On the length of an external branch in the Beta-coalescent - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

On the length of an external branch in the Beta-coalescent

Résumé

In this paper, we consider Beta$(2-{\alpha},{\alpha})$ (with $1<{\alpha}<2$) and related ${\Lambda}$-coalescents. If $T^{(n)}$ denotes the length of an external branch of the $n$-coalescent, we prove the convergence of $n^{{\alpha}-1}T^{(n)}$ when $n$ tends to $ \infty $, and give the limit. To this aim, we give asymptotics for the number $\sigma^{(n)}$ of collisions which occur in the $n$-coalescent until the end of the chosen external branch, and for the block counting process associated with the $n$-coalescent.
Fichier principal
Vignette du fichier
extbranch_submited.pdf (243.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00660548 , version 1 (17-01-2012)

Identifiants

  • HAL Id : hal-00660548 , version 1

Citer

Jean-Stephane Dhersin, Fabian Freund, Arno Siri-Jegousse, Linglong Yuan. On the length of an external branch in the Beta-coalescent. 2012. ⟨hal-00660548⟩
151 Consultations
307 Téléchargements

Partager

More