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GROTHENDIECK RING OF SEMIALGEBRAIC FORMULAS

AND MOTIVIC REAL MILNOR FIBRES

by

Georges COMTE & Goulwen FICHOU

Abstract. — We define a Grothendieck ring for basic real semialgebraic formulas,
that is for systems of real algebraic equations and inequalities. In this ring the class of
a formula takes into consideration the algebraic nature of the set of points satisfying
this formula and contains as a ring the usual Grothendieck ring of real algebraic
formulas. We give a realization of our ring that allows to express a class as a Z[ 12 ]-
linear combination of classes of real algebraic formulas, so this realization gives rise
to a notion of virtual Poincaré polynomial for basic semialgebraic formulas. We then
define zeta functions with coefficients in our ring, built on semialgebraic formulas in
arc spaces. We show that they are rational and relate them to the topology of real
Milnor fibres.

Introduction

Let us consider the category SA(R) of real semialgebraic sets, the morphisms be-
ing the semialgebraic maps. We denote by (K0(SA(R)),+, ·), or simply K0(SA(R)),
the Grothendieck ring of SA(R), that is to say the free ring generated by all semi-
algebraic sets A, denoted by [A] as viewed as element of K0(SA(R)), in such a way
that for all objects A,B of SA(R) one has : [A × B] = [A] · [B] and for all closed
semialgebraic set F in A one has : [A \ F ] + [F ] = [A] (this implies that for every
semialgebraic sets A,B, one has: [A ∪B] = [A] + [B]− [A ∩B]).

When furthermore an equivalence relation for semialgebraic sets is previously
considered for the definition of K0(SA(R)), one has to be aware that the induced
quotient ring, still denoted for simplicity by K0(SA(R)), may dramatically collapse.
For instance let us consider the equivalence relation A ∼ B if and only if there
exists a semialgebraic bijection from A to B. In this case we simply say that A and
B are isomorphic. Then for the definition of K0(SA(R)), starting from classes of
isomorphic sets instead of simply sets, one obtains a quite trivial Grothendieck ring,
namely K0(SA(R)) = Z. Indeed, denoting [R] by L and [{∗}] by P, from the fact
that {∗} × {∗} ∼ {∗}, one gets

P
k = P, ∀k ∈ N

∗,
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and from the fact that R =]−∞, 0[∪{0}∪]0,+∞[ and that intervals of same type
are isomorphic, one gets

L = −P.

On the other hand, by the semialgebraic cell decomposition theorem, we obtain
that a real semialgebraic set is a finite union of disjoint open cells, each of them being
isomorphic to Rk, with k ∈ N (with the convention that R0 = {∗}). It follows that
K0(SA(R)) =< P >, the ring generated by P. At this point, the ring < P > could be
trivial. But one knows that the Euler-Poincaré characteristic with compact supports
χc : SA(R) → Z is surjective, and since χc is additive, multiplicative and invariant
under isomorphims, it factors through K0(SA(R)), giving a surjective morphism of
rings, and finally an isomorphism of rings, still denoted for simplicity by χc (cf also
[15])

SA(R)

��

χc �� Z

< P >= K0(SA(R))

χc

����������������

The characteristic χc(A) of a semialgebraic set A is in fact defined in the same
way that we proceed to obtain the equality K0(SA(R)) =< P >, that is from a
specific cell decomposition of A, where < P > is replaced by χc({∗}) = 1. The
difficulty in the definition of χc is then to show that χc is independant of the choice
of the cell decomposition of A (it technically consists in showing that the definition
of χc(A) does not depend on the isomorphism class of A, see [7] for instance).

When one starts from the category of real algebraic varieties VarR as well as
from the category of real algebraic sets RVar, as we do not have algebraic cell
decompositions, we could expect that the induced Grothendieck ring K0(VarR) is no
more a trivial one. This is indeed the case, since for instance the virtual Poincaré
polynomial morphism factors through K0(VarR) and has image Z[u] (see [13]).

The first part of this article is devoted to the construction of some non-trivial
Grothendieck ring K0(BSAR) associated to SA(R), with a canonical inclusion

K0(VarR) ↪→ K0(BSAR),

that gives rise to a notion of virtual Poincaré polynomial for basic real semialgebraic
formulas extending the virtual Poincaré polynomial of real algebraic sets and that
allows factorization of the Euler-Poincaré characteristic of real semialgebraic sets of
points satisfying the formulas.

To be more precise, we first construct K0(BSAR)), the Grothendieck ring of
basic real semialgebraic formulas (that are quantifier free real semialgebraic formulas
or simply systems of real algebraic equations and inequalities) where the class of
basic formulas without inequality are considered up to algebraic isomorphism of
the underlying real algebraic varieties. In general a class in K0(BSAR) of a basic
real semialgebraic formula highly depends on the formula itself rather than the
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only geometry of the real semialgebraic set of points satisfying this formula. This
construction is achieved in Section 2.

In order to make some computation more convenient we present a realization,
denoted χ, of the ringK0(BSAR) in the somewhat more simple ringK0(VarR)⊗Z[1

2
],

that is a morphism of rings

χ : K0(BSAR) → K0(VarR)⊗ Z[
1

2
],

that restricts to the identity map on K0(VarR) ↪→ K0(BSAR). The morphism
χ provides an explicit computation (see Proposition 2.1.2) presenting a class of
K0(BSAR) as a Z[1

2
]-linear combination of classes of K0(VarR). When one wants

to simplify more the computation of a class of a basic real semialgebraic formula,
one can shrink a little bit more the original ring K0(BSAR) from K0(VarR) ⊗ Z[1

2
]

to K0(RVar) ⊗ Z[1
2
], where for instance algebraic formulas with empty set of real

points have trivial class. However as noted in point 2 of Remark 2.1.4 the class of
a basic real semialgebraic formula with empty set of real points may be not trivial
in K0(RVar) ⊗ Z[1

2
]. The ring K0(BSAR) is not defined with a prior notion of

isomorphism relation contrary to the ring K0(VarR) where algebraic isomorphism
classes of varieties are generators. Nevertheless we indicate a notion of isomorphism
for basic semialgebraic formulas that factors through K0(BSAR) (see Proposition
2.2.3). This is done in Section 3.

The realization χ : K0(BSAR) → K0(VarR))⊗Z[1
2
] naturally let us define in Sec-

tion 4 a notion of virtual Poincaré polynomial for basic real semialgebraic formulas:
for a class [F ] in K0(BSAR) that is written as a Z[1

2
]-linear combination

∑q
i=1 ai[Ai]

of classes [Ai] ∈ K0(VarR) of real algebraic varieties Ai, we simply defines the virtual
Poincaré polynomial of F as the corresponding Z[1

2
]-linear combination

∑q
i=1 aiβ(Ai)

of virtual Poincaré polynomials β(Ai) of the varieties Ai. The virtual Poincaré poly-
nomial of F is thus a polynomial β(F ) in Z[1

2
][u]. It is then shown that the evaluation

at −1 of β(F ) is the Euler-Poincaré characteristic of the real semialgebraic set of
points satisfying the basic formula F (Proposition 3.1.4).

These constructions are summed up in the following commutative diagram

V arR

�� ����
���

���
���

���
� � �� BSAR

χc

��

��������
������

������
������

������
��

K0(VarR)

β

��

� � ��
� �

����
���

���
���

�
K0(BSAR)

χ

��

χ

�����
����

����
���

K0(VarR)⊗ Z[1
2
]

β

��

�� K0(RVar)⊗ Z[1
2
]

β������
���

���
���

��

Z[u] �
� �� Z[1

2
][u]

u=−1 �� Z
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The second and last part of this article concerns the real Milnor fibres of a given
polynomial function f ∈ R[x1, · · · , xn]. As geometrical objects, we consider real
semialgebraic Milnor fibres of the following types f−1(±c) ∩ B̄(0, α), f−1(]0,±c[) ∩
B̄(0, α), f−1(]0,±∞[) ∩ S(0, α), for 0 < |c| � α � 1, B̄(0, α) the closed ball of
R

d of centre 0 and radius α and S(0, α) the sphere of centre 0 and radius α. The
topological types of these fibres are easily comparable, and in order to present a
motivic version of these real semialgebraic Milnor fibres we define appropriate zeta
functions with coefficients in (K0(VarR) ⊗ Z[1

2
])[L−1] (the localization of the ring

K0(VarR) ⊗ Z[1
2
] with respect to the multiplicative set generated by L). As it is

the case in the complex context (see [3], [4]) we prove that these zeta functions are
rational functions expressed in terms of an embedded resolution of f (see Theorem
4.1.2). For a complex hypersurface f , the rationality of the corresponding zeta
function allows the definition of the so-called motivic Milnor fibre Sf , defined as
minus the limit at infinity of the rational expression of the zeta function. In the
real semialgebraic case, the same definition makes sense but we obtain a class Sf

in K0(VarR))⊗ Z[1
2
] having a realization under the Euler-Poincaré characteristic of

greater combinatorial complexity in terms of the data of the resolution of f than
in the complex case. Actually all the strata of the natural stratification of the
exceptional divisor of the resolution of f appear in the expression of χc(Sf) in the
real case. Nevertheless we show that the motivic real semialgebraic Milnor fibres
have for value under the Euler-Poincaré characteristic morphism the Euler-Poincaré
characteristic of the corresponding set theoretic real semialgebraic Milnor fibres
(Theorem 4.2.8).

In what follows we sometimes simply call measure the class of some object in a
given Grothendieck ring. The term inequation refers to the symbol �= as the term
inequality refers to the symbol >.
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1. The Grothendieck ring of basic semialgebraic formulas.

