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NONPARAMETRIC ESTIMATION OF RANDOM EFFECTS DENSITIES

IN LINEAR MIXED-EFFECTS MODEL

FABIENNE COMTE(1) AND ADELINE SAMSON(1)

January 5, 2012

Abstract. We consider a linear mixed-effects model where Yk,j = αk +βktj +εk,j is the

observed value for individual k at time tj , k = 1, . . . , N , j = 1, . . . , J . The random effects

αk, βk are independent identically distributed random variables with unknown densities

fα and fβ and are independent of the noise. We develop nonparametric estimators of

these two densities, which involve a cutoff parameter. We study their mean integrated

square risk and propose cutoff-selection strategies, depending on the noise distribution

assumptions. Lastly, in the particular case of fixed interval between times tj , we show

that a completely data driven strategy can be implemented without any knowledge on

the noise density. Intensive simulation experiments illustrate the method.

Keywords. Linear mixed-effects model, Nonparametric density estimation, Random
effect density

MSC 2010 subject classification 62G07

1. Introduction

Longitudinal data and repeated measurements along time of a process are classically
analyzed with mixed-effects models. This allows taking into account both the inter-subjects
and the intra-subjects variabilities. In this paper, we focus on a simple linear mixed-effects
model written as follows. Let Yk,j denote the observed value for individual k at time tj ,
for k = 1, . . . , N , j = 1, . . . , J . The linear mixed-effects model is defined as

(1) Yk,j = αk + βktj + εk,j , k = 1, . . . , N j = 1, . . . , J,

where (αk, βk) represent the individual random variables of subject k, also called random
effects, and (εk,j) are the measurement errors. We assume that:

[A1] times (tj)1≤j≤J are known and deterministic,
[A2] measurement errors εk,j are independent identically distributed (i.i.d.) with a

density fε, such that E(eiuε) 6= 0, for any u ∈ R,
[A3] variables (αk, βk) are i.i.d. and we denote by fα and fβ the densities of α1 and

β1,
[A4] the sequence (αk, βk)1≤k≤N is independent of the sequence (εk,j)1≤k≤N,1≤j≤J .

When the random effects (αk, βk) and errors (εk,j) are normally distributed, the maxi-
mum likelihood has been widely studied, the marginal density of Y having a closed form

(1). MAP5, UMR CNRS 8145, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères,

75006 Paris, France.
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[see e.g. Pinheiro and Bates, 2000, and references therein]. However, the normality as-
sumption of the random effects may be inappropriate in some situations. For example
when an important covariate is omitted, a bimodal density may be more pertinent. As
recalled by Ghidey et al. [2010], wrongly assuming normality of the random effects can lead
to poor estimation results. Some authors propose to relax this assumption by developing
estimation of the random effects density first four moments [see e.g. Wu and Zhu, 2010,
and references therein]. But estimation of the random effects complete density may even
be more appropriate, especially if the true density is multimodal. Our aim is therefore to
estimate the densities fα and fβ .

Several approaches have been proposed for this purpose. Shen and Louis [1999] consider
a smoothing by roughening method without any assumption on fε. Assuming ε Gaussian,
Zhang and Davidian [2001], Chen et al. [2002], Vock et al. [2011] propose a semi nonpara-
metric approach based on the approximation of the random effects density by an Hermite
series. Verbeke and Lesaffre [1996] develop an heterogeneity model where the random
effects have a finite mixture Gaussian density. Ghidey et al. [2004] propose a penalised
Gaussian mixture approach. Morris and Carroll [2006] use a wavelet-based approach. Non
parametric maximum likelihood has also been studied by Laird [1978], Mallet et al. [1988],
Kuhn [2003], Chafaï and Loubes [2006]. Recently Antic et al. [2009] compare several of
these approaches with an intensive simulation study.

