Nonparametric estimation of random effects densities in linear mixed-effects model - Archive ouverte HAL
Article Dans Une Revue Journal of Nonparametric Statistics Année : 2012

Nonparametric estimation of random effects densities in linear mixed-effects model

Fabienne Comte
Adeline Samson

Résumé

We consider a linear mixed-effects model where $Y_{k,j}= \alpha_k + \beta_k t_{j} +\varepsilon_{k,j}$ is the observed value for individual $k$ at time $t_j$, $k=1,\ldots, N$, $j=1,\dots, J$. The random effects $\alpha_k$, $\beta_k$ are independent identically distributed random variables with unknown densities $f_\alpha$ and $f_\beta$ and are independent of the noise. We develop nonparametric estimators of these two densities, which involve a cutoff parameter. We study their mean integrated square risk and propose cutoff-selection strategies, depending on the noise distribution assumptions. Lastly, in the particular case of fixed interval between times $t_j$, we show that a completely data driven strategy can be implemented without any knowledge on the noise density. Intensive simulation experiments illustrate the method.
Fichier principal
Vignette du fichier
MixedNonParaComteSamson.pdf (277.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00657052 , version 1 (05-01-2012)

Identifiants

  • HAL Id : hal-00657052 , version 1

Citer

Fabienne Comte, Adeline Samson. Nonparametric estimation of random effects densities in linear mixed-effects model. Journal of Nonparametric Statistics, 2012, 24 (4), pp.951-975. ⟨hal-00657052⟩
155 Consultations
179 Téléchargements

Partager

More