1.1. Affine real algebraic varieties.— By an affine algebraic variety over R we
mean an affine reduced and separated scheme of finite type over R. The category of
affine algebraic varieties over R is denoted by VarR. An affine real algebraic variety
X is then defined by a subset of An together with a finite number of polynomial
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equations. Namely, there exist Pi ∈ R[X1, . . . , Xn], for i = 1, . . . , r, so that the real
points X(R) of X are given by

X(R) = {x ∈ A
n|Pi(x) = 0, i = 1, . . . , r}.

A Zariski-constructible subvariety Z of An is similarly defined by real polynomial
equations and inequations. Namely there exist Pi, Qj ∈ R[X1, . . . , Xn], for i =
1, . . . , p and j = 1, . . . , q, so that the real points Z(R) of Z are given by

Z(R) = {x ∈ A
n|Pi(x) = 0, Qj(x) �= 0, i = 1, . . . , p, j = 1, . . . , q}.

As an abelian group, the Grothendieck ring K0(VarR) of affine real algebraic
varieties is formally generated by isomorphism classes [X] of Zariski-constructible
real algebraic varieties, subject to the additivity relation

[X] = [Y ] + [X \ Y ],

in case Y ⊂ X is a closed subvariety of X . Here X \ Y is the Zariski-constructible
variety defined by combining the equations and inequations that define X together
with the equations and inequations obtained by reversing the equations and inequa-
tions that define Y . The product of constructible sets induces a ring structure on
K0(VarR). We denote by L the class in K0(VarR) of A

1.

1.2. Real algebraic sets.— The real points X(R) of an affine algebraic variety
X over R form a real algebraic set (in the sense of [2]). The Grothendieck ring
K0(RVar) of affine real algebraic sets [13] is defined in a similar way than that of real
algebraic varieties over R. Taking the real points of an affine real algebraic variety
over R gives a ring morphism from K0(VarR) to K0(RVar). A great advantage of
K0(RVar) from a geometrical point of view is that the additivity property implies
that the measure of an algebraic set without real point is zero in K0(RVar).

We already know some realizations ofK0(RVar) in simpler rings, such as the Euler
characteristics with compact supports in Z or the virtual Poincaré polynomial in Z[u]
(cf. [13]). We obtain therefore similar realizations forK0(VarR) by composition with
the realizations of K0(VarR) in K0(RVar).

1.3. Basic semialgebraic formulas.— Let us now precise the definition of the
Grothendieck ring K0(BSAR) of basic semialgebraic formulas. This definition is
inspired by [5]. The ring K0(BSAR) will contain K0(VarR) as a subring (Proposition
1.3.3) and will be projected on the ring K0(VarR)⊗Z[1

2
] (Proposition 2.1.2.1) by an

explicit computational process.
A basic semialgebraic formula A in n variables is defined as a finite number of

equations, inequations and inequalities, namely there exist Pi, Qj, Rk ∈ R[X1, . . . , Xn],
for i = 1, . . . , p, j = 1, . . . , q and k = 1, . . . , r, so that A(R) is equal to those x ∈ An

such that

Pi(x) = 0, Qj(x) �= 0, Rk(x) > 0, i = 1, . . . , p, j = 1, . . . , q, k = 1, . . . , r.
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The relations Qj(x) �= 0 are called inequations and the relations Rk(x) > 0 are
called inequalities. We will simply denote a basic semialgebraic formula by

A = {Pi = 0, Qj �= 0, Rk > 0, i = 1, . . . , p, j = 1, . . . , q, k = 1, . . . , r}.
Note in particular that A is not only defined by the real points A(R) solutions of
the equations, inequations and inequalities, but by these equations, inequations and
inequalities themselves.

We will consider basic semialgebraic formulas up to algebraic isomorphisms, when
the basic semialgebraic formulas are defined without inequality.

1.3.1 Remark. — In the sequel, we will allow ourselves to use the notation {P <
0} for the basic semialgebraic formula {−P > 0} and similarly {P > 1} instead
of {P − 1 > 0}, where P denotes a polynomial with real coefficients. Furthermore
given two basic semialgebraic formulas A and B, the notation {A,B} will denote
the basic formula with equations, inequations and inequalities coming from A and
B together.

We define the Grothendieck ring K0(BSAR) of basic semialgebraic formulas as
the free abelian ring generated by basic semialgebraic formulas [A], up to algebraic
isomorphim when the formula A has no inequality, and subject to the three following
relations

1. (algebraic additivity)

[A] = [A, S = 0] + [A, {S �= 0}]
where A is a basic semialgebraic formula in n variables and S ∈ R[X1, . . . , Xn].

2. (semialgebraic additivity)

[A,R �= 0] = [A,R > 0] + [A,−R > 0]

where A is a basic semialgebraic formula in n variables and R ∈ R[X1, . . . , Xn].

3. (product) The product of basic semialgebraic formulas, defined by taking the
conjonction of the formulas with disjoint sets of free variables, induces the ring
product on K0(BSAR). In other words we consider the relation

[A,B] = [A] · [B],

for A and B basic real semialgebraic formulas with disjoint set of variables.

1.3.2 Remark. — 1. Contrary to the Grothendieck ring of algebraic varieties or
algebraic sets, we do not consider isomorphism classes of basic real semialge-
braic formulas in the definition of K0(BSAR). As a consequence the realization
we are interested in does depend in a crucial way on the description of the basic
semialgebraic set as a basic semialgebraic formula. For instance {X − 1 > 0}
and {X > 0, X − 1 > 0} will have different measures.
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2. One may decide to enlarge the basic semialgebraic formulas with large inequal-
ities by imposing, by convention, that the measure of {A,R ≥ 0}, for A a basic
semialgebraic formula in n variables and R ∈ R[X1, . . . , Xn], is the sum of the
measures of {A,R > 0} and of {A,R = 0}.

1.3.3 Proposition. — The natural map i from K0(VarR) that associates to an
affine real algebraic variety its value in the Grothendieck ring K0(BSAR) of basic
real semialgebraic formulas is an injective morphism

i : K0(VarR) −→ K0(BSAR).

We therefore identify K0(VarR) with a subring of K0(BSAR).

Proof. — We construct a left inverse j of i as follows. Let a ∈ K0(BSAR) be a
sum of products of measures of basic semialgebraic formulas. If there exist Zariski
constructible real algebraic sets Z1, . . . , Zm such that [Z1] + · · ·+ [Zm] is equal to a
in K0(BSAR), then we define the image of a by j to be

j(a) = [Z1] + · · ·+ [Zm] ∈ K0(VarR).

Otherwise, the image of a by j is defined to be zero in K0(VarR). The map j is
well-defined. Actually if Y1, . . . , Yl are another Zariski constructible sets such that
[Y1] + · · ·+ [Yl] is equal to a in K0(BSAR), then

[Y1] + · · ·+ [Yl] = [Z1] + · · ·+ [Zm]

in K0(BSAR). The equality still holds in K0(VarR) by remark 1.3.2 and the fact
that j defines a left inverse of i is immediate.

1.3.4 Remark. — Note however that the map j constructed in the proof of Propo-
sition 1.3.3 is not a group morphism. For instance j([X > 0]) = j([X < 0]) = 0
whereas j([X �= 0]) = L− 1.

2. A realization of K0(BSAR)

An example of a ring morphism from K0(BSAR) to Z is given by the Euler
characteristic with compact supports χc. We construct in this section a realization
for elements in K0(BSAR) with value in the ring of polynomials with coefficient in
Z[1

2
]. This realization specializes to the Euler characteristic with compact supports.

To this aim, we contruct more generally a ring morphism from K0(BSAR) to the
tensor product of K0(VarR) with Z[1

2
].

2.1. The realization.— We define a morphism χ from the ring K0(BSAR) to the
ring K0(VarR) ⊗ Z[1

2
] as follows. Let A be a basic semialgebraic formula without

inequality. We assign to A its value χ(A) = [A] in K0(VarR) as a constructible
set. We proceed now by induction on the number of inequalities in the description
of the basic semialgebraic formulas. Assuming that we have defined χ for basic
semialgebraic formulas with at most k inequalities, k ∈ N, let A be a basic real
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semialgebraic formula with n variables and R ∈ R[X1, . . . , Xn]. Define χ([A,R > 0])
by

χ([A,R > 0]) :=
1

4

(
[A, Y 2 = R]− [A, Y 2 = −R]

)
+

1

2
[A,R �= 0],

where {A, Y 2 = ±R} is a basic real semialgebraic formula with n + 1 variables,
with at most k inequalities and {A,R �= 0} is a basic semialgebraic formula with n
variables with at most k inequalities.

2.1.1 Remark. — The way to define χ may be seen as an average of two differ-
ent natural ways of understanding a basic semialgebraic formula as a quotient of
algebraic varieties. Namely, for a basic semialgebraic formula in n variables of the
form {R > 0}, we may see its set of real points as a projection of {Y 2 = R} with
fibre two points, or as the complement outside the zero set of R of the projection of
Y 2 = −R. The algebraic average of these two possible points of view is

1

2

((1
2
[Y 2 = R]− [R = 0]

)
+
(
L
n − 1

2
[Y 2 = −R]

))
,

which, considering that Ln − [R = 0] = [R �= 0], gives for χ(R > 0) the expression
just defined above.

We give below the general formula that computes the measure of a basic semial-
gebraic formula in terms of the measure of real algebraic varieties.