In this paper, we consider a different approach based on deconvolution tools. Deconvolu-
tion has been widely studied in various contexts. First, the noise density was systematically
assumed known and different estimators have been proposed: kernel estimators (e.g. Ste-
fanski and Carroll [1990], Fan [1991]), kernel estimators with bandwidth selection strategies
(Delaigle and Gijbels [2004]), wavelet estimators (Pensky and Vidakovic [1999]), or pro-
jection methods with model selection (Comte et al. [2006]). Then several extensions have
been considered to relax the assumption about noise density knowledge. Neumann [1997]
first studied the case where the noise density is estimated from a preliminary noise sample.
A complete adaptive procedure has been provided by Comte and Lacour [2011]. Recently,
several papers focus on repeated observations, which provide another way to estimate the
noise density, see Neumann [2007], Delaigle et al. [2008], Meister and Neumann [2010] or
Comte et al. [2011].

We propose now a repeated observations strategy applied to mixed-effects models. We
describe different estimators whether the noise density is partly or completely unknown.
A preliminary estimation of fε Fourier transform is used, if needed. We study the risk
bounds of these estimators and show how the context of longitudinal data affects the
variance terms of the bounds. We also propose cut-off selections depending on the noise
distribution assumptions. Especially, a completely data driven estimator is proposed in
the case of unknown noise density.

The paper is organized as follows. Sections 2 and 3 present the estimators of fα and fβ ,
their risk bounds and the cut-off selection assuming fε is known. In section 4, the partic-
ular case of a Gaussian noise fε is considered. We propose an optimal cut-off selection in
the two cases σε known or unknown. Finally, the general case with fε completely unknown
is considered in section 5 and new estimators and cut-off selections are proposed. Perfor-
mances of the different estimators are evaluated by simulation in section 6. Concluding
remarks are proposed in section 7. Proofs are gathered in Appendix.
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2. Definition of the estimators with a known noise density

2.1. Model and notations. In this section, we consider model (1) under Assumptions
[A1]–[A4] and the additional assumption:

[A5] the noise density fε is known.

For the estimation of fα, we shall distinguish two cases.

– First case, the observation at time 0 is available. For notation simplicity, we will
denote by Yk,0 the observation associated to time t0 = 0, and we will consider J as
the number of other observations with tj 6= 0.

– Second case, no observation is available at time 0, then we have tj 6= 0 for all
j = 1, . . . , J .

For the estimation of fβ , we do not distinguish the two cases. We shall also consider that
the time sequence (tj)1≤j≤J is in increasing order.

In the following, for notation simplicity and without loss of generality, we will assume
that J is even. Then for j = 1, . . . , J/2, we denote by

∆j = t2j − t2j−1

the time step between two successive observations.
Assumptions [A1]–[A4] on model (1) imply that for a given j, (Yk,j)k=1,...,N are i.i.d.

Thus we denote by fYj the density of Yk,j .
We also need few notations related to Fourier transform theory. If f is an integrable

function, then we denote by f∗(u) =
∫

eiuxf(x)dx the Fourier transform of f on R. For
two real valued square integrable functions f and g, we denote the convolution product of
f and g by (f ⋆ g)(x) =

∫
f(x−y)g(y)dy and we recall that, if f and g are both integrable

and square integrable, then (f ⋆ g)∗ = f∗g∗. If f is integrable and square integrable we
recall that inverse Fourier transform formula yields f(x) = 1/(2π)

∫
e−ixuf∗(u)du.

2.2. Estimator of fβ. We first remark that by introducing the difference between two
successive observations normalized by the length of the time interval, for j = 1, . . . , J/2,

Zk,j =
Yk,2j − Yk,2j−1

∆j
,

we have

(2) Zk,j = βk +
εk,2j − εk,2j−1

∆j
.

For a fixed j, the variables (Zk,j)k=1,...,N are i.i.d. but the variables Zk,j and Zk,l for j 6= l
are not independent. Let us denote fZj the density of the variables Zk,j . It follows from
(2) and the independence of (βk) and (εk,j) under [A4], that

(3) fZj = fβ ⋆ f(εk,2j−εk,2j−1)/∆j
.

