Grothendieck ring of semialgebraic formulas and motivic real Milnor fibers - Archive ouverte HAL
Article Dans Une Revue Geometry and Topology Année : 2014

Grothendieck ring of semialgebraic formulas and motivic real Milnor fibers

Résumé

We define a Grothendieck ring for basic real semialgebraic formulas, that is for systems of real algebraic equations and inequalities. In this ring the class of a formula takes into consideration the algebraic nature of the set of points satisfying this formula and contains as a ring the usual Grothendieck ring of real algebraic formulas. We give a realization of our ring that allows to express a class as a $\Z[\frac{1}{2}]$-linear combination of classes of real algebraic formulas, so this realization gives rise to a notion of virtual Poincaré polynomial for basic semialgebraic formulas. We then define zeta functions with coefficients in our ring, built on semialgebraic formulas in arc spaces. We show that they are rational and relate them to the topology of real Milnor fibres.
Fichier principal
Vignette du fichier
Comte-Fichou_13_dA_cembre_2011.pdf (308.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00658216 , version 1 (10-01-2012)

Identifiants

Citer

Georges Comte, Goulwen Fichou. Grothendieck ring of semialgebraic formulas and motivic real Milnor fibers. Geometry and Topology, 2014, 18 (2), pp.963-996. ⟨10.2140/gt.2014.18.963⟩. ⟨hal-00658216⟩
306 Consultations
197 Téléchargements

Altmetric

Partager

More