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ON THE LENGTH OF AN EXTERNAL BRANCH IN THE

BETA-COALESCENT

JEAN-STÉPHANE DHERSIN, FABIAN FREUND, ARNO SIRI-JÉGOUSSE, AND LINGLONG YUAN

Abstract. In this paper, we consider Beta(2 − α, α) (with 1 < α < 2) and related Λ-

coalescents. If T (n) denotes the length of an external branch of the n-coalescent, we prove
the convergence of nα−1T (n) when n tends to ∞, and give the limit. To this aim, we
give asymptotics for the number σ(n) of collisions which occur in the n-coalescent until the
end of the chosen external branch, and for the block counting process associated with the
n-coalescent.

1. Introduction

1.1. Motivation and main results. In modern genetics, it is possible to sequence whole
genomes of individuals. In order to put this information to maximal use, it is important
to have well-fitting models for the gene genealogy of a sample of individuals. The standard
model for a gene genealogy of a sample of n individuals is Kingman’s n-coalescent (see [26],

[27]). Kingman’s n-coalescent is a continuous-time Markov process with state space P(n), the
set of partitions of {1, . . . , n}. The process starts in the trivial partition ({1}, . . . , {n}) and
transitions are only possible as mergers of exactly two blocks of the current state. Each such
binary merger occurs with rate 1. These mergers are also called collisions.

For many populations, Kingman’s n-coalescent describes the genealogy quite well. King-
man showed in [27] that the ancestral trees of a sample of size n in populations with size
N evolving by a Wright-Fisher model will converge weakly to Kingman’s n-coalescent for
N → ∞ (after a suitable time-change). This result is relatively robust if population evo-
lution deviates from the Wright-Fisher model (see [27] or [28]). However, there is evidence
that there are populations where the gene genealogy of a sample is not described well by
Kingman’s n-coalescent. Examples of such populations can be found in maritime species,
where one individual can have a huge number of offspring with non-negligible probability
(see [1], [12] [22], [20] and [16]).

A whole class of potential models for the gene genealogy of a sample was introduced inde-
pendently by Pitman and Sagitov (see [30] and [31]): The class of n-coalescents with multiple
collisions. A n-coalescent with multiple collisions is a continuous-time Markov process with
state space P(n), where all possible transitions are done by merging two or more blocks
of the current state into one new block. Every n-coalescent Π(n) is exchangeable, meaning

τ ◦Π(n) d
= Π(n) for every permutation τ of {1, . . . , n}. The transition rate of a merger/collision

of k of b present blocks is given by

(1) λb,k =

∫ 1

0
xk(1− x)b−kx−2Λ(dx)
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for a finite measure Λ on [0, 1] (this definition is due to Pitman [30]). Since the process
is characterized by the measure Λ, it is also called a Λ-n-coalescent. Note that Kingman’s
n-coalescent is a Λ-n-coalescent with Λ being the Dirac measure δ0 in 0.
It is possible to define a continuous-time process Π with state space P, the partitions of the
natural numbers N, whose restriction on {1, . . . , n} is a Λ-n-coalescent for all n ∈ N. Such a
process is called a Λ-coalescent.
An important subclass of Λ-n-coalescents are Beta n-coalescents characterized by Λ being

a Beta distribution, especially for the choice of parameters 2 − α and α for α ∈ (0, 2). The
class of Beta(2 − α,α)-n-coalescents appears as ancestral trees in various settings. They
appear in the context of supercritical Galton-Watson processes (see [32]), of continuous-state
branching processes (see [9]) and of continuous random trees (see [3]). They also seem to be
a class where suitable models for the ancestral tree can be found for samples from species
who do not fit well with the Kingman-setting (see [8]). Note that for α→ 2, the rates of the
Beta(2 − α,α)-n-coalescent converge to the rates of Kingman’s n-coalescent. In this sense,
Kingman’s n-coalescent can be seen as a border case of this class of Beta n-coalescents.

For α = 1, Beta(2 − α,α) is the uniform distribution on [0, 1]. The corresponding n-
coalescent is the Bolthausen-Sznitman n-coalescent. It appears in the field of spin glasses
(see [11], [13]) and is also connected to random recursive trees (see [21]).

Let us denote by Π(n) = (Π
(n)
t )t≥0 a n-coalescent. In this paper, we are interested in three

functionals of n-coalescents

• the length T (n) of a randomly chosen external branch ;
• the number σ(n) of collisions which occur in the n-coalescent until the end of a ran-
domly chosen external branch ;

• the block counting process R(n) = (R
(n)
t )t≥0: R

(n)
t = |Π

(n)
t | is the number of blocks of

Π
(n)
t .

Note that T (n) can also be characterized as the waiting time for the first collision of a randomly
chosen individual and σ(n) as the number of collisions we have to wait to see the randomly
chosen individual merge. For i ∈ {1, . . . , n} define

T
(n)
i := inf

{

t| {i} /∈ Π
(n)
t

}

as the length of the ith external branch and

σ
(n)
i := inf {k|{i} /∈ πk}

as the number of collisions until the end of the ith external branch, where πk is the state
of the n-coalescent after k jumps. Due to the exchangeability of the n-coalescent, we have

T (n) d
= T

(n)
1 and σ(n)

d
= σ

(n)
1 . Since we are only interested in distributional results, for the

remainder of the article we will identify T (n) with T
(n)
1 and σ(n) with σ

(n)
1 .

If the n-coalescent is used as a model for an ancestral tree of a sample of individuals/genes,

the functionals T (n) and σ(n) can be interpreted biologically. The length of an external branch
measures the uniqueness of the individual linked to that branch compared to the sample, since
it gives the time this individual has to evolve by mutations that do not affect the rest of the
sample (see the introduction of [14] for more information). It was first introduced by Fu and
Li in [18], where they compare mutations on external and internal branches of Kingman’s
n-coalescent in order to test for the neutrality of mutations.
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The functional σ(n) was first introduced in [14], though n−σ(n) was also analyzed in [10] as
the level of coalescence of the chosen individual with the rest of the sample. In both articles,
the functionals were defined for Kingman’s n-coalescent.

For the biological interpretation of σ(n), we see the n-coalescent as an ancestral tree of
a sample of size n. Each collision in the n-coalescent then resembles the emergence of an
ancestor of the sample. σ(n)−1 is the number of ancestors of the sample which emerge before
the most recent ancestor of the randomly chosen individual/gene emerges (recall that time

runs backwards in the n-coalescent). In this line of thought, σ(n) gives the temporal position
of the first ancestor of the chosen individual/gene among all ancestors of the sample, which

are the τ (n) collisions in the n-coalescent. Thus, σ(n)

τ (n) gives the relative temporal position of

the first ancestor of the chosen individual/gene among all ancestors of the sample (until the

most recent common ancestor). In this sense, we interpret σ(n)

τ (n) as a measure of how ancient

the chosen individual/gene is compared to the rest of the sample.

In this article, we focus on the asymptotics of T (n), σ(n) and R(n) for n → ∞. The
asymptotics of these functionals are already known for some Λ-n-coalescents. For T (n), we
have

• Λ = δ0 (Kingman’s coalescent): nT (n) d
→ T , where T has density t 7→ 8

(2+t)3
(see [10],

[14], [24]),

• Λ = Beta(1, 1) (Bolthausen-Sznitman coalescent): log(n)T (n) d
→ Exp(1) (see [17]),

• Λ with µ−1 =
∫ 1
0 x

−1Λ(dx) <∞: T (n) d
→ Exp(µ−1) (see [29], see also [19])

for n→ ∞. For σ(n), we have

• Λ = δ0: σ
(n)/n

d
→ Beta(1, 2) (see [14]),

• Λ = Beta(1, 1): log(n)
n σ(n)

d
→ Beta(1, 1) (see [17]),

• Λ with µ−2 =
∫ 1
0 x

−2Λ(dx) <∞: σ(n)
d
→ Geo(µ−1

µ−2
) (see [19])

for n→ ∞, where Geo(p) is the geometric distribution on N with parameter p.