Thus, by noting that, for all j = 1, . . . , J/2,

f∗
(εk,2j−εk,2j−1)/∆j

(u) = E

(
e
iu

εk,2j−εk,2j−1
∆j

)
= E

(
e
i u
∆j

εk,2j
e
−i u

∆j
εk,2j−1

)

= E
(
e
i u
∆j

ε
)

E
(
e
−i u

∆j
ε
)

=

∣∣∣∣f∗
ε (

u

∆j
)

∣∣∣∣
2

,
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we get, by taking the Fourier transform of equality (3),

(4) f∗
Zj

(u) = f∗
β(u) |f∗

ε (u/∆j)|2.
It follows from (4) that, for all j = 1, . . . , J/2,

f∗
β(u) =

f∗
Zj

(u)

|f∗
ε (u/∆j)|2

.

In order to exploit all the available observations, we can also write:

f∗
β(u) =

2

J

J/2∑

j=1

f∗
Zj

(u)

|f∗
ε (u/∆j)|2

.

Now, Fourier inversion implies

(5) fβ(x) =
1

2π

∫
e−iuxf∗

β(u)du =
1

2π

∫
e−iux 2

J

J/2∑

j=1

f∗
Zj

(u)

|f∗
ε (u/∆j)|2

du.

This formula allows us to define the estimator of fβ based on the natural estimator of
f∗

Zj
(u)

(6) f̂∗
Zj

(u) =
1

N

N∑

k=1

eiuZk,j =
1

N

N∑

k=1

e
iu

Yk,2j−Yk,2j−1
∆j ,

Plugging (6) in (5) would give a proposal but may induce convergence problems of the
integral. Thus, we introduce a cutoff πm in the integral defining the estimator of fβ :

f̂β,m(x) =
1

2π

∫ πm

−πm
e−ixu 2

J

J/2∑

j=1

f̂∗
Zj

(u)

|f∗
ε (u/∆j)|2

du

where f̂∗
Zj

(u) is given by (6). To summarize, our proposal to estimate fβ is:

(7) f̂β,m(x) =
2

NJ

N∑

k=1

J/2∑

j=1

1

2π

∫ πm

−πm
e−ixu eiuZk,j

|f∗
ε (u/∆j)|2

du

Note that under [A5], the estimator can indeed be computed.

2.3. Estimator of fα. First, we can notice that, if observations for t0 = 0 are available,
then we have

Yk,0 = αk + εk,0, k = 1, . . . , N.

This model is a classical deconvolution model. Thus, we propose to estimate fα with the
deconvolution estimator proposed by Fan [1991] with specific kernel as in Comte et al.
[2006]:

(8) f̂0
α,m(x) =

1

2πN

N∑

k=1

∫ πm

−πm
e−ixu eiuYk,0

f∗
ε (u)

du.

Its theoretical properties have been first studied by Stefanski and Carroll [1990], Fan [1991],
and then by Comte et al. [2006] for cutoff selection and in more general context of functional
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regularities (see also Pensky and Vidakovic [1999] for such ideas in wavelet framework).

Now, we also provide an estimator when observations at t0 = 0 are not available. In

that case, we follow a construction similar to the one used for f̂β,m. Set, for j = 1, . . . , J/2,

Vk,j =
Yk,2j

t2j
− Yk,2j−1

t2j−1
.

By definition of Yk,j , we have

Vk,j =

(
1

t2j
− 1

t2j−1

)
αk +

(
εk,2j

t2j
− εk,2j−1

t2j−1

)

Remark that for a fixed j, the variables (Vk,j)k=1,...,N are i.i.d. but the variables Vk,j and
Vk,l for j 6= l are not independent. Let us denote by f∗

Vj
the Fourier transform of the

density of the variables Vk,j and

pj =
1

t2j
− 1

t2j−1
.