2.1.2 Proposition. — Let Z be a constructible set in Rn and take Rk ∈ R[X1, . . . , Xn],
with k = 1, . . . , r. For I ⊂ {1, . . . , r} a subset of cardinal �I = i and ε ∈ {±1}i, we
denote by RI,ε the real constructible set defined by

RI,ε = {Y 2
j = εjRj(X), j ∈ I; Rk(X) �= 0, k /∈ I}.

Then χ([Z,Rk > 0, k = 1, . . . , r]) is equal to

r∑
i=0

1

2r+i

∑
I⊂{1,...,r},�I=i

∑
ε∈{±1}i

(
∏
j∈I

εj)[Z,RI,ε]

Proof. — If r = 1 it follows from the definition of χ. We prove the general
result by induction on r ∈ N. Assume Z = Rn to simplify notations. Take
Rk ∈ R[X1, . . . , Xn], with k = 1, . . . , r + 1. Choose I ⊂ {1, . . . , r} a subset of
cardinal �I = i and ε ∈ {±1}i. Then, we obtain from the definition of χ that

[Rr+1 > 0, RI,ε] =
1

4
([RI∪{r+1},ε+ ]− [RI∪{r+1},ε−]) +

1

2
[RĨ ,ε]

where ε+ = (ε1, . . . , εr, 1), ε− = (ε1, . . . , εr,−1) and Ĩ denotes I as a subset of
{1, . . . , r + 1}. Therefore

1

2r+i
(
∏
j∈I

εj)[Rr+1 > 0, RI,ε]
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is equal to

1

2(r+1)+(i+1)
(
∏
j∈I

εj)([RI∪{r+1},ε+]− [RI∪{r+1},ε−]) +
1

2(r+1)+i
(
∏
j∈I

εj)[RĨ ,ε]

which gives the result.

The morphism χ is then actually defined on K0(BSAR).

2.1.2.1 Theorem. — The map

χ : K0(BSAR) −→ K0(VarR)⊗ Z[
1

2
]

is a ring morphism that is identical on K0(VarR) ⊂ K0(BSAR).

Proof. — We must prove that the definition of χ given is compatible with the al-
gebraic and semialgebraic additivity. However the semialgebraic additivity follows
directly from the definition of χ. Actually, if A is a basic semialgebraic formula and
R a real polynomial, then the sum of χ([A,R > 0]) and χ([A,−R > 0]) is equal to

1

4

(
χ([A, Y 2 = R])− χ([A, Y 2 = −R])

)
+

1

2
χ([A,R �= 0])

+
1

4

(
χ([A, Y 2 = −R])− χ([A, Y 2 = R])

)
+

1

2
χ([A,−R �= 0])

= χ([A,−R �= 0]).

The algebraic additivity as well as the multiplicativity follow from Proposition
2.1.2 that enables to express the measure of a basic semialgebraic formula in terms
of algebraic varieties for which additivity and multiplicativity hold. We conclude by
noting that we may construct a left inverse to χ restricted to K0(VarR) in the same
way as in the proof of Proposition 1.3.3.

2.1.3 Example. — 1. A half-line defined by X > 0 has measure in K0(VarR)⊗
Z[1

2
] half of the value of the line minus one point, as expected, since by definition

χ([X > 0]) =
1

4
(L− L) +

1

2

(
L− 1) =

1

2

(
L− 1).

However, if we add one more inequality, like {X > 0, X > −1}, then the
measure has more complexity. By Proposition 2.1.2 we obtain in that case

χ([X > 0, X > −1]) =
1

4
(L− 3).

2. Using the multiplicativity, we find the measure of the half-plane and the meseaure
of the quarter plane as expected

χ([X1 > 0]) =
1

2
(L2 − L)

and

χ([X1 > 0, X2 > 0]) =
1

4
(L− 1)2.
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2.1.4 Remark. — 1. Let R ∈ R[X1, . . . , Xn] be odd. Then

χ([R > 0]) = χ([R < 0]) =
[R �= 0]

2
.

Actually, the varieties Y 2 = R(X) and Y 2 = −R(X) are isomorphic via X �→
−X, and the result follows from the definition of χ.

2. The ring morphism from K0(VarR) to K0(RVar) gives a realization from the
ring K0(BSAR) to the ring K0(RVar) ⊗ Z[1

2
] for which the measure of a real

algebraic variety without real point is zero, this is why it is often convenient to
push the computations to the ring K0(RVar)⊗Z[1

2
] rather than staying at the

higher level of K0(VarR)⊗ Z[1
2
]. However we have to notice that the measure

of a basic real semialgebraic formula without real point is not necessarily zero
in K0(RVar) ⊗ Z[1

2
]. For instance, let us compute the measure of X2 + 1 > 0

in K0(RVar)⊗Z[1
2
]. By definition of χ we obtain that χ([X2+1 > 0]) is equal

to
1

4

(
χ([Y 2 = X2 + 1])− χ([Y 2 = −X2 − 1])

)
+

1

2
χ([X2 + 1 �= 0])

=
1

4
(L− 1) +

1

2
L =

1

4
(3L− 1).

Again by definition we have

χ([X2 + 1 < 0]) = χ([X2 + 1 �= 0])− χ([X2 + 1 > 0])

= L− χ([X2 + 1 = 0])− χ([X2 + 1 > 0]).

But since χ([X2+1 = 0]) = 0 in K0(RVar)⊗Z[1
2
], we obtain that the measure

of {X2 + 1 < 0} in K0(RVar)⊗ Z[1
2
], whose real points set is empty, is

χ([X2 + 1 < 0]) =
1

4
(L+ 1).

3. In a similarly way, the basic semialgebraic formula {P > 0,−P > 0} with
P (X) = 1 +X2, whose set of real points is empty, has measure

χ([P > 0,−P > 0]) =
1

8
(L+ 1).

2.2. Isomorphism between basic semialgebraic formulas. — In this section
we give a condition for two basic semialgebraic formulas to have the same realiza-
tion by χ. It deals with the complexification of the algebraic liftings of the basic
semialgebraic formulas.

Let X be a real algebraic subvariety of Rn defined by Pi ∈ R[X1, . . . , Xn], for
i = 1, . . . , r. The complexification XC of X is defined to be the complex algebraic
subvariety of Cn defined by the same polynomials P1, . . . , Pr. We define similarly
the complexification of a real algebraic map.

Let Y ⊂ R
n be a Zariski constructible subset of R

n and take R1, . . . , Rr ∈
R[X1, . . . , Xn]. Let A denotes the basic semialgebraic formula of Rn defined by
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Y together with the inequalities R1 > 0, . . . , Rr > 0, and V denotes the Zariski
constructible subset of Rn+r defined by

V = {Y, Y 2
1 = R1, . . . , Y

2
r = Rr}.

Note that V is endowed with an action of {±1}r defined by multiplication by −1
on the indeterminates Y1, . . . , Yr.

Let Z ⊂ Rm be a Zariski constructible subset ofRm and take similarly S1, . . . , Sr ∈
R[X1, . . . , Xm]. Let B denotes the basic semialgebraic formula of Rm defined by Z
together with the inequalities S1 > 0, . . . , Sr > 0, and W denotes the Zariski con-
structible subset of Rm+r defined by

W = {Z, Y 2
1 = S1, . . . , Y

2
r = Sr}.

2.2.1 Definition. — We say that the basic semialgebraic formulas A and B are
isomorphic if there exists a real algebraic isomorphism φ : V −→ W between V
and W which is equivariant with respect to the action of {±1}r on V and W , and
whose complexification φC induces a complex algebraic isomorphism between the
complexifications VC and WC of V and W .

2.2.2 Remark. — Let us consider first the particular case Y = Rn, Z = Rm and
r = 1. Change moreover the notation as follows. Put V + = V and W+ = W , and
define V − = {Y 2 = −R(X)} and W− = {Y 2 = −S(X)}.

Then the complex points V +
C

and V −
C

of V + and V − are isomorphic via the
complex (and not real) isomorphism (x, y) �→ (x, iy). Now, suppose that the basic
semialgebraic formula {R > 0} is isomorphic to {S > 0}. Let φ = (f, g) : (x, y) �→
(f(x, y), g(x, y)) be the real isomorphism involved in the definition (that is f and
g are defined by real equations, and moreover f(x,−y) = f(x, y) and g(x,−y) =
−g(x, y)). Then the following diagram

V +
C

(f,g)−→ W+
C

(x,y)�→(x,iy)

↓
(x,y)�→(x,iy)

↓
V −
C

W−
C

induces a complex isomorphism (F,G) between V −
C

and W−
C

given by

(x, y) �→ (f(x,−iy), ig(x,−iy)).

In fact, this isomorphism is defined over R since

F (x, y) = f(x,−iy) = f(x,−iy) = f(x, iy) = f(x,−iy) = F (x, y)

and

G(x, y) = ig(x,−iy) = −ig(x,−iy) = −ig(x, iy) = ig(x,−iy) = G(x, y),

where the bar denotes complex conjugation. Therefore it induces a real algebraic
isomorphism between V − and W−.

2.2.3 Proposition. — If the basic semialgebraic formulas A and B are isomor-
phic, then χ([A]) = χ([B]).
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Proof. — Thanks to Proposition 2.1.2, we only need to prove that the real algebraic
varieties RI,ε corresponding to A and B are isomorphic two by two, which is a direct
generalisation of Remark 2.2.2.