There are some known results for the asymptotics of the block counting processR(n). Define
R = (Rt)t≥0 by setting Rt := |Πt|, the number of blocks of a Λ-coalescent Π = (Πt)t≥0. Note

that R = limn→∞R(n), if the block counting process R(n) is defined for the restriction of Π
to {1, . . . , n} for each n ∈ N. For the small-time behaviour of the block counting process R,
the following results are known:

• If Λ(dx) = f(x)dx, where f(x) ∼ Ax1−α for 1 < α < 2 and ∼ means that the ratio
of the two sides tends to one as x→ 0+. Then

(2) lim
t→0+

t1/(α−1)Rt = (
α

AΓ(2 − α)
)1/(α−1) a.s.

(see [3] and [4])
• If

∫

[ǫ,1] x
−2Λ(dx) = ǫ−αLǫ with ǫ ∈ (0, 1) and Lǫ slowly varying as ǫ → 0. Denote by

gǫ := L−1
ǫ ǫα−1, then

lim
ǫ→0+

ǫRgǫ = (Γ(2 − α))1/(1−α), in Probability.

(see [6]).
Notice that both cases are complementary. The block counting process of Kingman

coalescent gets similar limit value almost surely by taking α = 2, (see [3], page 216).
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• For any Λ coalescent that comes down from infinity(that means for any t > 0, Rt <∞
almost surely), there exists a deterministic positive function vt on (0,∞), such that:

lim
t→0+

Rt

vt
= 1, a.s.

For explicit form of v and finer results, we refer to [2]. This result is much more
general than the two former ones.

We will analyze the asymptotics for T (n), σ(n) and R(n) for Λ-n-coalescents with Λ fulfilling

ρ(t) = C0t
−α +O(t−α+ζ), t→ 0

for some C0 > 0, α ∈ (1, 2) and ζ > 1− 1/α, where ρ(t) =
∫ 1
t x

−2Λ(dx). Note that this class
of n-coalescents includes all Beta(a, b)-n-coalescents with parameters a ∈ (0, 1) and b > 0.

In this class of n-coalescents, we have the following asymptotics for T (n), σ(n) and R(n):

• σ(n)

n(α−1)

d
−→ σ,

• nα−1T (n) d
→ 1

C0Γ(2−α) ((1− σ)1−α − 1),

• for any t0 > 0, ε > 0, P( sup
0≤t≤t0

|n−1R
(n)
tn1−α − (1 + C0Γ(2− α)t)−1/(α−1)| > ε) → 0,

for n→ ∞ , where σ
d
= Beta(1, α).

Remark that if Λ(dx) = f(x)dx, where f(x) ∼ Ax1−α for 1 < α < 2, we get that for fixed
t > 0,

lim
n→∞

1

n
(1 +

AΓ(2 − α)

α
t)1/(α−1)R

(n)
tn1−α = 1

in probability, which is to be compared to the following a.s. convergence implied by (2):

lim
n→∞

1

n
(
AΓ(2 − α)

α
t)1/(α−1)Rtn1−α = 1.

The different scaling comes from the fact that we do not consider the block counting
process R = limn→∞R(n) of a Λ-coalescent Π, but instead the time-changed, scaled limit

limn→∞
1
nR

(n)
tn1−α . To our best knowledge, there does not seem to be a direct link between

these two results.
Note that if we see the Bolthausen-Sznitman n-coalescent as a Beta(1, 1)-coalescent and

Kingman’s n-coalescent as the borderline case of a Beta distribution with parameter α→ 2,
the convergence results for σ(n) shows a nice continuity in the parameters of the limit distri-
butions in the range of Beta(2 − α,α)-n-coalescents with α ∈ [1, 2]. Our convergence result
itself is even somewhat true in the border cases 1 and 2 (if one wages (α − 1)−1 → ∞ for
α → 1 against log(n) → ∞ for n → ∞ for the Bolthausen-Sznitman n-coalescents). Also

note that T obtained as the limit variable of nT (n) in Kingman’s case has the same law as
2((1−σ)−1−1), which gives again a nice continuity in results. The continuity also appears for
the block counting process: replacing α by 2 in the formula for the Beta(2−α,α)-n-coalescent
gives the formula for Kingman’s, this result will be proved in the sequel.

Finally we can remark that together with the known asymptotics τ (n)

n
d
→ α − 1 for this

class of n-coalescents (see [15], [20] and [23]), we have σ(n)/τ (n)
d
→ σ.

To prove these results, we will exploit some techniques from [15]. In [15], they were used
to analyze the asymptotics of a part of the length of a n-coalescent and the number of
collisions in a n-coalescent for the same class of n-coalescents as analyzed in the present
paper. For the convergence result for T (n), we present two proofs. One mimics the approach
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in [14] and [24], using the convergence result for σ(n) and T (n) =
∑σ(n)

i=1 Ti, where Ti is the
waiting time between the (i − 1)th and ith collision/jump of the n-coalescent. The other

proof is based on the representation of T (n) as the first jump time of a Cox process driven
by a random rate process which depends only on the block counting process associated with
the remaining individuals labelled {2, 3, . . . , n}. We use a recursive construction suitable for
any Λ-n-coalescent: This construction consists in adding individual i to a coalescent process
constructed by individuals from 1 to n except i such that consistence relationship is fulfilled.

1.2. Organization of the paper. In section 2, we recall some known technical results which
can all be found in [15]. In section 3, we obtain the asymptotic result about σ(n) and also

about the ratio between σ(n) and τ (n). Section 4 studies the small time behavior of the block
counting process R(n). Depending on the property of R(n), our first method taking T (n) as
the first jump time of a Cox process gives the asymptotic behavior of T (n) in section 5. In
section 6, another method is provided by taking into account the fact that T (n) is the sum
of σ(n) initial waiting times for the coalescent process Π(n) to jump from one state to the
following.

2. Preliminaries

In this Section, we recall some results from [15].
Consider a n-coalescent with multiple collisions characterized by a finite measure Λ on

[0, 1]. Let ν(dx) = x−2Λ(dx) and ρ(t) = ν[t, 1]. When the process has k blocks, the next
coalescence event comes at rate gk given by

(3) gk =
k−1
∑

ℓ=1

(

k

ℓ+ 1

)

λk,ℓ+1 =

∫

(0,1)

(

1− (1− x)k − kx(1− x)k−1
)Λ(dx)

x2
.

For n ≥ 1, x ∈ (0, 1), let Bn,x be a binomial r.v. with parameter (n, x). Recall that for
1 ≤ k ≤ n, we have

(4) P(Bn,x ≥ k) =
n!

(k − 1)!(n − k)!

∫ x

0
tk−1(1− t)n−k dt.

Use the first equality in (3) and (4) to get

gn =

∫ 1

0

n
∑

k=2

(

n

k

)

xk(1− x)n−kν(dx)

=

∫ 1

0
P(Bn,x ≥ 2)ν(dx)

= n(n− 1)

∫ 1

0
(1− t)n−2tρ(t) dt.

All along this paper, the following hypothesis will be assumed

(5) ρ(t) = C0t
−α +O(t−α+ζ)

for some C0 > 0, α ∈ (1, 2) and ζ > 1− 1/α. Under this hypothesis, Lemma 2.2 of [15] gives
us that, for n ≥ 2,

(6) gn = C0Γ(2− α)nα +O(nα−min(ζ,1)).



6 JEAN-STÉPHANE DHERSIN, FABIAN FREUND, ARNO SIRI-JÉGOUSSE, AND LINGLONG YUAN

Recall that we call τ (n) the number of coalescence events until reaching the common an-

cestor of the initial population (of size n). For k ≥ 0, denote by Y
(n)
k the number of blocks

remaining after k jumps. Notice that Y (n) is a decreasing Markov chain with Y
(n)
0 = n and

Y
(n)
k = 1 for k ≥ τ (n). Let X

(n)
k = Y

(n)
k−1 − Y

(n)
k be the number of blocks we lose during the

kth coalescence event. We write X
(n)
0 = 0.