We have, for all j = 1, . . . , J/2,

(9) f∗
α(u) =

f∗
Vj

(u/pj)

f∗
ε (u/(pjt2j)) f∗

ε (−u/(pjt2j−1))
.

A natural estimator of f∗
α(u) would be to compute the mean of the estimators of (9) for

j = 1, . . . , J/2. However, this choice can lead to numerical instability because the quantity
1/(pjt2j) involved in the denominator of (9) can be large for large values of j. Indeed, when
∆j = ∆ is fixed, then tj = j∆, 1/(pjt2j) = −(2j − 1) and f∗

ε (u/(pjt2j)) = f∗
ε (−(2j − 1)u).

Since f∗
ε tends to zero near infinity, f∗

ε (u/(pjt2j)) decreases when j increases. Therefore
the estimator of f∗

α based on (9) may artificially take large values for large j. It shall be
noted this is not the case for the estimator of f∗

β(u) which only involves the step size ∆j .

Thus, for numerical reasons, we propose an estimator of f∗
α(u) which is only based on

the first observation Vk,1

f̂∗
α(u) =

1

N

N∑

k=1

eiVk,1u/p1

f∗
ε (u/(p1t2)) f∗

ε (−u/(p1t1))

Finally, the estimator of fα is defined by

(10) f̂α,m(x) =
1

2πN

N∑

k=1

∫ πm

−πm
e−iux eiVk,1u/p1

f∗
ε (u/(p1t2)) f∗

ε (−u/(p1t1))
du

3. Risk bounds and cutoff selection with known noise density

3.1. Risk bound for the estimator of fβ. Let us define fβ,m such that f∗
β,m = f∗

β1[−πm; πm].

The function fβ,m is the function which is in fact estimated by f̂β,m. We wish to bound

the mean integrated squared error (MISE) defined by E
(
||fβ − f̂β,m||2

)
. We first remark
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that the MISE is the sum of the integrated bias and the integrated variance:

E

∥∥∥f̂β,m − fβ

∥∥∥
2

=
∥∥∥E
(
f̂β,m

)
− fβ

∥∥∥
2
+ E

∥∥∥f̂β,m − E
(
f̂β,m

)∥∥∥
2

We can easily calculate the expectation E
(
f̂β,m

)
of the estimator f̂β,m. We have

E
(
f̂β,m(x)

)
=

2

NJ

N∑

k=1

J/2∑

j=1

1

2π

∫ πm

−πm
e−iux E

(
eiuZk,j

)

|f∗
ε (u/∆j)|2

du

=
2

NJ

N∑

k=1

J/2∑

j=1

1

2π

∫ πm

−πm
e−iux

f∗
Zj

(u)

|f∗
ε (u/∆j)|2

du

=
1

2π

∫ πm

−πm
e−iuxf∗

β(u) du = fβ,m(x)

where the last line follows from (4). Therefore the pointwise bias is

fβ(x) − E
(
f̂β,m(x)

)
=

1

2π

∫
e−iux(f∗

β(u) − f∗
β,m(u))du =

1

2π

∫

|u|≥πm
e−iuxf∗

β(u)du,

and the integrated bias is equal to

‖fβ − fβ,m‖2 =
1

2π

∫

|u|≥πm
|f∗

β(u)|2 du.

To compute the integrated variance we first write, using Parseval formula,

∥∥∥f̂β,m − fβ,m

∥∥∥
2

=

∥∥∥∥∥∥
2

J

1

2π

J/2∑

j=1

∫
e−iux

f̂∗
Zj

(u) − f∗
Zj

(u)

|f∗
ε (u/∆j)|2

1[−πm,πm](u)du

∥∥∥∥∥∥

2

=
1

2π

∫ πm

−πm

∣∣∣∣∣∣
2

J

J/2∑

j=1

f̂Zj (u) − fZj (u)

|f∗
ε (u/∆j)|2

∣∣∣∣∣∣

2

du

=
1

2π

∫ πm

−πm

∣∣∣∣∣∣
2

NJ

J/2∑

j=1

N∑

k=1

eiuZk,j − E(eiuZk,j )

|f∗
ε (u/∆j)|2

∣∣∣∣∣∣

2

du(11)
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Thus, we get

E

(∥∥∥f̂β,m − fβ,m

∥∥∥
2
)