3. Virtual Poincaré polynomial

3.1. Polynomial realization. — The best realization known (with respect to
the highest algebraic complexity of the realization ring) of the Grothendieck ring
of real algebraic varieties is given by the virtual Poincaré polynomial [13]. This
polynomial, whose coefficients coincide with the Betti numbers with coefficients in
Z

2Z
when the sets are compact and nonsingular, has coefficient in Z. As a corollary

of Theorem 2.1.2.1 we obtain the following realization of K0(BSAR) in Z[1
2
][u].

3.1.1 Proposition. — There exists a ring morphism

β : K0(BSAR) −→ Z[
1

2
][u]

whose restriction to K0(VarR) ⊂ K0(BSAR) coincides with the virtual Poincaré
polynomial.

The interest of such a realization is that it enables to make concrete computations.

3.1.2 Example. — The virtual Poincaré polynomial of the open disc X2
1 +X2

2 < 1
is equal to

1

4

(
β([Y 2 = 1− (X2

1 +X2
2 )])− β([Y 2 = X2

1 +X2
2 − 1])

)
+

1

2
β([X2

1 +X2
2 �= 1])

=
1

4
(u2 + 1− u(u+ 1)) +

1

2
(u2 − u− 1) =

1

4
(2u2 − 3u− 1).

3.1.3 Remark. — In case the set of real points of a basic semialgebraic formula
is a real algebraic set (or even an arc symmetric set [11, 8]), its virtual Poincaré
polynomial does not coincide in general with the virtual Poincaré polynomial of
the real algebraic set. For instance, the basic semialgebraic formula X2 + 1 > 0,
considered in Remark 2.1.4, has virtual Poincaré polynomial equal to 1

4
(3u − 1)

whereas its set of points is a real line whose with virtual Poincaré polynomial equals
u as a real algebraic set.

Evaluating u at an integer gives another realization, with coefficient in Z[1
2
]. The

virtual Poincaré polynomial of a real algebraic variety, evaluated at u = −1, coin-
cides with its Euler characteristic with compact supports [13]. Actually, evaluating
the virtual Poincaré polynomial of a basic semialgebraic formula gives also the Euler
characteristic with compact supports of its set of real points, and therefore has its
values in Z.
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3.1.4 Proposition. — The virtual Poincaré polynomial β(A) of a basic semialge-
braic formula A is equal to the Euler characteristic with compacts supports of its set
of real points A(R) when evaluated at u = −1. In other words

β(A)(−1) = χc(A(R)).

Proof. — As explained in Remark 2.1.1, one may see χ(A) as an average of two
natural 2-coverings of the set of real points A(R) of A. However, for such coverings,
the Euler characteristic with compact supports of the total space is twice that of
the basis.

3.2. Homogeneous case. — We propose some computations of the virtual Poin-
caré polynomial of basic real semialgebraic formulas of the form {R > 0} where R
is homogeneous. Looking at Euler characteristic with compact supports, it is equal
to the product of the Euler characteristics with compact supports of {X > 0} with
{R = 1}. We investigate the case of virtual Poincaré polynomial. A key point in
the proofs will be the invariance of the virtual Poincaré polynomial of constructible
sets under regular homeomorphisms (see [14]).

3.2.1 Proposition. — Let R ∈ R[X1, . . . , Xn] be a homogeneous polynomial of
degre d. Assume d is odd. Then

β([R > 0]) = β([X > 0])β([R = 1]).

Proof. — The algebraic varieties defined by Y 2 = R(X) and Y 2 = −R(X) are
isomorphic since R(−X) = −R(X), therefore

β([R > 0]) =
β([R �= 0])

2
.

The map (λ, x) �→ λx from R∗ × {R = 1} to R �= 0 is a regular homeomorphism
with inverse y �→ (R(y)1/d, y

R(y)1/d
) therefore

β([R �= 0]) = β(R∗)β([R = 1]),

so that

β([R > 0]) =
β(R∗)
2

β([R = 1]) = β([X > 0])β([R = 1]).

The result is no longer true when the degre is even. However, in the particular case
of the square of a homogeneous polynomial of odd degre, the relation of Proposition
3.2.1 remains valid.

3.2.2 Proposition. — Let P ∈ R[X1, . . . , Xn] be a homogeneous polynomial of
degre k. Assume k is odd, and define R ∈ R[X1, . . . , Xn] by R = P 2. Then

β([R > 0]) = β([X > 0])β([R = 1]).
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Proof. — Note first that Y 2 −R can be factorized as (Y −P )(Y +P ) therefore the
virtual Poincaré polynomial of Y 2 −R is equal to

β(Y − P = 0) + β(Y + P = 0)− β(P = 0).

However the algebraic varieties Y − P = 0 and Y + P = 0 are isomorphic to a n-
dimensionnal affine space, whereas Y 2+R = 0 is isomorphic to P = 0 since R = P 2

is positive, so that the virtual Poincaré polynomial of R > 0 is equal to

1

4
(2β(Rn)− 2β([P = 0])) +

1

2
β([P �= 0]) = β([P �= 0]).

To compute β([P �= 0], note that the map (λ, x) �→ λx from R∗ × [P = 1] to
[P �= 0] is a regular homeomorphism with inverse y �→ (R(y)1/k, y

R(y)1/k
) therefore

β([P �= 0]) = β(R∗)β([P = 1]).

We achieve the proof by noticing that R− 1 = (P − 1)(P +1) so that β([P = 1]) =
{R=1}

2
because the degree of the homogeneous polynomial P is odd. Finally

β([R > 0]) =
β(R∗)

2
β([R = 1])

and the proof is achieved.

More generally, for a homogeneous polynomial R of degre twice a odd number,
we can express the virtual Poincaré polynomial of [R > 0] in terms of that of [R = 1]
and [R �= 0] as follows.

3.2.3 Proposition. — Let k ∈ N be odd and put d = 2k. Let R ∈ R[X1, . . . , Xn]
be a homogeneous polynomial of degre d. Then

β([R > 0]) =
1

4
(β([R = 1])− β([R = −1])) +

1

2
β([R �= 0]).

3.2.4 Example. — We cannot do better in general as illustrated by the following
examples. For R1 = X2

1 +X2
2 one obtain

β([R1 > 0]) =
3

2
β([X > 0])β([R1 = 1])

whereas for R2 = X2
1 −X2

2 one has

β([R2 > 0]) = β([X > 0])β([R2 = 1]),

and the proof is achieved.

The proof of Proposition 3.2.3 is a direct consequence of the next lemma.

3.2.5 Lemma. — Let k ∈ N be odd and put d = 2k. Let R ∈ R[X1, . . . , Xn] be a
homogeneous polynomial of degre d. Then

β([Y 2 = R]) = β([R �= 0]) + β(R∗)β([R = 1]).
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Proof. — Note first that the algebraic varieties Y 2 = R and Y d = R have the same
virtual Poincaré polynomial. Indeed the map (x, y) �→ (x, yk) realizes a regular
homeomorphism between Y 2 = R and Y d = R, whose inverse is given by (x, y) �→
(x, y1/k). However the polynomial Y d −R being homogeneous, we have

β([Y d − R = 0]) = β([R �= 0]) + β(R∗)β([R = 1]).

4. Zeta functions and Motivic real Milnor fibres

We apply in this section the preceding construction of χ : K0(BSAR) → K0(VarR)⊗
Z[1

2
] in defining, for a given polynomial f ∈ R[X1, · · · , Xd], zeta functions with co-

efficients being classes in (K0(VarR) ⊗ Z[1
2
])[L−1] of real semialgebraic formulas in

truncated arc spaces. We then show that these zeta functions are deeply related
to the topology of some corresponding set theoretic real semialgebraic Milnor fibres
of f .

4.1. Semialgebraic zeta functions and real Denef-Loeser formulas.— Let
f : Rd → R be a polynomial function with coefficients in R sending 0 to 0. We
denote by L or L(Rd, 0) the space of formal arcs γ(t) = (γ1(t), · · · , γd(t)) on Rd,
with γj(0) = 0 for all j ∈ {1, · · · , d}, by Ln or Ln(R

d, 0) the space of truncated arcs
L/(tn+1) and by πn : L → Ln the truncation map. More generally, for M a variety
and W a closed subset of M , L(M,W ) (resp. Ln(M,W )) will denote the space of
arcs on M (resp. the nth jet-space on M) with endpoints in W .

Let ε be one of the symbols in the set {naive,−1, 1, >,<}. For such a symbol
ε, via the realization of K0(BSAR) in K0(VarR) ⊗ Z[1

2
], we define a zeta function

Zε(T ) ∈ (K0(VarR)⊗ Z[1
2
])[L−1][[T ]] by

Zε
f(T ) :=

∑
n≥1

[Xε
n,f ]L

−ndT n,

where Xε
n,f is defined in the following way

- Xnaive
n,f = {γ ∈ Ln; f(γ(t)) = atn + · · · , a �= 0},

- X−1
n,f = {γ ∈ Ln; f(γ(t)) = atn + · · · , a = −1},

- X1
n,f = {γ ∈ Ln; f(γ(t)) = atn + · · · , a = 1},

- X>
n,f = {γ ∈ Ln; f(γ(t)) = atn + · · · , a > 0},

- X<
n,f = {γ ∈ Ln; f(γ(t)) = atn + · · · , a < 0}.

