫ2

n∑

v=1

∫ ∞

−∞

|F(f1 − f2)(x)|2 |F(gv)(x)|2dx.

So, for any (u, v) ∈ {0, . . . , Tj0}2 with u 6= v, we have

K
(
Ph

ε(u)
,Ph

ε(v)

)
=

1

2ǫ2

n∑

v=1

∫ ∞

−∞

|F (hε(u) − hε(v)) (x)|2 |F(gv)(x)|2dx. (20)

By definition, for any (u, v) ∈ {0, . . . , Tj0}2 with u 6= v and x ∈ R, we have

F (hε(u) − hε(v)) (x)

= M∗2
−j0(s+1/2)

2j0−1∑

k=0

(
ε
(u)
k − ε

(v)
k

)
×

1

(d− 1)!
F
(∫ .

−∞

(.− y)d−1ψj0,k(y)dy

)
(x). (21)
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Let us set, for any k ∈ {0, . . . , 2j0 − 1},

θk(x) =

∫ x

−∞

(x − y)d−1ψj0,k(y)dy, x ∈ [0, 1].

Then, for any u ∈ {0, . . . , d}, θ(u)k is 1-periodic and θ
(u)
k (0) = θ

(u)
k (1). Therefore,

by d integrations by parts, for any x ∈ R, we have

F
(
θ
(d)
k

)
(x) = (2πix)dF(θk)(x).

Using again the Cauchy formula for repeated integration, we have θ
(d)
k (x) =

ψj0,k(x), x ∈ [0, 1]. So, for any x ∈ Cj0 (excluding 0), (21) implies that

F(hε(u) − hε(v))(x)

=
M∗

(d− 1)!
2−j0(s+1/2)

2j0−1∑

k=0

(
ε
(u)
k − ε

(v)
k

) 1

(2πix)d
F (ψj0,k) (x). (22)

The equalities (20) and (22) imply that

K
(
Ph

ε(u)
,Ph

ε(v)

)

= C2−2j0(s+1/2)
n∑

v=1

∫

Cj0

∣∣∣∣∣∣

2j0−1∑

k=0

(
ε
(u)
k − ε

(v)
k

)
F (ψj0,k) (x)

∣∣∣∣∣∣

2

1

(2πx)2d
|F(gv)(x)|2dx.

(23)

By (3) and (11), for any v ∈ {1, . . . , n},

sup
x∈Cj0

(
1

(2πx)2d
|F(gv)(x)|2

)
≤ C sup

x∈Cj0

(
1

(2πx)2d
(
1 + σ2

vx
2
)−δ
)

≤ Cσ−2δ
v sup

x∈Cj0

(
x−2(δ+d)

)
≤ Cσ−2δ

v 2−2j0(δ+d).

(24)

Moreover, the Plancherel-Parseval theorem implies that

∫

Cj0

∣∣∣∣∣∣

2j0−1∑

k=0

(
ε
(u)
k − ε

(v)
k

)
F (ψj0,k) (x)

∣∣∣∣∣∣

2

dx

=

∫ ∞

−∞

∣∣∣∣∣∣
F




2j0−1∑

k=0

(
ε
(u)
k − ε

(v)
k

)
ψj0,k


 (x)

∣∣∣∣∣∣

2

dx

=

∫ 1

0

∣∣∣∣∣∣

2j0−1∑

k=0

(
ε
(u)
k − ε

(v)
k

)
ψj0,k(x)

∣∣∣∣∣∣

2

dx =

2j0−1∑

k=0

(
ε
(u)
k − ε

(v)
k

)2
≤ C2j0 .

(25)
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It follows from (23), (24) and (25) that

K
(
Ph

ε(u)
,Ph

ε(v)

)
≤ C2−2j0(s+1/2)2−2j0(δ+d)2j0

n∑

v=1

σ−2δ
v = Cρ∗n2

−2j0(s+1/2+δ+d)2j0 .

Hence

χTj0
= inf

v∈{0,...,Tj0}

1

Tj0

∑

u∈{0,...,Tj0}
u6=v

K
(
Ph

ε(u)
,Ph

ε(v)

)

≤ Cρ∗n2
−2j0(s+1/2+δ+d)2j0 . (26)

Putting (19) and (26) together and choosing j0 such that

2−j0(s+1/2+δ+d) = c0(ρ
∗
n)

−1/2,

where c0 denotes a well chosen constant, for any estimator f̃ of f (d), we have

δ−2
j0

sup
f(d)∈Bs

π,r(M)

E

(∫ 1

0

(
f̃(x) − f (d)(x)

)2
dx

)
≥ c exp

(
(α/2)2j0 − Cc202

j0
)

≥ c,

where
δj0 = c2−j0s = c(ρ∗n)

−s/(2s+2δ+2d+1).

This complete the proof of Theorem 5.2.

�
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