=
2

πNJ2

∫ πm

−πm
Var




J/2∑

j=1

eiuZ1,j

|f∗
ε (u/∆j)|2


 du

=
2

πNJ2

∫ πm

−πm




J/2∑

j=1

Var(eiuZ1,j )

|f∗
ε (u/∆j)|4

+

J/2∑

j,j′=1,j 6=j′

cov(eiuZ1,j , eiuZ1,j′ )

|f∗
ε (u/∆j)|2

∣∣f∗
ε (u/∆j′)

∣∣2


 du

≤ 2

πNJ2

∫ πm

−πm




J/2∑

j=1

1

|f∗
ε (u/∆j)|4

+

J/2∑

j,j′=1

(1 − |f∗
β(u)|2)


 du

≤ 4

NJ2

J/2∑

j=1

(
1

2π

∫ πm

−πm

du

|f∗
ε (u/∆j)|4

)
+

m

N

Note that when the observation times are equally spaced (∆j = ∆), this reduces to

E

∥∥∥f̂β,m − fβ,m

∥∥∥
2

≤ 1

πNJ

∫ πm

−πm

du

|f∗
ε (u/∆)|4

+
m

N

This result shows that we reduce the variance of a factor 1/J by taking the mean of all J
available values of j in (7).

To summarize, the following result holds.

Proposition 1. Consider Model (1) under Assumptions [A1]–[A5] and f̂β,m the estimator
given by (7). If fβ is integrable and square-integrable, then

(12) E

∥∥∥f̂β,m − fβ

∥∥∥
2
≤ 1

2π

∫

|u|≥πm
|f∗

β(u)|2 du +
4

NJ2

J/2∑

j=1

(
1

2π

∫ πm

−πm

du

|f∗
ε (u/∆j)|4

)
+

m

N

Inequality (12) requires few comments. First, the term

1

2π

∫

|u|≥πm
|f∗

β(u)|2 du

is a squared bias term due to the truncation of the integral. It decreases when m increases,
and the rate of decrease is faster when the function fβ is more regular. Indeed, classical
regularity spaces considered for density fβ on R are described by:

[A6] fβ ∈ Ab(L) = {fβ ∈ L1 ∩ L2,
∫
|f∗

β(x)|2(x2 + 1)bdx ≤ L} with b > 1/2, L > 0.

Then, under [A6], we have the following bias order:

(13) ‖fβ − fβ,m‖2 ≤ CL(πm)−2b.

Obviously, the larger the regularity index b of fβ , the faster the bias decreases.
The two other terms of inequality (12) are variance terms. They clearly increase when m

increases. Moreover, the first of these two terms is dominating: since |f∗(u)| ≤ 1,∀u ∈ R,
we have

∫ πm
−πm du/|f∗

ε (u/∆j)|4 ≥ 2πm and it is usually much larger. For instance, if the

noise is Gaussian,
∫ πm
−πm du/|f∗

ε (u/∆j)|4 is larger than e2σ2
ε(πm/∆j)

2
∆2

j/(2σ2
επm).

We have therefore to find how to realize a compromise between the bias and the variance
terms. This is the purpose of section 3.3 in which a cutoff selection is proposed. Note that
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we can also provide pointwise risk bounds for the estimator f̂β,m; details about this are
gathered in Appendix A.

3.2. Risk bound for the estimator of fα. Let us define fα,m such that f∗
α,m = f∗

α1[−πm; πm].

The function fα,m is the function which is in fact estimated by f̂α,m. Using similar calcu-

lations to those used for f̂β,m, we get the following global MISE bound.