Note that Xε
n,f is a real algebraic variety for ε = −1 or 1, a real algebraic

constructible set for ε = naive and a semialgebraic set, given by an explicit de-
scription involving one inequality, for ε being the symbol > or the symbol <.
Consequently, Zε

f(T ) ∈ K0(VarR)[L
−1][[T ]] for ε ∈ {naive,−1, 1} and Zε

f(T ) ∈
(K0(VarR)⊗ Z[1

2
])[L−1][[T ]] for ε ∈ {>,<}.
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We show in this section that Zε
f(T ) is a rational function expressed in terms of

the combinatorial data of a resolution of f . To define those data let us consider
σ : (M,σ−1(0)) → (Rd, 0) a proper birational map which is an isomorphism over
the complement of f = 0 in (Rd, 0), such that f ◦ σ and the jacobian determinant
jac σ are normal crossings. We denote by Ej, for j ∈ J , the irreducible components
of (f ◦ σ)−1(0) and assume that Ek are the irreducible components of σ−1(0) for
k ∈ K ⊂ J . For j ∈ J we denote by Nj the multiplicity multEj

f ◦ σ of f ◦ σ along
Ej and for k ∈ K by νk the number νk = 1 +multEk

jac σ. For any I ⊂ J , we put
E0

I = (
⋂

i∈I Ei) \ (
⋃

j∈J\I Ej). The sets E0
I are constructible sets and the collection

(E0
I )I⊂J gives a canonical stratification of the divisor f ◦ σ = 0, compatible with

σ = 0 such that in some Zariski neighborhood U of E0
I in M we have f ◦ σ(x) =

u(x)
∏

i∈I x
Ni
i , where u is a unit, that is to say a rational function which does not

vanish on U , and x = (x′, (xi)i∈I) are local coordinates.

Finally for ε ∈ {−1, 1, >,<} and I ⊂ J , we define Ẽ0,ε
I as the gluing along E0

I of
the sets

Rε
U = {(x, t) ∈ (E0

I ∩ U)× R; tm · u(x) ?ε },
where ?ε is = −1, = 1, > 0 or < 0 in case ε is −1, 1, > or < and m = gcdi∈I(Ni).

4.1.1 Remark. — The definition of the Rε
U ’s is independant of the choice of the

coordinates, as well as the gluing of the Rε
U is allowed, up to isomorphism, since

when in some Zariski neighborhood of E0
I one has in another coordinates z = z(x) =

(z′, (zi)i∈I) the expression f ◦ σ(z) = v(z)
∏

i∈I z
Ni , there exists nonvanishing func-

tions αi so that zi = αi(z) · xi. We thus obtain v(z)
∏

i∈I α
Ni
i (z) = u(x), and the

transformation

{(x, t) ∈ (E0
I ∩ U)× R; tm · u(x) ?ε} → {(z, s) ∈ (E0

I ∩ U)× R; sm · v(z) ?ε}
(x, t) �→ (z, s = t

∏
i∈I αi(z)

Ni/m)

is an isomorphism in case ?ε is = 1 or = −1, and induces an isomorphism between
the associate double covers Rε

U = {(x, t, y) ∈ (E0
I ∩U)×R×R; tm ·u(x) · y2 = η(ε)}

and R′ε
U = {(z, s, w) ∈ (E0

I ∩U)×R×R; sm · v(z) ·w2 = η(ε)}, with η(ε) = 1 when ε
is the symbol > and η(ε) = −1 when ε is the symbol <. The induced isomorphism
simply being

Rε
U → R′ε

U

(x, t, y) �→ (z, s, w = y)

Also notice that Ẽ0,ε
I is a constructible set when ε is −1 or 1 and a semialgebraic

set with explicit description over the constructible set E0
I when ε is < or >. We can

thus define the class [Ẽ0,ε
I ] ∈ χ(K0(BSAR)).

With these notations one can give the expression of Zε
f(T ) in terms of [Ẽ0,ε

I ], as,
for instance, in [3], [4], [6], [12], essentially using the Kontsevitch change of variables
formula in motivic integration ([10], [4] for instance).
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4.1.2 Theorem. — With the notations above, one has

Zε
f (T ) =

∑
I∩K�=∅

(L− 1)|I|−1[Ẽ0,ε
I ]

∏
i∈I

L−νiTNi

1− L−νiTNi
.

4.1.3 Remark. — Classically, the right hand side of the equality of Theorem 4.1.2
does not depend, as a formal series in (K0(VarR)⊗ Z[1

2
])[L−1][[T ]], of the choice of

the resolution σ, as the definition of Zε
f (T ) does not depend itself of any choice of

resolution.

To prove this theorem, we first start with a lemma that needs the following
notations. We denote by

σ∗ : L(M,σ−1(0)) → L(Rd, 0),

and for n ∈ N, by

σn,∗ : Ln(M,σ−1(0)) → Ln(R
d, 0)

the natural mappings induced by σ : (M,σ−1(0)) → (Rd, 0). Let

Y ε
n,f = π−1

n (Xε
n,f).

Then Y ε
n,f◦σ = {γ ∈ L(M,σ−1(0)); f(σ(πn(γ)))(t) = atn + · · · , a ?ε}, where ?ε is =

−1, = 1, > 0 or < 0 in case ε is −1, 1, > or <, and note also that Y ε
n,f◦σ = σ−1

∗ (Y ε
n,f).

Finally for e ≥ 1, let

Δe = {γ ∈ L(M,σ−1(0)); multt (jac σ)(γ(t)) = e} and Y ε
e,n,f◦σ = Y ε

n,f◦σ ∩Δe.

4.1.4 Lemma. — With the notations above, there exists c ∈ N such that

Zε
f(T ) = L

d
∑
n≥1

T n
∑
e≤cn

L
−e

∑
I �=∅

L
−(n+1)d[Ln(M,E0

I ∩ σ−1(0)) ∩ πn(Δe) ∩Xε
n,f◦σ].

Proof. — As usual in motivic integration, the class of the cylinder Y ε
n,f = π−1

n (Xε
n,f),

n ≥ 1, is an element of (K0(VarR)⊗Z[1
2
])[L−1], the localization of the ringK0(VarR)⊗

Z[1
2
] with respect to the multiplicative set generated by L, and defined by [Y ε

n,f ] :=

L−(n+1)d[Xε
n,f)], since the truncation morphisms πk+1,k : Lk+1(R

d, 0) → Lk(R
d, 0),

k ≥ 1, are locally trivial fibrations with fibre Rd. Hence Zε
f(T ) = L

d
∑
n≥1

[Y ε
n,f ]T

n.

Take now γ ∈ σ−1
∗ (Y ε

n,f), and let I ⊂ J such that γ(0) ∈ E0
I . In some neigh-

bourhood of E0
I , one has coordinates such that f ◦ σ(x) = u(x)

∏
i∈I x

Ni
i and

jac(σ)(x) = v(x)
∏

i∈I x
νi−1
i , with u and v units. If one denotes γ = (γ1, · · · , γd)

in these coordinates, with ki the multiplicity of γi at 0 for i ∈ I, then we have
multt(f ◦ σ ◦ γ(t)) = ∑

i∈I kiNi = n. Now

multt(jacσ)(γ(t)) =
∑
i∈I

ki(νi − 1) ≤ max
i∈I

(
νi − 1

Ni
)
∑
i∈I

Niki = max
i∈I

(
νi − 1

Ni
)n.
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Therefore if one sets c = maxi∈I(νi−1
Ni

), one has

Y ε
n,f◦σ =

⋃
e≥1

Y ε
e,n,f◦σ =

⋃
e≤cn

Y ε
e,n,f◦σ,

as disjoint unions. Now we can apply the change of variables theorem (see [4], [10])
to compute [Y ε

n,f ] in terms of [Y ε
e,n,f◦σ]:

[Y ε
n,f ] =

∑
e≤cn

L
−e[Y ε

e,n,f◦σ],

and summing over the subsets I of J , as Y ε
e,n,f◦σ is the disjoint union

⋃
I �=∅

Y ε
e,n,f◦σ ∩ π−1

0 (E0
I ∩ σ−1)(0),

we obtain

Zε
f(T ) = L

d
∑
n≥1

[Y ε
n,f ]T

n = L
d
∑
n≥1

T n
∑
e≤cn

L
−e

∑
I �=∅

[Y ε
e,n,f◦σ ∩ π−1

0 (E0
I ∩ σ−1)(0)]

= L
d
∑
n≥1

T n
∑
e≤cn

L
−e

∑
I �=∅

L
−(n+1)d[πn(Y

ε
e,n,f◦σ ∩ π−1

0 (E0
I ∩ σ−1)(0))] =

= L
d
∑
n≥1

T n
∑
e≤cn

L
−e

∑
I �=∅

L
−(n+1)d[Ln(M,E0

I ∩ σ−1(0)) ∩ πn(Δe) ∩Xε
n,f◦σ].