The Markov property makes that the law of the first jump X
(n)
1 will be of much interest.

We will look at some properties of X
(n)
1 . Notice that

(7) P(X
(n)
1 = k) =

1

gn

∫ 1

0
P(Bn,x = k + 1)ν(dx)

and thus

(8) P(X
(n)
1 ≥ k) =

∫ 1
0 P(Bn,x ≥ k + 1)ν(dx)

gn
=

(n− 2)!

k!(n− k − 1)!

∫ 1
0 (1− t)n−k−1tkρ(t) dt
∫ 1
0 (1− t)n−2tρ(t) dt

.

Under the same assumptions on ρ(t), setting ε0 > 0 and

(9) ϕn =











n−ζ if ζ < α− 1,

n1−α+ε0 if ζ = α− 1,

n1−α if ζ > α− 1,

Lemma 2.3 of [15] tells us there exists a constant C10 s.t. for all n ≥ 2, we have

(10)

∣

∣

∣

∣

E[X
(n)
1 ]−

1

α− 1

∣

∣

∣

∣

≤ C10ϕn.

Moreover, from Lemma 2.4 of [15], there exists a constant C11 s.t. for all n ≥ 2, we have

(11) E

[

(

X
(n)
1

)2
]

≤ C11
n2

gn
.

We consider φn the Laplace transform of X
(n)
1 : for u ≥ 0, φn(u) = E[e−uX

(n)
1 ]. Assume

that hypothesis (5) holds true. Let ε0 > 0. Recall ϕn given by (9). Then we have (see [15],
Lemma 2.5) , for n ≥ 2,

(12) φn(u) = 1−
u

α− 1
+

uα

α− 1
+R(n, u),

where R(n, u) =
(

uϕn + u2
)

h(n, u) with supu∈[0,K],n≥2 |h(n, u)| <∞ for all K > 0.

Moreover, if we assume that ζ > 1−1/α and set η ≥ 1
α , then (from [15], Lemma 3.2) there

exist ε1 > 0 and C13(K) a finite constant such that for all n ≥ 1 and u ∈ [0,K], a.s. with
an = n−η,

(13)

τn
∑

i=1

∣

∣

∣R(Y
(n)
i−1 , uan)

∣

∣

∣ ≤ C13(K)n−ε1 .

We will also use the following result : Let V = (Vt, t ≥ 0) be a α-stable Lévy process with
no positive jumps (see chap. VII in [5]) with Laplace exponent ψ(u) = uα/(α − 1): for all

u ≥ 0, E[e−uVt ] = etu
α/(α−1). We assume that ρ(t) = C0t

−α +O(t−α+ζ) for some C0 > 0 and
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ζ > 1 − 1/α. Recall that τ (n) is the number of coalescing events in the n-coalescent until
reaching its absorbing state. Let

V
(n)
t = n−1/α

⌊nt⌋∧τ (n)
∑

k=1

(X
(n)
k −

1

α− 1
)

for t ∈ [0, α− 1), and

V
(n)
α−1 = n−1/α

τ (n)
∑

k=1

(X
(n)
k −

1

α− 1
) = n−1/α

(

n− 1−
τ (n)

α− 1

)

.

Then,

(14) (V
(n)
t , t ∈ [0, α − 1]) → (Vt, t ∈ [0, α − 1])

in the sense of convergence in law of the finite-dimensional marginals (see [15], Corollary 3.5,
see also [20, 23]).

3. The number of collisions in an external branch

Consider a n-coalescent with multiple collisions characterized by a finite measure Λ on
[0, 1]. Recall that ν(dx) = x−2Λ(dx) and ρ(t) = ν[t, 1] which is assumed to satisfy (5). A

n-coalescent takes its values in P(n), the set of partitions of {1, . . . , n}. For i ≥ 0, let πi = π
(n)
i

be the state of the process after the ith coalescence event.
Pick at random an individual from the initial population and denote by T (n) the length of

the external branch starting from it. Because of exchangeability, T (n) has the same law as

the length T
(n)
1 of the external branch starting from the initial individual labelled by {1}. A

quantity of interest will be σ(n), the number of coalescence events we have to wait to see the
randomly chosen external branch merging. Again because of exchangeability, σ(n) has the
same law as

σ
(n)
1 = inf{i > 0, {1} /∈ πi},

the time we have to wait to see the external branch linked to individual 1 merging. We can
write

(15) T
(n)
1 =

σ
(n)
1
∑

i=1

ei
g
Y

(n)
i−1

where the ei’s are i.i.d. exponential random variables with mean 1. Note that the formula
also holds true for T (n) and σ(n) (just omit the subscripts). For the remainder of the chapter,

we will identify σ(n) with σ
(n)
1 .

In this section, we will determinate the asymptotic law of σ(n) for a class of coalescents
containing the Beta-coalescent with α ∈ (1, 2).

Theorem 3.1. We assume that ρ(t) = C0t
−α + O(t−α+ζ) for some C0 > 0, α ∈ (1, 2) and

ζ > 1− 1/α. Then

(16)
σ(n)

n(α− 1)

d
→ σ,

for n→ ∞, where σ
d
= Beta(1, α).
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Recall that in this class of n-coalescents, we also have τ (n)/n
d
→ α− 1 (from [15], see also

[20] and [23]) for n → ∞. Slutsky’s theorem gives a convergence result for σ(n)/τ (n), which
measures how ancient the chosen individual is compared to the rest of the sample

Corollary 3.2. We assume that ρ(t) = C0t
−α + O(t−α+ζ) for some C0 > 0, α ∈ (1, 2) and

ζ > 1− 1/α. Then

σ(n)

τ (n)
d
→ σ,

for n→ ∞, where σ
d
= Beta(1, α).

proof of Theorem 3.1. For convenience, we set

(1)
(a
b

)

= 0, if 0 ≤ a < b, a ∈ Z+, b ∈ Z+,Z+ = {0, 1, 2, ...}.
(2) log(0) = −∞.

Notice that σ(n) ≤ τ (n). Let Y = (Yk, k ≥ 0) denotes the filtration generated by Y (n). For
any t ≥ 0, we have

P(σ(n) > nt|Y) = P(σ(n) > nt, τ (n) > nt|Y)

=

⌊nt⌋∧τ (n)
∏

i=1

P({1} ∈ πi|{1} ∈ πi−1,Y)

=

⌊nt⌋∧τ (n)
∏

i=1

(Y
(n)
i−1−1

X
(n)
i +1

)

( Y
(n)
i−1

X
(n)
i +1

)

=

⌊nt⌋∧τ (n)
∏

i=1

Y
(n)
i−1 − (X

(n)
i + 1)

Y
(n)
i−1

.

Notice that
X

(n)
i +1

Y
(n)
i−1

< 1 if i 6= τ (n), and
X

(n)
i +1

Y
(n)
i−1

= 1 if i = τ (n).

We can hence write

log
(

P(σ(n) > nt|Y)
)

=

⌊nt⌋∧τ (n)
∑

i=1

log

(

1−
X

(n)
i + 1

Y
(n)
i−1

)

and proceed to a power series expansion :

log
(

P(σ(n) > nt|Y)
)

= I
(1)
nt + I

(2)
nt ,

with

I
(1)
nt = −

⌊nt⌋∧τ (n)
∑

i=1

(

X
(n)
i + 1

)(

Y
(n)
i−1

)−1
,
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and

I
(2)
nt =

⌊nt⌋∧τ (n)
∑

i=1

(log(1−
X

(n)
i + 1

Y
(n)
i−1

) +
X

(n)
i + 1

Y
(n)
i−1

),

where I
(2)
nt can be −∞ if

X
(n)
i

+1

Y
(n)
i−1

= 1. Let us look further at I
(1)
nt . The idea is to replace

X
(n)
i by the limit of its expectation.