Proposition 2. Consider Model (1) under Assumptions [A1]–[A5] and estimator f̂α,m

given by (10). If fα is integrable and square integrable, then we have

(14) E

∥∥∥f̂α,m − fα

∥∥∥
2
≤ 1

2π

∫

|u|≥πm
|f∗

α(u)|2 du +
1

2πN

∫ πm

−πm

du∣∣∣f∗
ε

(
u

p1t2

)
f∗

ε

(
u

p1t1

)∣∣∣
2 +

m

N
.

The same comments as for bound (12) apply here.

3.3. Cutoff selection. We propose the following model selection procedure for choosing

a relevant cutoff m for the estimators f̂β,m and f̂α,m. We define for ω = α or ω = β

m̂ω = arg min
m∈Mω,N

{
−‖f̂ω,m‖2 + penω(m)

}
,

where for ω = β:

(15) penβ(m) = κβ


 4

NJ2

J/2∑

j=1

(
1

2π

∫ πm

−πm

du

|f∗
ε (u/∆j)|4

)
+

m

N


 ,

and for ω = α,

(16) penα(m) = κα


 1

2πN

∫ πm

−πm

du∣∣∣f∗
ε

(
u

p1t2

)
f∗

ε

(
u

p1t1

)∣∣∣
2 +

m

N
.


 .

Here κβ and κα are constants which are calibrated once for all on preliminary simulation
experiments. Moreover, we set

Mω,N = {m ∈ {1, . . . N}, such that penω(m) ≤ 1}.
We can prove the following result.

Theorem 1. Consider Model (1) under Assumptions [A1]–[A5] with fω integrable and
square integrable. Assume that the noise is ordinary smooth, i.e. that there exist two
constants cǫ, Cǫ such that, ∀x ∈ R,

(17) cǫ(1 + x2)δ ≤ 1/|f∗
ε (x)|2 ≤ Cǫ(1 + x2)δ.

Then, for ω = α, β,

(18) E
(
‖f̂ω,m̂ω − fω‖2

)
≤ C inf

m∈Mω,N

(
‖fω − fω,m‖2 + penω(m)

)
+

C ′

N
,

where C and C ′ are constants depending on the problem.
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Inequality (18) shows that the resulting estimator automatically realizes the squared-
bias/variance trade-off, up to a multiplicative constant C. For the sake of simplicity, the
result is given only in the ordinary smooth case. It can be obtained in general setting of
ordinary or super smooth noise, provided that a factor is added in the penalty for the super
smooth case, as detailed in Comte et al. [2006]. In practice, in the case of super smooth
noise, we multiply the penalty penβ by the factor

(19) log


 4

NJ2

J/2∑

j=1

(
1

2π

∫ πm

−πm

du

|f∗
ε (u/∆j)|4

)
 / log(m + 1)

and the penalty penα by the factor

(20) log


 1

2πN

∫ πm

−πm

du∣∣∣f∗
ε

(
u

p1t2

)
f∗

ε

(
u

p1t1

)∣∣∣
2


 / log(m + 1).

Indeed, it is shown in Comte and Lacour [2011] that this is a slight over-penalization which
has the advantage of being easy to generalize to the unknown noise case.

4. Special case of Gaussian noise

In this section, we assume that fε is Gaussian and centered, and that [A6] holds. We
distinguish two cases whether σ2

ε is known or not.

4.1. Cutoff choice for f̂β,m when σ2
ε is known. The Fourier transform of fε is f∗

ε (u) =
exp(−σ2

εu
2/2). Let ∆min be a constant such that for all j = 1, . . . , J , ∆min ≤ ∆j . Then

we get
∫ πm

−πm

du

|f∗
ε (u/∆j)|4

≤
∫ πm

−πm
exp(2σ2

ε(u/∆min)2)du

≤ 2πm exp(2σ2
ε∆

−2
minπ2m2)

which, associated to [A6] and inequality (12), gives the following result.