Proof of Theorem 4.1.2. — Considering the expression of Zε
f(T ) given by Lemma

4.1.4, we have to compute the class of [Ln(M,E0
I ∩ σ−1(0)) ∩ πn(Δe) ∩Xε

n,f◦σ]. For
this we notice that on some neighbourhood U of the end point γ(0) ∈ E0

I ∩ σ−1(0)),
one has coordinates such that

f ◦ σ(x) = u(x)
∏
i∈I

xNi
i and jac(σ)(x) = v(x)

∏
i∈I

xνi−1
i ,

with u and v units. As a consequence Ln(M,E0
I ∩ U ∩ σ−1(0)) ∩ πn(Δe) ∩Xε

n,f◦σ is
isomorphic to

{γ ∈ Ln(M,σ−1(0)); γ(0) ∈ E0
I ∩ U ∩ σ−1(0),

∑
i∈I

Niki = n,
∑
i∈I

ki(νi − 1) = e,

f ◦ σ(γ(t)) = atn + · · · , a ?ε},
where ?ε is = −1, = 1, > 0 or < 0 in case ε is −1, 1, > or < and ki is the multiplicity
of γi for i ∈ I. Now denoting A(I, n, e) the set

A(I, n, e) := {k = (k1, · · · , kd) ∈ N
d;
∑
i∈I

Niki = n,
∑
i∈I

ki(νi − 1) = e},

and identifying for simplicity x and ((xi)i �∈I , (xi)i∈I), the set

Ln(M,E0
I ∩ U ∩ σ−1(0)) ∩ πn(Δe) ∩Xε

n,f◦σ
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is isomorphic to the product

(Rn)d−|I|×
⋃

k∈A(I,n,e)

{x ∈ (E0
I ∩U∩σ−1(0))×(R∗)|I|; u((xi)i �∈I , 0)

∏
i∈I

xNi
i ?ε}

∏
i∈I

(Rn−ki)

Actually, denoting γ = (γ1, . . . , γd) with γi(t) = ai,0 + · · · + ai,nt
n for i �∈ I and

γi(t) = ai,kit
ki+· · ·+ai,nt

n for i ∈ I, an arc of Ln(M,E0
I ∩U∩σ−1(0)), the first factor

of the product comes from the free choice of the coefficients ai,j , i �∈ I, j = 1, · · · , n,
the last factor of the product comes from the free choice of the coefficients ai,j , i ∈ I,
j = ki + 1, . . . , n and the middle factor of the product comes from the choice of the
coefficients ai,0 ∈ E0

I ∩U ∩ σ−1(0), i �∈ I and from the choice of the coefficients ai,ki,

i ∈ I, subject to f◦σ(γ(t)) = u(γ(t))
∏

i∈I γ
Ni
i (t) = u((ai,0)i �∈I , 0)(

∏
i∈I a

Ni
i,ki

)tn+· · · =
atn + · · · , a ?ε.

We now choose ni ∈ Z such that
∑

i∈I niNi = m = gcdi∈I(Ni) and consider the
two semialgebraic sets

W ε
U = {x ∈ (E0

I ∩ U ∩ σ−1(0))× (R∗)|I|; u((xi)i �∈I , 0)
∏
i∈I

xNi
i ?ε}

and

W
′ε
U = {(x′, t) ∈ (E0

I ∩U ∩ σ−1(0))× (R∗)|I| ×R
∗; u((x′

i)i �∈I , 0)t
m ?ε,

∏
i∈I

x
′Ni/m
i = 1},

where ?ε is = −1, = 1, > 0 or < 0 in case ε is −1, 1, > or <. In case ?ε = 1 or
?ε = −1, the mapping

W
′ε → W ε

(x′, t) �→ x = ((x′
i)i �∈I , (t

nix′
i)i∈I)

is an isomorphism of inverse

W ε
U → W

′ε
U

x �→ (x′ = ((xi)i �∈I , ((
∏

	∈I x
N�/m
	 )−nixi)i∈I), t =

∏
	∈I x

N�/m
	 )

In the semialgebraic case, this isomorphism induces a natural isomorphism on the
double-covers Wε

U and W ′ε
U associated to W ε

U and W
′ε
U and defined by

Wε
U = {(x, y) ∈ (E0

I ∩ U ∩ σ−1(0))× (R∗)|I| × R; y2u((x′
i)i �∈I , 0)t

m = η(ε)}
and

W ′ε
U = {(x, t, w) ∈ (E0

I ∩ U ∩ σ−1(0))× (R∗)|I| × R
∗ × R;

w2u((x′
i)i �∈I , 0)t

m = η(ε),
∏
i∈I

x
′Ni/m
i = 1},

where η(ε) = 1 when ε is the symbol > and η(ε) = −1 when ε is the symbol <.
Now we observe that W

′ε is isomorphic to Rε
U × (R∗)|I|−1, since at least one of the

integers Ni/m is odd.
We finally obtain

[Ln(M,E0
I ∩ σ−1(0)) ∩ πn(Δe) ∩Xε

n,f◦σ] =
∑

k∈A(I,n,e)

L
nd−∑

i∈I ki [W
′ε
U ] =
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∑
k∈A(I,n,e)

L
nd−∑

i∈I ki × [Rε
U ]× (L− 1)|I|−1.

Summing over the charts U , the expression of Zε
f(T ) given by Lemma 4.1.4 is now

Zε
f(T ) =

∑
I∩K�=∅

L
d
∑
n≥1

T n
∑
e≤cn

L
−e(L− 1)|I|−1

L
−(n+1)d[Ẽ0,ε

I ]
∑

k∈A(I,n,e)

L
nd−∑

i∈I ki

=
∑

I∩K�=∅
(L− 1)|I|−1[Ẽ0,ε

I ]
∑
n≥1

T n
∑
e≤cn

∑
k∈A(I,n,e)

L
−e−∑

i∈I ki

Noticing that the (ki)i∈I ’s such that k = ((ki)i �∈I), (ki)i∈I) ∈
⋃

e≤cn,n≥1

A(I, n, e) are in

bijection with N
|I|, we have

Zε
f(T ) =

∑
I∩K�=∅

(L− 1)|I|−1[Ẽ0,ε
I ]

∑
(ki)i∈I∈N|I|

∏
i∈I

(L−νiTNi)ki

=
∑

I∩K�=∅
(L− 1)|I|−1[Ẽ0,ε

I ]
∏
i∈I

L−νiTNi

1− L−νiTNi
.

4.2. Motivic real Milnor fibres and their realizations.— We can now define
a motivic real Milnor fibre by taking the constant term of the rational function
Zε

f(T ) viewed as a power series in T−1. This process formally consists in letting T
going to ∞ in the rational expression of Zε

f(T ) given by Theorem 4.1.2 and using
the usual computation rules as in the convergent case (see for instance [3], [6]).

4.2.1 Definition. — Let f : Rd → R be a polynomial function and ε be one of
the symbols naive, 1,−1, > or <. Consider a resolution of f as above and let us
adopt the same notation (E0

I )I for the stratification of the exceptional divisor of this

resolution, leading to the notations Ẽ0,ε
I . The real motivic Milnor ε-fibre Sε

f of f is
defined as (see [6] for the complex case)

Sε
f := − lim

T→∞
Zε

f(T ) := −
∑

I∩K�=∅
(−1)|I|[Ẽ0,ε

I ](L− 1)|I|−1 ∈ K0(VarR)⊗ Z[
1

2
].

It does not depend on the choice of the resolution σ.

For ε being the symbol 1 for instance, we have S1
f ∈ K0(VarR). We can consider,

first in the complex case, the realization of S1
f via the Euler-Poincaré characteristic

ring morphism χc : K0(VarC) → Z. In the complex case, that is for f : Cd → C,
since χc(L− 1) = 0, we obtain

χc(S
1
f ) =

∑
|I|=1,I⊂K

χc(Ẽ
0,1
I ) =

∑
|I|=1,I⊂K

NI · χc(E
0
I ∩ σ−1(0)).
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Now denoting F the set theoretic Milnor fibre of the fibration f|B(0,α)∩f−1(D×
η ) :

B(0, α) ∩ f−1(D×
η ) → D×

η , with B(0, α) the open ball in Cd of radius α centred
at 0, Dη the disc in C of radius η centred at 0 and D×

η = Dη \ {0}, with 0 <

η � α � 1, comparing the above expression χc(S
1
f) =

∑
|I|=1,I⊂K

NI · χc(E
0
I ) with

the following A’Campo formula of [1] for the first Lefschetz number of the iterates
of the monodromy M : H∗(F,C) → H∗(F,C) of f , that is for the Euler-Poincaré
characteristic of the fibre F

χc(F ) =
∑

|I|=1,I⊂K
NI · χc(E

0
I ∩ σ−1(0))

we simply observe that
χc(S

1
f) = χc(F ).

The closure f−1(c)∩ B̄(0, α), 0 < |c| � α � 1, of the Milnor fibre F being denoted
by F̄ and the boundary of F̄ being the odd dimensional compact manifold f−1(c)∩
S(0, α), χc(f

−1(c) ∩ S(0, α)) = 0 we finally have

χc(S
1
f) = χc(F ) = χc(F̄ ).

4.2.2 Remark. — There is a priori no hint in the definition of Zε
f(T ) that the

opposite of the constant term S1
f of the power series in T−1 induced by the rationality

of Zε
f (T ) could be the motivic version of the Milnor fibre of f (as well as, for instance,

there is no evident hint that the expression of Zε
f in Theorem 4.1.2 does not depend

on the resolution σ). As mentionned above, in the complexe case, we just observe
that the expression of χc(S

1
f) is the expression of χc(F ) provided by the A’Campo

formula. Exactly in the same way there is no a priori reason for χc(S
ε
f), regarding

the definition of Zε
f , to be so acurately related to the topology of f−1(ε|c|)∩B(0, α).

Nevertheless we prove that it is actually the case (Theorem 4.2.8).

In order to establish this result we start hereafter by a geometrical proof of the
formula in the complexe case (compare with [1] when only Λ(M0) is considered,
Mk being the kth iterate of the monodromy M : H∗(F,C) → H∗(F,C) of f). We
then will extend to the reals this computational proof in the proof of Theorem
4.2.8, letting us interpret the complex proof as the first complexity level of its real
extension.

4.2.3 Remark. — Note that in the complex case a proof of the fact that Λ(Mk) =
χc(X

1
k,f), for k ≥ 1, is given in [9] without using resolution of singularities, that is

to say without help of A’Campo’s formulas (see Theorem 1.1.1 of [9]). As a direct
corollary it is thus proved that χc(S

1
f ) = χc(F ) in the complex case, without using

A’Campo formulas.