I
(1)
nt = J

(1)
nt + J

(2)
nt ,

with

J
(1)
nt = −

⌊nt⌋∧τ (n)
∑

i=1

(

1

α− 1
+1

)

(

Y
(n)
i−1

)−1
,

and

J
(2)
nt = −

⌊nt⌋∧τ (n)
∑

i=1

(

X
(n)
i −

1

α− 1

)

(

Y
(n)
i−1

)−1
.

We will use three lemmas whose proofs are given in the rest of the Section.
Lemma 3.3, with η = 1, tells us that, when 0 < t < α− 1

(17) J
(1)
nt

P
→ −

α

α− 1

∫ t

0

(

1−
x

α− 1

)−1

dx = α log

(

1−
t

α− 1

)

.

Lemma 3.4 gives, for 0 < t < α− 1,

(18) J
(2)
nt = −n1/α−1n1−1/α

⌊nt⌋∧τ (n)
∑

i=1

(

X
(n)
i −

1

α− 1

)

(

Y
(n)
i−1

)−1
P
−→ 0.

Finally, Lemma 3.5 gives, for t < α− 1,

(19) I
(2)
nt

P
−→ 0.

Adding (17), (18) and (19), we get that for t < α− 1

log
(

P(σ(n) > nt|Y)
)

P
→ α log

(

1−
t

α− 1

)

,

and thus

P(σ(n) > nt|Y)
P
→

(

1−
t

α− 1

)α

.

While we know that P(σ(n) > nt|Y) ≤ 1,then

P(σ(n) > nt) = E[P(σ(n) > nt|Y)] →

(

1−
t

α− 1

)α

.

We thus obtain that, for x ∈ (0, 1),

P(σ(n) > n(α− 1)x) → (1− x)α.

and then that
σ(n)

n(α− 1)
converges in distribution to a Beta(1, α) law. �
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Lemma 3.3. We set νη(t) =
∫ t
0

(

1− x
α−1

)−η
dx,η ∈ R. We assume that ρ(t) = C0t

−α +

O(t−α+ζ) for some C0 > 0, α ∈ (1, 2) and ζ > 1 − 1/α. For any 0 < t < α − 1 and η ∈ R,

we have

(1) Let t0 ∈ [0, α − 1) and δ > 0. The following convergence in probability holds when

n→ ∞:

n(α−1)/2−δ sup
0≤t≤t0

|nη−1

⌊nt⌋∧τ (n)
∑

i=1

(

Y
(n)
i−1

)−η
− νη(t)| −→ 0.

(2) Let t ∈ [0, α − 1). The following convergence in distribution holds when n→ ∞:

nη−1/α(

⌊nt⌋∧τ (n)
∑

i=1

(

Y
(n)
i−1

)−η
− n1−ηνη(t)) −→ η

∫ t

0
dr(1−

r

γ
)−η−1Vr.

Proof. The case η = α− 1 is given by Theorem 5.1 in [15]. Following the same arguments, it
is easy to get the general result. �

Lemma 3.4. For any t < α− 1, the following convergence in distribution holds :

n1−1/α

⌊nt⌋∧τ (n)
∑

i=1

(

X
(n)
i −

1

α− 1

)

(

Y
(n)
i−1

)−1 d
−→ (vα(t))

1/αV1,

where (Vt)t≥0 is an α-stable Lévy process with no positive jumps and vα(t) =
∫ t
0

(

1− x
α−1

)−α
dx.

Proof. Let δ ∈ (0, α − 1), t0 = α− 1− δ and t ∈ [0, t0].
Let ε ∈ (0, 1 − t

α−1 ) and β = 1− t
α−1 − ε > 0. We have

n1−1/α

⌊nt⌋∧τ (n)
∑

i=1

(

X
(n)
i −

1

α− 1

)

(

Y
(n)
i−1

)−1
= Ant +Bnt,

with

Ant = n1−1/α

⌊nt⌋∧τ (n)
∑

i=1

(

X
(n)
i −

1

α− 1

)

(

Y
(n)
i−1

)−1
1
{Y

(n)
i−1≥nβ}

,

and

Bnt = n1−1/α

⌊nt⌋∧τ (n)
∑

i=1

(

X
(n)
i −

1

α− 1

)

(

Y
(n)
i−1

)−1
1
{Y

(n)
i−1<nβ}

.

We will show that Bnt converges to 0 in probability and that Ant weakly converges to
(vα(t))

1/αV1 as n→ ∞.

Convergence of Ant. Let Z
(n)
i = n

(

Y
(n)
i−1

)−1
1
{Y

(n)
i−1≥nβ}

. We have that supn,i≥1 Z
(n)
i ≤ β−1

a.s..
By using (12), it is enough to prove that

E[exp(−uAnt)] −−−→
n→∞

evα(t)u
α/(α−1),

for any u positive, where evα(t)u
α/(α−1) is the Laplace transform of (vα(t))

1/αV1.

Taking uZ
(n)
i as Z

(n)
i , we shall only consider the case u = 1.
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Let us consider n−1
∑⌊nt⌋∧τ (n)

i=1

(

Z
(n)
i

)α
= nα−1

∑⌊nt⌋∧τ (n)

i=1

(

Y
(n)
i−1

)−α
1
{Y

(n)
i−1≥nβ}

. We have,

because the process (Y
(n)
i , i ≥ 0) is decreasing, that

P(n−1

⌊nt⌋∧τ (n)
∑

i=1

(

Z
(n)
i

)α
6= nα−1

⌊nt⌋∧τ (n)
∑

i=1

(

Y
(n)
i−1

)−α
) = P(∃i;Y

(n)
i−1 < nβ)

≤ P({Y
(n)

(⌊nt⌋∧τ (n))−1
< nβ)

≤ P(n−1

(⌊nt⌋∧τ (n))−1
∑

j=1

(X
(n)
j −

1

α− 1
) ≥ ε).

Use (14) to get that the right-hand side of the last inequality converges to 0 as n goes to
infinity. Using also Lemma 3.3 with η = α, we have that

nα−1

⌊nt⌋∧τ (n)
∑

i=1

(

Y
(n)
i−1

)−α
P
−→ vα(t),

as n→ ∞. We can thus deduce that

(20) n−1

⌊nt⌋∧τ (n)
∑

i=1

(

Z
(n)
i

)α
P
−→ vα(t),

as n→ ∞.
For a > 0, we set

M
(a)
n,k = exp

(

k
∑

i=1

(

−n−1/αaZ
(n)
i X

(n)
i − log φ

Y
(n)
i−1

(n−1/αaZ
(n)
i )

)

)

.

The process (M
(a)
n,k, k ≥ 1) is a bounded martingale w.r.t. the filtration Y. Notice that

E[M
(a)
n,k] = 1. As Xn

i = 0 and Z
(n)
i = 0 for i > τ (n), we also have

M
(a)
n,k = exp





k∧τ (n)
∑

i=1

(

−n−1/αaZ
(n)
i X

(n)
i − log φ

Y
(n)
i−1

(n−1/αaZ
(n)
i )

)



 .

Using R(n, u) defined in (12), we get that :

M
(a)
n,⌊nt⌋

= exp



−

⌊nt⌋∧τ (n)
∑

i=1

n−1/αaZ
(n)
i (X

(n)
i −

1

α− 1
)−

⌊nt⌋∧τ (n)
∑

i=1

n−1
(

aZ
(n)
i

)α

α− 1
−

⌊nt⌋∧τ (n)
∑

i=1

R(Y
(n)
k−1, n

−1/αaZ
(n)
i )





= exp (−aAnt) exp



−n−1

⌊nt⌋∧τ (n)
∑

i=1

(

aZ
(n)
i

)α

α− 1
−

⌊nt⌋∧τ (n)
∑

i=1

R(Y
(n)
k−1, n

−1/αaZ
(n)
i )



 .

Let

Λn = −n−1

⌊nt⌋∧τ (n)
∑

i=1

(

Z
(n)
i

)α

α− 1
+
vα(t)

α− 1
,
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and write

E [exp (−Ant)] = A1 +A2,

with A1 = E
[

e−Ant
(

1− eΛn
)]

and A2 = E
[

e−Ant eΛn
]

.
First of all, let us prove that A1 converges to 0 when n tends to ∞. Recall that the r.v

Z
(n)
i are uniformly bounded by β−1 a.s.. Thanks to (13), we have

E[e−2Ant ] = E



M
(2)
n,⌊nt⌋ exp



n−1

⌊nt⌋∧τ (n)
∑

i=1

(

2Z
(n)
i

)α

α− 1
+

⌊nt⌋∧τ (n)
∑

i=1

R(Y
(n)
k−1, 2n

−1/αZ
(n)
i )







 ≤M,

where M is a finite constant which does not depend on n. By Cauchy-Schwarz’ inequality,
we get that

(21) (A1)
2 ≤

(

E
[

e−Ant
∣

∣1− eΛn
∣

∣

])2
≤ E

[

e−2Ant
]

E

[

(

1− eΛn
)2
]

≤ME

[

(

1− eΛn
)2
]

.

The quantity Λn is bounded and goes to 0 in probability when n goes to infinity (see (20)).
Therefore, the right-hand side of (21) converges to 0. This implies that limn→∞A1 = 0.

Let us now consider the convergence of A2. Remark that

A2 = E



M
(1)
n,⌊nt⌋ exp





vα(t)

α− 1
+

⌊nt⌋∧τ (n)
∑

k=1

R(Y
(n)
k−1, n

−1/αZ
(n)
i )







 .

Recall that E[M
(1)
n,⌊nt⌋] = 1. Using (13), we get

exp

(

−C13(β
−1)n−ε1 +

vα(t)

α− 1

)

≤ A2 ≤ exp

(

C13(β
−1)n−ε1 +

vα(t)

α− 1

)

.

We get that limn→∞A2 = evα(t)/(α−1), which achieves the proof.
Convergence of Bnt. Here, we will use a similar approach as the one we used on the first

half of p.11. The process (Y
(n)
i , i ≥ 0) is decreasing. So if for some i ≤ ⌊nt⌋, Y

(n)
i−1 < nβ, then

we have Y
(n)
⌊nt⌋−1 < nβ. Thus we get Bnt = Bnt1{Y (n)

(⌊nt⌋∧τ(n))−1
<nβ}

. Moreover,

{Y
(n)

(⌊nt⌋∧τ (n))−1
< nβ} ⊂ {n−1

(⌊nt⌋∧τ (n))−1
∑

j=1

(X
(n)
j −

1

α− 1
) ≥ ε},

and then for any ε′ > 0

P(|Bnt| ≥ ε′) = P(1
{Y

(n)

(⌊nt⌋∧τ(n))−1
<nβ}

|Bnt| ≥ ε′)

≤ P({Y
(n)

(⌊nt⌋∧τ (n))−1
< nβ)

≤ P(n−1

(⌊nt⌋∧τ (n))−1
∑

j=1

(X
(n)
j −

1

α− 1
) ≥ ε).

Use (14) to get that the right-hand side of the last inequality converges to 0 as n goes to
infinity.

�

Now we deal with I
(2)
nt .
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Lemma 3.5. We assume that ρ(t) = C0t
−α + O(t−α+ζ) for some C0 > 0 and ζ > 1 − 1/α.

Then, for any t < α− 1, we have

|I
(2)
nt | =

⌊nt⌋∧τ (n)
∑

i=1

−(log(1−
X

(n)
i + 1

Y
(n)
i−1

) +
X

(n)
i + 1

Y
(n)
i−1

)
P
−→ 0,

when n→ ∞.

Proof. Let 0 ≤ t < α− 1. First of all, remark that:

(22)
Y

(n)
⌊nt⌋

n
P
−→

α− 1− t

α− 1
.

Indeed,

Y
(n)
⌊nt⌋

n
=
n− (⌊nt⌋)/(α − 1)

n
−

∑⌊nt⌋
k=1(X

(n)
k − 1/(α − 1))

n
,

and we conclude using (14) and the convergence of P(τ (n) > ⌊nt⌋) to 1. Let us write

|I
(2)
nt | = An +Bn,

with

An = |I
(2)
nt |1

{

Y
(n)
⌊nt⌋

<(1−t/(α−1))n/2
}

and

Bn = |I
(2)
nt |1

{

Y
(n)
⌊nt⌋

≥(1−t/(α−1))n/2
} .

The convergence (22) implies that An tends to 0 in probability. To prove the convergence of
Bn, let us first notice that for a ∈ (0, 1), there exists a constant C(a) such that, if Bn,x is a
binomial r.v. with parameter (n, x), then

(23) 0 < −

∫ 1

0
E

[

1{2≤Bn,x≤(1−a)n}(log(1−
Bn,x

n
) +

Bn,x

n
)

]

ν(dx) ≤ C(a).

Indeed, there exists a constant C ′(a) such that for u ∈ (0, 1−a), 0 < − ln(1−u)−u ≤ C ′(a)u2.
Hence,

0 < −

∫ 1

0
E

[

1{2≤Bn,x≤(1−a)n}(log(1−
Bn,x

n
) +

Bn,x

n
)

]

ν(dx)

≤ C ′(a)

∫ 1

0
E

[

1{2≤Bn,x≤(1−a)n}(
Bn,x

n
)2
]

ν(dx)

≤ C ′(a)

∫ 1

0
E

[

(
Bn,x

n
)2
]

ν(dx)

≤ 2C ′(a)

∫ 1

0
E

[

Bn,x(Bn,x − 1)

n2

]

ν(dx)

= 2C ′(a)

∫ 1
0 n(n− 1)x2ν(dx)

n2

≤ 2C ′(a)Λ([0, 1]) =: C(a).



14 JEAN-STÉPHANE DHERSIN, FABIAN FREUND, ARNO SIRI-JÉGOUSSE, AND LINGLONG YUAN

Let us set a = (1 − t/(α − 1))/2. Hence Bn = |I
(2)
nt |1

{

Y
(n)
⌊nt⌋

≥an
}. Notice that if n is large

enough such that an ≥ 2, then if Y
(n)
⌊nt⌋ ≥ an we have τ (n) > nt. Moreover, if Y

(n)
⌊nt⌋ ≥ an, for

i ≤ nt, we have Y
(n)
i ≥ an ≥ aY

(n)
i−1 and X

(n)
i = Y

(n)
i−1 − Y

(n)
i ≤ (1 − a)Y

(n)
i−1 < (1 − a/2)Y

(n)
i−1 .

Using (7), (23) and (6), we get that

E[Bn]

≤

⌊nt⌋
∑

i=1

E[E[−(log(1−
X

(n)
i + 1

Y
(n)
i−1

) +
X

(n)
i + 1

Y
(n)
i−1

)1
{1≤X

(n)
i ≤(1−a)Y

(n)
i−1}

1
{Y

(n)
i−1≥an}

|Y
(n)
i−1 ]]

≤

⌊nt⌋
∑

i=1

E[−E[

∫ 1

0
1
{2≤B

Y
(n)
i−1

,x
≤(1−a/2)Y

(n)
i−1}

1
{Y

(n)
i−1≥an}

1

g
Y

(n)
i−1

(log(1−
B

Y
(n)
i−1,x

Y
(n)
i−1

) +
B

Y
(n)
i−1,x

Y
(n)
i−1

)ν(dx)|Y
(n)
i−1 ]]

≤
C(a/2)nt

gan
→ 0,

when n tends to ∞. This achieves the proof of the Lemma. �

4. A result on small-time behavior of the block process

We now turn to the study of the length of an external branch picked at random, denoted

by T (n). For any integer k between 1 and τ (n), define A
(n)
k as the time when the kth jump

is achieved. This variable can be expressed as a sum of k independent exponential random
variables. More precisely,

A
(n)
k =

k∧τ (n)
∑

i=1

ei
g
Y

(n)
i−1

,

where the ei’s are independent standard exponential variables. Notice that T (n) = A
(n)

σ(n) . We

will first study asymptotics of A
(n)
k . For this, we use a two-step approximation method close

to Section 4 of [15]. Define first

Ã
(n)
k =

k∧τ (n)
∑

i=1

1

g
Y

(n)
i−1

,

obtained replacing the ei’s by their mean,and

Â
(n)
k =

1

C0Γ(2− α)

k∧τ (n)
∑

i=1

(Y
(n)
i−1)

−α,

obtained replacing gb by its equivalent in (6).