Realization of the complex motivic Milnor fibre under χc. The fibre
F = {f = c}∩B(0, α) is homeomorphic to the fibre F = {f ◦σ = c}∩σ−1(B(0, α))
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viewed as the boundary of a tubular neighbourhood of σ−1(0) =
⋃

E0
J⊂σ−1(0) E

0
J ,

keeping the same notation (E0
J)J as before for the natural stratification of the strict

transform σ−1({f = 0}) of f = 0. Now the formula may be established for F in
some chart of M ∩σ−1(B(0, α)), by additivity. In such a chart, where f ◦σ is normal
crossing, consider EJ ⊂ σ−1(0), given by xi = 0 for all i ∈ J , a closed small enough
tubular neighbourhood VJ in M of ∪J⊂KE

0
K , that is a tubular neighbourhood of

all the E0
k ’s bounding E0

J , such that E0
J \ VJ is homeomorphic to E0

J and an open
neighbourhood EJ of E0

J \VJ in σ−1(B(0, α)) given by π−1
J (E0

J \VJ), |xj| ≤ ηJ , j ∈ J ,
with ηJ > 0 small enough and πJ the projection onto EJ along the xj ’s, j ∈ J .

4.2.4 Remark. — For I = {i}, we remark that F ∩ EI is homeomorphic to Ni

copies of E0
I ∩ EI , and thus to Ni copies of E0

I . Indeed, assuming f ◦ σ = u(x)xNi
i

in EI , we observe that the family (ft)t∈[0,1], with ft = u((xj)j �∈I , t · xi)x
Ni
i − c, has

homeomorphic fibres {ft = 0} ∩ EJ , t ∈ [0, 1], by Thom’s isotopy lemma, since

∂ft
∂xi

(x) = t
∂u

∂xi
(x)xNi

i + u(x)xNi−1
i = 0,

would implie t
∂u

∂xi
(x)xi + u(x) = 0. But the first term in this sum goes to 0 as xi

goes to 0, since the derivatives of u are bounded on the compact adh(EI), although
the norm of the second term is bounding from below on EI by a non zero constant,
since u is a unit. Finally, as {f1 = 0} ∩ EI is homeomorphic to {f0 = 0} ∩ EI and
{f0 = 0} ∩ EI is a Ni-graph over E0

I ∩ EI , F ∩ EI is homeomorphic to Ni copies of
E0

I .

By this remark, F covers a higher dimensional stratum E0
I , |I| = 1, I ⊂ K, with

Ni copies of a leaf FI of F . To be more accurate, with the notation introduced
above, FI covers the neighborhood E0

I ∩ EI of E0
I \ VI . Moreover the FI ’s overlap

in F over the open set E0
J ∩ EJ of the strata E0

J that bound the E0
I ’s, for |I| = 1,

|J | = 2 and I ⊂ J , in bundles over the E0
J ∩ EJ ’s of fibre C∗. Those sub-leaves FJ

of F overlap in turn over the open E0
Q ∩ EQ of the strata E0

Q, |Q| = 3, J ⊂ Q, that

bound the E0
J ’s, in bundles over the E0

Q ∩ EQ’s of fibres (C∗)2 and so forth... For

instance when f ◦ σ = u(x)
∏

i∈I x
Ni
i in EI , I = {i}, and f ◦ σ = v(x)xNi

i x
Nj

j in EJ ,
J = {i, j}, the Ni leaves FI , homeomorphic to the Ni copies xNi

i = c/u(x) of E0
I ,

overlap over E0
J ∩EJ in sub-leaves FJ of FI , given by v(x)xNi

i x
Nj

j = c, fibering cover

E0
J with fibre GCD({Ni, Nj}) copies of (C∗)|J |−1 and so forth... (see figure 1).
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f ◦ σ = cFI′

E0
K

FK

FJ E0
I

FI
E0

J

figure 1

4.2.5 Remark. — Note that the topology of F = {f ◦ σ = c} ∩ σ−1(B(0, α)) is
the same as the topology of

⋃
J∩K�=0FJ (that is the topology of F above the strata

E0
J of σ−1(0)) since the retraction of F onto

⋃
J∩K�=∅FJ , as α goes to 0, induces a

homeomorphism from F to
⋃

J∩K�=∅FJ .

From Remark 4.2.5, by additivity, it follows that the Euler-Poincaré characteristic
of F (in our chart) is the sum∑

|I|=1,I⊂K
NI · χc(E

0
I ∩ σ−1(0)) + L, (∗)

where L is some Z-linear combination of Euler-Poincaré characteristics of bundles
over the open sets EJ ∩ E0

J , |J | > 1, of fibre a power of tori C∗. Now the A’Campo
formula

χc(F ) =
∑

|I|=1,I⊂K
NI · χc(E

0
I ∩ σ−1(0))

for the Milnor number follows from the fact that χc(C
∗) = 0 implies L = 0.

Realization of the real motivic Milnor fibres under χc. The partial covering
of F by the pieces FJ , for J ∩K �= ∅, over the strata of the stratification (E0

J)J∩K�=∅
of σ−1(0) allows us to compute the Euler-Poincaré characteristic of the Milnor fibre
F in terms of the Euler-Poincaré characteristic of the strata E0

J , in the complex as
well as in the real case. In the complex case, as noted above, for J with |J | > 1,
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one has χc(FJ) = 0. This cancellation provides a quite simple formula for χc(F ):
only the higher dimensional strata of the divisor σ−1(0) appear in this formula, as
expected from the A’Campo formula.

In the real case one does not have such cancellations: on one hand the expression

of χc(F ) in terms of χc(Ẽ
0
J) is no more trivial (the remaining term L of equation

(∗) is not zero and consequently terms χc(Ẽ
0
J), for |J | > 1 and Ej ∩ σ−1(0) �= ∅,

appear), and on the other hand the expression of χc(S
ε
f) given by the real Denef-

Loeser formula in Definition 4.2.1 have terms 2|J |−1χc(Ẽ
0
J) , for |J | > 1 and J∩K �= ∅

(since χc(L− 1) = −2 in the real case).
Nevertheless, in the real case we show that χc(S

ε
f ) is again χc(F̄ ), justifying the

terminology of motivic real semialgebraic Milnor fibre of f at 0 for Sε
f . The formula

stated in Theorem 4.2.8 below is the real analogue of the A’Campo-Denef-Loeser
formula for complex hypersurface singularities and thus appears as the extension to
the reals of this complex formula, or, in other words, the complex formula is the
notably first level of complexity of the more general real formula.

4.2.6 Notations. — Let f : Rd → R be a polynomial function such that f(0) = 0
and with isolated singularity at 0, that is grad f(x) = 0 only for x = 0 in some open
neighbourhood of 0. Let 0 < η � α such that the topological type of f−1(c)∩B(0, α)
does not depend on c and α, for 0 < c < η or for −η < c < 0.

- Let us denote, for ε ∈ {−1, 1} and ε · c > 0, this topological type by Fε, by
F̄ε the topological type of the closure of the Milnor fibre Fε and by Lk(f) the link
f−1(0)∩S(0, α) of f at the origin. We recall that the topology of Lk(f) is the same
as the topology of the boundary f−1(c)∩S(0, α) of the Milnor fibre F̄ε, when f has
an isolated singularity at 0.

- Let us denote, for ε ∈ {<,>}, the topological type of f−1(]0, cε[) ∩ B(0, α) by
Fε, and the topological type of f−1(]0, cε[) ∩ B̄(0, α) by F̄ε, where c< ∈]− η, 0[ and
c> ∈]0, η[.

- Let us denote, for ε ∈ {<,>}, the topological type of {f ε̄ 0} ∩ S(0, α) by Gε,
where ε̄ is ≤ when ε is < and ε̄ is ≥ when ε is >.

4.2.7 Remark. — When d is odd, Lk(f) is a smooth odd dimensional submanifold
of Rd and consequently χc(Lk(f)) = 0. For ε ∈ {−1, 1, <,>}, we thus have in this
situation, χc(Fε) = χc(F̄ε). This is the situation in the complex setting. When d is
even and for ε ∈ {−1, 1} since F̄ε is a compact manifold with boundary Lk(f), one
knows that

χc(F̄ε) = −χc(Fε) =
1

2
χc(Lk(f)).

For general d ∈ N and for ε ∈ {−1, 1, <,>}, we thus have

χc(F̄ε) = (−1)d+1χc(Fε).

On the other hand we recall that for ε ∈ {<,>}
χc(Gε) = χc(F̄δε),

where δ> is 1 and δ< is −1.
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4.2.8 Theorem. — With notations 4.2.6, we have, for ε ∈ {−1, 1, <,>}
χc(S

ε
f ) = χc(F̄ε) = (−1)d+1χc(Fε),

and for ε ∈ {<,>}
χc(S

ε
f ) = −χc(Gε).

Proof. — Assume first that ε ∈ {−1, 1}. We denote by F the fibre σ−1(Fε) and
recall that F and Fε have the same topological type. Let us denote K̄ the set
of multi-indices J ⊂ I such that ĒJ ∩ σ−1(0) �= ∅. In what follows only J ∈ K̄
are concerned, since we study the local Milnor fibre at 0. Note that a connected
component of E0

J (still denoted E0
J for simplicity in the sequel), for J ⊂ J , is

covered by nJ := MJ · 2|J |−1 connected components G of F , where MJ is 0, 1 or
2 depending on the multiplicity mJ = gcdj∈J(Nj) defining Ẽ0,ε

J is odd or even and

sign condition on c. Note furthermore that MJ is the degree of the covering Ẽ0,ε
J

of E0
J . Now expressing a connected component G of F as the union

⋃
|I|=1,FI⊂G

FI ,

where the (connected) leaves FI cover (the open subset E0
I ∩E0

I of E0
I homeomorphic

to) E0
I , and using the additivity of χc, one has that χc(G) is expressed as a sum of

characteristics of the overlapping connected sub-leaves FJ of the FI ’s, each of them
with sign coefficient sJ := (−1)|J |−1 . Note that (a connected component of) E0

J is
covered by nJ copies of such a FJ , coming from the nJ connected components of F
above E0

J∩E0
J , and that a connected sub-leaf FJ has the topology of (E0

J∩E0
J)×R|J |−1.

We denote by tJ the characteristic tJ := χc(R
|J |−1) = (−1)|J |−1.

With these notations, summing over all the connected components G of F , one
gets

χc(F) =
∑
J∈K̄

sJ × nJ × χc(E
0
J )× tJ

=
∑
J∈K̄

(−1)|J |−1 × 2|J |−1MJ × χc(E
0
J)× (−1)|J |−1

=
∑
J∈K̄

2|J |−1χc(Ẽ
0,ε
J )

=
∑

J∩K�=∅
2|J |−1χc(Ẽ

0,ε
J ) +

∑
J∩K=∅,J∈K̄

2|J |−1χc(Ẽ
0,ε
J )

= χc(S
ε
f ) +

∑
J∩K=∅,J∈K̄

2|J |−1χc(Ẽ
0,ε
J )

= χc(S
ε
f) + χc(

⋃
J∩K=∅,J∈K̄

FJ).

Note that the sub-leaves FJ for J ∩ K = ∅ and J ∈ K̄ cover the set {f ◦ σ =

c} ∩ Ŝ(0, α), for ε · c > 0, where Ŝ(0, α) is a neighbourhood σ−1(S(0, α)×]0, β[) of
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σ−1(S(0, α)), with 0 < β � α. It follows that

χc(
⋃

J∩K=∅,J∈K̄
FJ) = χc(Fε ∩ (S(0, α)×]0, β[)) = χc(Lk(f)×]0, β[) = −χc(Lk(f)).

We finally obtain

χc(Fε) = χc(S
ε
f)− χc(Lk(f)),

and

χc(F̄ε) = χc(Fε) + χc(Lk(f)) = χc(S
ε
f).

This proves the first equality of our statement, the equality χc(F̄ε) = (−1)d+1χc(Fε)
being proved in Remark 4.2.7.

Assume now that ε ∈ {<,>}, and denote δ< := −1 and δ> := 1, like in Remark
4.2.7. With this notation F̄ε = F̄δε×]0, 1[, and by the formula proved above in the
case ε ∈ {−1, 1}, we obtain

χc(F̄ε) = χc(F̄δε)χc(]0, 1[) = −χc(F̄δε) = −χc(S
δε
f ) = −

∑
J∩K�=∅

2|J |−1χ(Ẽ0,δε
J ).

But since Ẽ0,ε
J = Ẽ0,δε

J × R+, it follows that

χc(F̄ε) =
∑

J∩K�=∅
2|J |−1χ(Ẽ0,δε

J )χc(R+) =
∑

J∩K�=∅
2|J |−1χ(Ẽ0,ε

J ) = χc(S
ε
f ).

This proves the first equality of our statement. The equality χc(F̄ε) = (−1)d+1χc(Fε)
is the consequence of χc(F̄ε) = χc(F̄δε)χc(]0, 1[), χc(Fε) = χc(Fδε)χc(]0, 1[) and
χc(F̄δε) = (−1)d+1χc(Fδε).

To finish, the equality χc(S
ε
f) = −χc(Gε) comes from the equality χc(Gε) =

χc(F̄δε) recalled in Remark 4.2.7 and from χc(F̄ε) = −χc(F̄δε), χc(S
ε
f) = χc(F̄ε).

4.2.9 Remark. — As stated in Theorem 4.2.8, the realization via χc of the motivic
Milnor fibre Sε

f , for ε ∈ {−1, 1, <,>}, gives the Euler-Poincaré characteristic of

the corresponding set theoretic semialgebraic closed Milnor fibre F̄ε. Nevertheless
it is worth noting that this equality is in general not true at the higher level of
χ(K0[BSAR]). Even computed in K0(VarR)⊗ Z[1

2
], we may have Sε

f �= [Af,ε], for a

given semialgebraic formula Af,ε with real points F̄ε. Let’s illustrate this remark by
the following quite trivial example.

4.2.10 Example. — Let us consider the simple case where f : R2 → R is given by
f(x, y) = xy. After one blowing-up the situation is as required by Theorem 4.1.2,
with M = S1 ×R. We denote by E1 = S1 × {0} the exceptional divisor σ−1(0) and
by E2, E3 the irreducible components of the strict transform σ−1({f = 0}). The
induced stratification of E1 is given by E0

1,2 = E1 ∩E2, E
0
1,3 = E1 ∩E3, and the two

connected components E
′0
1 , E

′′0
1 of E1 \ (E2 ∪E3). We consider a chart (X, Y ) of M

such that σ(X, Y ) = (x = Y, y = XY ). In this chart (f ◦ σ)(X, Y ) = XY 2. The
multiplicity of f ◦ σ along E1 is N1 = 2, and the multiplicity of jacσ along E1 is
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1, thus ν1 = 2. Assuming that E
′0
1 corresponds to X > 0 and E

′′0
1 corresponds to

X < 0, it follows that

Ẽ
′0,ε
1 = {(X, t);X ∈ E

′0
1 , t ∈ R, Xt2?ε} and Ẽ

′′0
1 = {(X, t);X ∈ E

′′0
1 , t ∈ R, Xt2?ε},

where ?ε is = 1, = −1, > or < 0 in case ε is 1, −1, > or <. In case ε = 1 we obtain

[Ẽ
′0,1
1 ] = L− 1 and [Ẽ

′′0,1
1 ] = 0

since Ẽ
′0,1
1 has a one-to-one projection onto {(X, Y );X = 0, Y �= 0}) and Ẽ

′′0,1
1 is

empty. Now in a neighbourhood of E0
1,2, f ◦σ(X, Y ) = XY 2, giving N1 = 1, N2 = 2

and m = gcd(N1, N2) = 1. We also have ν1 = 2 and ν2 = 1. It follows that

Ẽ0
1,2 = {(0, t); t ∈ R, t = 1} thus [Ẽ0

1,2] = 1.

In the same way, using another chart, one finds

[Ẽ0
1,3] = 1.

By Theorem 4.1.2 we then have

Z1
f (T ) = (L− 1)1−1(L− 1)

(
L−2T 2

1− L−2T 2

)
+ 2(L− 1)2−1

(
L−2T 2

1− L−2T 2

)(
L−1T

1− L−1T

)
,

Z1
f (T ) =

L− 1

(LT−1 − 1)2
and S1

f = −(L− 1).

Of course we find that χc(Sf) = χc({f = c} ∩ B̄(0, 1)) = 2, 0 < c � 1.
Now let’s for instance choose {xy = c, 1 − x2 − y2 > 0}, for 0 < c � 1, as a

basic semialgebraic formula to represent the open Milnor fibre and let us compute
χ([xy = c, 1 − x2 − y2 > 0]). By definition of the realization χ : K0(BSAR) →
K0(VarR)⊗ Z[1

2
], we have

χ([xy = c, 1− x2 − y2 > 0])

=
1

4
[xy = c, z2 = 1−x2−y2]− 1

4
[xy = c, z2 = x2+y2−1]+

1

2
[xy = c, 1−x2−y2 �= 0]

Projecting the algebraic set {xy = c, z2 = 1 − x2 − y2} to the plane x = −y with
coordinates (X = 1/

√
2(x−y), z) one finds twice the quadric z2+2X2 = 1−2c that

is, up to isomorphism, two circles. A circle having with class L+1 in K0(VarR), we
have

[xy = c, z2 = 1− x2 − y2] = 2(L+ 1).

Projecting the algebraic set {xy = c, z2 = x2 + y2 − 1} to the plane x = −y with
coordinates (X = 1/

√
2(x− y), z) one finds twice the hyperbola 2X2 − z2 = 1− 2c.

Projecting again the hyperbola onto one of its asymptotic axes we see that this
hyperbola has class L− 1. It gives

[xy = c, z2 = x2 + y2 − 1] = 2(L− 1).
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Finally the constructible set {xy = c, 1− x2 − y2 �= 0} being the hyperbola without
4 points, we have

χ([xy = c, 1− x2 − y2 > 0]) =
1

2
(L+ 1)− 1

2
(L− 1) +

1

2
(L− 1)− 4 =

L− 3

2
.

Of course χc(χ([xy = c, 1− x2 − y2 > 0])) = χc({f = c} ∩B(0, 1)) = −2.
The simple semialgebraic formula representing the set theoretic closed Milnor

fibre is {xy = c, 1− x2− y2 ≥ 0}, it has class χ([xy = c, 1−x2 − y2 > 0]) + 4[{∗}] =
L+ 5

2
in K0(VarR)⊗ Z[1

2
]. But although

χc(χ([xy = c, 1− x2 − y2 ≥ 0])) = χc(S
1
f) = χc({f = c} ∩ B̄(0, 1)) = 2

as expected from Theorem 4.2.8, we observe that

L+ 5

2
= χ([xy = c, 1− x2 − y2 ≥ 0]) �= S1

f = −(L− 1).
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