Proposition 4.1. We assume that ρ(t) = C0t
−α+O(t−α+ζ) for some C0 > 0 and ζ > 1−1/α.

Then, for any t < α− 1, we have

nα−1A
(n)
⌊nt⌋

P
→

1

C0Γ(2− α)
((1−

t

α− 1
)1−α − 1),

when n→ ∞.

The proof is a straight consequence of Lemma 3.3 with η = α and the following Lemmas
4.2 and 4.3.
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Lemma 4.2. Under the assumptions of Proposition 4.1, we have

nα−1(Ã
(n)
⌊nt⌋ − Â

(n)
⌊nt⌋)

P
→ 0,

when n→ ∞.

Proof. Use (6) to get

Ã
(n)
⌊nt⌋ − Â

(n)
⌊nt⌋ =

⌊nt⌋∧τ (n)
∑

i=1

(

Y
(n)
i−1

)−α
O

(

(

Y
(n)
i−1

)−min(ζ,1)
)

.

The result then follows from Lemma 3.3 with η = α+min(ζ, 1). �

Lemma 4.3. Under the assumptions of Proposition 4.1, we have

nα−1(A
(n)
⌊nt⌋ − Ã

(n)
⌊nt⌋))

P
→ 0,

when n→ ∞.

Proof. Recall that Y = (Yk, k ≥ 0) denotes the filtration generated by Y . Conditionally on

Y, the random variables
ei − 1

g
Y

(n)
i−1

are independent with zero mean. We deduce that

E

[

sup
t≥0

(nα−1(A
(n)
⌊nt⌋ − Ã

(n)
⌊nt⌋))

2|Y

]

= n2α−2
E






sup
t≥0





⌊nt⌋∧τ (n)
∑

i=1

ei − 1

g
Y

(n)
i−1





2

|Y







≤ 4n2α−2

⌊nt⌋∧τ (n)
∑

i=1





1

g
Y

(n)
i−1





2

,

where we used Doob’s inequality for the inequality. Thanks to (6) and Lemma 3.3 with

η = 2α, we get the 4n2α−2
∑⌊nt⌋∧τ (n)

i=1

(

1
g
Y
(n)
i−1

)2

converges to 0 in probability.

�

Heuristically, combining Theorem 3.1 and Proposition 4.1, we should get that nα−1T (n) =

nα−1A
(n)

σ(n) converges in law to 1
C0Γ(2−α)((1 − σ)1−α − 1). This line of proof will be followed

in the last section. However, in the next section we will first present another way to prove
this result with a method based on the consistency property of exchangeable coalescents. As
a first step to this approach, we end this session with a result about small-time behavior of
the block-counting process.

Let R
(n)
t denote the number of blocks of the n-coalescent Π(n) at time t. The initial value

R
(n)
0 is n. We show that the limit law of the process R(n) is deterministic under a certain

time rescaling

Theorem 4.4. We assume that ρ(t) = C0t
−α +O(t−α+ζ) for some C0 > 0 and ζ > 1− 1/α.

For any t0 > 0, ε > 0 , we have

(24) P( sup
0≤t≤t0

|n−1R
(n)
tn1−α − (1 + C0Γ(2− α)t)−1/(α−1)| > ε) → 0,

when n→ ∞.
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Proof. Let 0 < r < α− 1, we have the following relation :

R
(n)

A
(n)
⌊nr⌋

= Y
(n)
⌊nr⌋ = n−

⌊nr⌋∧τ (n)
∑

j=1

X
(n)
j

Let t ∈ [0, t0], and define

(25) r(t) = (α− 1)(1− (1 + C0Γ(2− α)t)−1/(α−1)),

on [0, t0]. Notice that

1

C0Γ(2− α)
((1 −

r(t)

α− 1
)1−α − 1) = t.

Then thanks to Proposition 4.1, nα−1A
(n)
⌊nr(t)⌋ converges in probability to t.

Using the remark at the beginning of the proof in Lemma 3.5, we get the convergence

n−1R
(n)

A
(n)
⌊nr(t)⌋

=
Y

(n)
⌊nr(t)⌋

n

P
→ (1−

r(t)

α− 1
) = (1 + C0Γ(2− α)t)−1/(α−1),

when n→ ∞. Moreover, since R
(n)
t is decreasing, then for any 0 < δ < 1,

lim
n→∞

P(R
(n)

A
(n)
⌊nr(t−δt)⌋

≤ R
(n)
tn1−α+1 ≤ R

(n)

A
(n)
⌊nr(t+δt)⌋

) = 1.

The constant δ being arbitrary, we thus obtain the convergence in probability of n−1R
(n)
tn1−α

to (1 +C0Γ(2− α)t)−1/(α−1).

We obtain (24) using again the fact that R(n) is a decreasing process.
�

In fact, the asymptotic result concerning block counting process of Kingman’s coalescent
is also valid. The method is almost identical to that employed in the above Theorem. In the

context of Kingman’s coalescent, we use the same notations Π(n), A
(n)
i , R(n).

Theorem 4.5. In the setting of the Kingman’s coalescent, for any t0 > 0, ε > 0 , we have

(26) P( sup
0≤t≤t0

|n−1R
(n)
tn−1 − (1 + t/2)−1| > ε) → 0

when n→ ∞.

Remark that this Theorem shows a nice continuity from Beta-coalescent(the process that
we consider is more general but contains Beta-coalescent) to Kingman’s coalescent., setting
α = 2 in Theorem 4.4.

Proof. Recall that A
(n)
i is the time when ith jump is achieved. When Π(n) has b individuals

at some time t, then the process encounters the following coalescence at rate
(

b
2

)

where

two randomly chosen individuals will be coalesced. Π(n) remains 1 when all individuals are
coalesced.

For 0 < t < 1, we have

A
(n)
⌊nt⌋ =

n
∑

k=n−⌊nt⌋+1

ek
(k
2

)
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where eis are i.i.d unit exponential variables. Notice that

E[nA
(n)
⌊nt⌋] =

n
∑

k=n−⌊nt⌋+1

n
(k
2

) = 2(
1

n − ⌊nt⌋
−

1

n
)n→ 2(

1

1− t
− 1),

as n tends to ∞. There exist a constant K > 0, such that,

Var(nA
(n)
⌊nt⌋) =

n
∑

k=n−⌊nt⌋+1

n2(
1
(

k
2

))2 ≤
K

n
.

So we deduce that

nA
(n)
⌊nt⌋

L2

→ 2(
1

1 − t
− 1) =

2t

1− t
:= f(t)

as n converges to ∞.
We denote by f−1(t) := t/(t+ 2) the inverse function of f(t).
Similarly, R(n) is decreasing, so

P(R
(n)
A

⌊nf−1(t−δ)(n)⌋
≤ R

(n)
tn−1 ≤ R

(n)
A

⌊nf−1(t+δ)(n)⌋
) → 1,

as n tends to ∞ for any 0 < δ < t.

So
R

(n)

tn−1

n −

R
(n)

A
(n)

⌊nf−1(t)⌋

n
d
→ 0.

Furthermore,

R
(n)

A
(n)

nf−1(t)

n
=
Y

(n)
⌊nf−1(t)⌋

n
=
n− ⌊nf−1(t)⌋

n
→ 1− f−1(t) =

1

1 + t/2
,

as n tends to ∞. So
R

(n)

tn−1

n
d
→ 1

1+t/2 .

Using again the decreasing property of R
(n)
t , we finish the proof. �

5. The length of an external branch picked at random

Dynamics of any exchangeable coalescent with multiple mergers are characterized by rates
λb,k which suit a consistent relationship (this is Pitman’s structure theorem, see [30], Lemma
18):

(27) λb,k = λb+1,k+1 + λb+1,k.

This relationship comes from the fact that k given merging blocks among b can coalesce
in two ways while revealing an extra block : either the coalescence event implies the extra
block (and then k + 1 blocks will merge) or not. Thus we get a recursive construction of the

n-coalescent process Π(n).
Let us define Π(n,2) as the coalescent process of individuals labelled from 2 to n. Now we

consider the individual labelled by 1. The lineage of this individual can be ’connected’ to
Π(n,2)

• either at any of its jump times, in which case block {1} participates to a multiple
merger implying at least 3 blocks, and we call this collision “Type 1” (see Figure 1),

• or at any other time to one of the present blocks and then participates to a binary
collision, and we call it “Type 2” (see Figure 2).
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1

2

3

4

5

Figure 1. n = 5. Individual 1 is chosen. Type 1: individual 1 encounters a
multiple collision.

1

2

3

4

5

Figure 2. n = 5. Individual 1 is chosen. Type 2: individual 1 encounters a
binary collision

From now on, our analysis is conditional on Π(n,2). Between two jump times of Π(n,2),
assuming that there are b blocks in Π(n,2), the extra block coalesces at rate bλb+1,2. If the
extra block remains unconnected just before a coalescence event implying k blocks among b,
then it will participate to this event with probability

(28)

∫ 1
0 x

k+1(1− x)b−kν(dx)/gb
∫ 1
0 x

k(1− x)b−kν(dx)/gb
= 1−

λb+1,k

λb,k
.

This equality comes from (27). Let us see how to get the law of T (n), the coalescence time of

individual 1. We define by R(n,2) the block counting process of Π(n,2). Notice that it has the
same law as R(n−1). We introduce

• T
(n)
c the first jump time of a Poisson process η

(n)
c directed by the measure ν

(n)
c =

R
(n,2)
t λ

R
(n,2)
t +1,2

dt;

• T
(n)
d the time of the first appearance of ’Head’ in the following coin flip, independent

of η
(n)
c : at each jump time t of R

(n,2)
t , we toss a coin, and get ’Head’ with probability

1−
λ
R
(n,2)
t−

+1,R
(n,2)
t−

−R
(n,2)
t

+1

λ
R
(n,2)
t− ,R

(n,2)
t− −R

(n,2)
t

+1

and ’Tail’ with probability
λ
R
(n,2)
t−

+1,R
(n,2)
t−

−R
(n,2)
t

+1

λ
R
(n,2)
t− ,R

(n,2)
t− −R

(n,2)
t

+1

(see (28)).

Then, conditionally on Π(n,2), T (n) and T
(n)
c ∧ T

(n)
d have the same law.

Remark 5.1. A more formal way to interpret T (n) is as follow. Let ξ(n) be Cox process directed

by random measure ν
(n)
c + ν

(n)
d , where ν

(n)
d =

∑

{t is a jump time}

λ
R
(n,2)
t− +1,R

(n,2)
t− −R

(n,2)
t

+1

λ
R
(n,2)
t− ,R

(n,2)
t− −R

(n,2)
t

+1

δt, and

δt is the Dirac measure in t (see [25, p.226]). Then T (n) has the same law as the first jump

time of ξ(n)

Let us now give our main result
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Theorem 5.2. The following convergence holds :

nα−1T (n) d
→ T =

1

C0Γ(2− α)
((1 − σ)1−α − 1),

for n→ ∞. The density function of T is

fT (t) =
αC0Γ(2− α)

α− 1
(1 + C0Γ(2− α)t)−

α
α−1

−1, t ≥ 0.

In particular, in the Beta(2− α,α) case, the density is

fT (t) =
1

(α− 1)Γ(α)
(1 +

t

αΓ(α)
)−

α
α−1

−1, t ≥ 0.

Proof. For the sake of simplicity, we will make the proof only in the Beta(2−α,α) case. The
proof can be extended to the more general case where (5) is satisfied with the details omitted
here. In this special case, C0 = (αΓ(α)Γ(2 − α))−1 and dynamics are given by

λb,k =
B(k − α, b− k + α)

B(α, 2− α)
,

where B(a, b) is a Beta function of parameters a and b.

Define r
(n,2)
t as the number of jumps of the process Π(n,2) up to time n1−αt. It is a

straightforward consequence of Proposition 4.1 that

(29)
r
(n,2)
t

n

P
→ r(t), n→ ∞

for t→ ∞, where r(t) is defined in (25).

For i ≥ 0, in the process Π(n,2), we denote by Y
(n,2)
i the number of blocks remaining after

i jumps which equals 1 from the time all individuals are coalesced to 1, and Y
(n,2)
0 = n− 1.

Let X
(n,2)
i = Y

(n,2)
i−1 − Y

(n,2)
i be the number of blocks we lose during the ith coalescent event.

We write X
(n)
0 = 0. Notice that (Y (n,2),X(n,2)) has the same law as ((Y (n−1),X(n−1))) .

Using the description given above, we have

P(nα−1T (n) > t)

= E[P(nα−1(T (n)
c ∧ T

(n)
d ) > t|Π(n,2))]

= E[P(nα−1T (n)
c > t|Π(n,2))P(nα−1T

(n)
d > t|Π(n,2))]

= E[exp(−

∫ t

0

∫ 1

0
n1−αR

(n,2)
sn1−αx

2(1− x)R
(n,2)

sn1−α−1ν(dx)ds)

r
(n)
t
∏

i=1

λ
1+Y

(n,2)
i−1 ,1+X

(n,2)
i

λ
Y

(n,2)
i−1 ,1+X

(n,2)
i

]

= E[exp(−

∫ t

0
n1−αR

(n,2)
sn1−α

B(2− α,R
(n,2)
sn1−α + α− 1)

B(2− α,α)
ds)

r
(n)
t
∏

i=1

Y
(n,2)
i−1 −X

(n,2)
i + α− 1

Y
(n,2)
i−1

].

We decompose the term in the expectation into two parts: the exponential on one side and
the product on the other.

Let us first look at the exponential term. Using Stirling’s formula we get that, for 0 ≤ s ≤ t,

n1−αR
(n,2)
sn1−α

B(2− α,R
(n,2)
sn1−α + α− 1)

B(2− α,α)
= n1−α (R

(n,2)
sn1−α)

α−1

Γ(α)
+ (

R
(n,2)
sn1−α

n
)α−1f(R

(n,2)
sn1−α),



20 JEAN-STÉPHANE DHERSIN, FABIAN FREUND, ARNO SIRI-JÉGOUSSE, AND LINGLONG YUAN

where f = f(t){t≥0} is a deterministic function which converges to 0 as t converges to ∞.

The sequence (R
(n,2)
sn1−α , n ≥ 2) is decreasing so, thanks to Theorem 4.4, we deduce that

sup0≤s≤t(
R

(n,2)

sn1−α

n )α−1f(R
(n,2)
sn1−α) converges in probability to 0 as n tends to ∞. Consequently,

using again Theorem 4.4, we get that

(30) exp(−

∫ t

0
n1−αR

(n,2)
sn1−α

B(2− α,R
(n,2)
sn1−α + α− 1)

B(2− α,α)
ds)

P
→ (1 +

t

αΓ(α)
)−α, n→ ∞.

Convergence of the product term is obtained by the same method as in proof of Theorem
3.1, combined with the convergence in (29). To avoid showing almost the same reasoning, we
leave the details to readers. This way, we have

(31)

r
(n,2)
t
∏

i=1

Y
(n,2)
i−1 −X

(n,2)
i + α− 1

Y
(n,2)
i−1

P
→ (1 +

t

αΓ(α)
)−

α(2−α)
α−1 , n→ ∞.

The product of (30) and (31) then converges in probability to (1 + t
αΓ(α))

−α/(α−1). Since

this product is bounded, we get that

P(nα−1T (n) > t) → (1 +
t

αΓ(α)
)−

α
α−1 , n→ ∞.

We achieve the proof. �

As a consequence of Theorem 5.2, we can get an asymptotic result on the size of the
population at the moment of collision of individual 1.

Corollary 5.3. The following convergence holds :

n−1Y
(n)

σ(n)

d
→ (1 + C0Γ(2− α)T )−1/(α−1) = 1− σ

for n→ ∞. Moreover, the density function of this limit is αxα−11{0≤x≤1}.

Proof. In terms of block counting process, we have Y
(n)

σ(n) = R
(n)

T (n) . Notice that R
(n)

T (n) =

R
(n)

n1−α(nα−1T (n))
. Using Theorem 5.2, we known that nα−1T (n) converges in distribution to T .

Hence, if t0 > 0, we deduce from Theorem 4.4 that

1{nα−1T (n)<t0}

R
(n)

n1−α(nα−1T (n))

n

d
→ 1{T<t0}(1 + C0Γ(2− α)T )−1/(α−1).

This achieves the proof. �

6. An alternative proof for Theorem 5.2

In this section, we present an alternative proof for Theorem 5.2 using the convergence
results for σ(n) from Theorem 3.1. First, we need a stronger version of Proposition 4.1 which
gives weak convergence in the path space. Recall that

A
(n)
k =

k∧τ (n)
∑

i=1

ei
g
Y

(n)
i−1

,

where the ei’s are independent standard exponential variables.
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Proposition 6.1. We assume that ρ(t) = C0t
−α+O(t−α+ζ) for some C0 > 0 and ζ > 1−1/α.

Then, for any t < α− 1, we have

(32) (nα−1A
(n)
⌊ns⌋)s≤t

d
→ (

1

C0Γ(2− α)
((1−

s

α− 1
)1−α − 1))s≤t,

in the sense of convergence in the path space D[0, t] for n→ ∞.

Proof. Note that Theorem 4.1 states

nα−1A
(n)
⌊ns⌋

P
→ (

1

C0Γ(2− α)
((1 −

s

α− 1
)1−α − 1)),

for 0 < s < α− 1 and n→ ∞. So for every fixed s ∈ [0, t], we have pointwise convergence in
probability in (32). This implies weak convergence of all finite dimensional distributions due
to the subsequence criterion for weak convergence. In order to show weak convergence in the
path space, we will show tightness for the distributions from (32). Since the limit process is
continuous, it suffices to show that the condition (i) of [7, Theorem 7.3] and condition (7.12)
from [7, Corollary 7.4] are fulfilled (see [7, Corollary 13.4]). For the present processes, these
conditions translate to showing that for every ǫ > 0 and η > 0,

(i) there exists a > 0 s.t. P (nα−1A
(n)
⌊0⌋ ≥ a) ≤ η for n big enough and

(ii) there exists a 0 < δ < 1 so that

δ−1P
(

nα−1(A
(n)
⌊n·min(t1+δ,t)⌋ −A

(n)
⌊n·t1⌋

) ≥ ǫ
)

≤ η,

for n big enough and any t1 ∈ [0, t].

Condition (i) is trivially fulfilled, for condition (ii) we can use Theorem 4.1 to show that for
n→ ∞,

P
(

nα−1(A
(n)
⌊n·min(t1+δ,t)⌋ −A

(n)
⌊n·t1⌋

) ≥ ǫ
)

→ P (f(min(t1 + δ, t)) − f(t1) ≥ ǫ),

where f(s) := 1
C0Γ(2−α)((1 − s

α−1)
1−α − 1). Note that P (f(min(t1 + δ, t)) − f(t1) ≥ ǫ) ≤

P (f(t) − f(t − δ) ≥ ǫ) ∈ {0, 1}. Since f is continuous, you can now choose δ small enough
that f(t)− f(t− δ) < ǫ and then n big enough to fulfill (ii). Thus, we have shown tightness
of the distributions in (32) which establishes the desired weak convergence �

Now we come to the alternative proof of Theorem 5.2.

Alternative proof of Theorem 5.2. Fix t ∈ [0, α − 1). We have

(σ(n)/(n(α− 1)), (nα−1A
(n)
⌊ns⌋)s≤t)

d
→ (σ, (

1

C0Γ(2− α)
((1 −

s

α− 1
)1−α − 1))s≤t),

for n → ∞. Due to Skorohod-coupling, we can assume that this convergence also holds
almost surely. Since s 7→ ( 1

C0Γ(2−α)((1−
s

α−1)
1−α − 1)) is continuous on [0, t], the almost sure

convergence of (nα−1A
(n)
⌊nt⌋)s≤t in D[0, t] is even almost sure uniform convergence on [0, t] (see

[7, p. 124]). For any series (xn)n∈N on [0,t] with xn → x, we thus have

nα−1A
(n)
⌊nxn⌋

→
1

C0Γ(2− α)
((1−

x

α− 1
)1−α − 1)

almost surely for n→ ∞. The only problem left is that σ(n), σ may take values in [0, α− 1)
and not only in some subset [0, t]. To remedy this, note that if we restrict all random variables

on {σ ≤ α − 1 − 2
k} for k ∈ N, we have σ(n)(ω)/n ≤ α − 1 − 1

k for n = n(ω) big enough
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for almost all ω ∈ {σ ≤ α − 1 − 1
k}. Thus, by using the Skorohod-coupling for the series

(σ(n)/(n(α− 1)), (nα−1A
(n)
⌊ns⌋)s≤α−1− 1

k
), we have

nα−1A
(n)

⌊n·σ(n)/n⌋

d
→

1

C0Γ(2− α)
((1−

σ

α− 1
)1−α − 1),

almost surely on {σ ≤ α − 1 − 2
k} for the coupled versions of these random variables (note

that σ(n) ≤ τ (n)). Since σ is Beta-distributed, we have, for k → ∞,

P ({nα−1A
(n)

⌊n·σ(n)/n⌋
∈ ·} ∩ {σ ≤ α− 1−

2

k
}) ∼ P (nα−1A

(n)

⌊n·σ(n)/n⌋
∈ ·).

This shows

nα−1T (n) = nα−1A
(n)

σ(n)

d
→

1

C0Γ(2− α)
((1 −

σ

α− 1
)1−α − 1).

The only thing left to prove is that T has density fT . This is done by computing the
distribution function

P(
1

C0Γ(2− α)
((1 −

σ

α− 1
)1−α − 1) ≤ t)

= P(σ ≤ 1− (1 + C0Γ(2− α)t)
1

α−1 )

=

∫ 1−(1+C0Γ(2−α)t)
1

α−1

0
α(1 − x)αdx

= 1− (1 + C0Γ(2− α)t)−
α

α−1 .

and finally by differentiating. �
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[23] A. Iksanov and M. Möhle. On the number of jumps of random walks with a barrier. Advances in Applied

Probability, 40(1):206–228, 2008.
[24] S. Janson and G. Kersting. The external lengths in kingman’s coalescent, 2011.
[25] O. Kallenberg. Foundations of modern probability. Probability and its Applications (New York). Springer-

Verlag, New York, second edition, 2002.
[26] J. F. C. Kingman. The coalescent. Stochastic Process. Appl., 13(3):235–248, 1982.
[27] J. F. C. Kingman. On the genealogy of large populations. J. Appl. Probab., (Special Vol. 19A):27–43,

1982. Essays in statistical science.
[28] M. Möhle. Total variation distances and rates of convergence for ancestral coalescent processes in ex-

changeable population models. Adv. in Appl. Probab., 32(4):983–993, 2000.
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Département de Mathématiques, Université Paris 13, 99 av. J-B. Clément, F-93430 Villeta-
neuse, France

E-mail address: yuan@math.univ-paris13.fr