Proposition 3. Consider Model (1) under Assumptions [A1]–[A6] with fβ integrable and
square integrable, and assume that ε is Gaussian and ∆j ≥ ∆min, ∀j = 1, . . . , J . Then
the choice

(21) m0,β = m0,β(σε) =

(
κ′

β log(NJ)

4π2σ2
ε∆

−2
min

)1/2

gives the bound E(‖f̂β,m0,β
− fβ‖2) = O(1/[log(NJ)]b) provided that κ′

β < 1.

The consequence is that the convergence rate of the estimator is logarithmic, which
is rather slow. Nevertheless, simulation experiments show that deconvolution estimators
behave well also in this setting. It is easy to see that the rate will be much improved if fβ

is also Gaussian or more generally super-smooth.
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4.2. Cutoff choice for f̂α,m when σ2
ε is known. Now, we assume that ∆j = ∆ is fixed.

The main variance term of Inequality (14) with p1t1 = −1/2 and p1t2 = −1 is of order:

2

πN

∫ πm

−πm
exp(5σ2

εu
2)du ≤ 4m

N
exp(5π2σ2

εm
2).

Under [A6], the bias order is given by (13). We deduce that a good choice of m is

(22) m0,α = m0,α(σε) =

(
κ′

α log(N)

5π2σ2
ε

)1/2

with κ′
α < 1. It is worth noticing that here and contrary to m0,β , the choice m0,α does not

depend on the step ∆.

4.3. Cutoff selection when σ2
ε is unknown. The optimal choices m0,β and m0,α pro-

vided in the two previous sections depend on σ2
ε . When this variance is unknown, we

propose to replace it by an estimator. A natural estimator can be obtained based on the
following relations

V ar(Yk,j) = σ2
j = σ2

α + t2jσ
2
β + 2tjσα,β + σ2

ε(23)

cov(Yk,j , Yk,j′) = σ2
jj′ = σ2

α + tjtj′σ
2
β + (tj + tj′)σα,β(24)

which hold for all k, j, j′ and where σ2
α, σ2

β and σα,β are the variances of αk, βk and the

covariance of (α1, β1), respectively. Set Y.j = 1
N

∑N
k=1 Yk,j . The following quantities

σ̂2
Y.j =

1

N

N∑

k=1

(Yk,j − Y.j)
2, and σ̂2

Y.j,Y.j′ =
1

N

N∑

k=1

(Yk,j − Y.j)(Yk,j′ − Y.j′)

are natural estimators of σ2
j and σ2

jj′ , respectively. From equations (23) and (24), let us
define the 4 × 4 - matrix A

A =




1 3
J

∑J/3
j=1 t23j

3
J

∑J/3
j=1 t3j 1

1 3
J

∑J/3
j=1 t23j−1

3
J

∑J/3
j=1 t3j−1 1

1 3
J

∑J/3
j=1 t23j−2

3
J

∑J/3
j=1 t3j−2 1

1 2
J(J−1)

∑J/2
1≤j<j′ tjtj′

2
J(J−1)

∑J/2
1≤j<j′(tj + tj′) 0




,

and the vector

Σ̂Y =




3
J

∑J/3
j=1 σ̂2

Y.3j
3
J

∑J/3
j=1 σ̂2

Y.3j−1
3
J

∑J/3
j=1 σ̂2

Y.3j−2
2

J(J−1)

∑J/2
1≤j<j′ σ̂

2
Y.j,Y.j




.

We assume that A is invertible. In this case, we deduce from equations (23)-(24) estimators
of σ2 = (σ2

α, σ2
β , σα,β , σ2

ε), which are defined as

σ̂2 =
(
σ̂2

α, σ̂2
β, σ̂αβ , σ̂2

ε

)′
= A−1Σ̂Y
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As Σ̂Y is a M-estimator of parameters ( 3
J

∑J/3
j=1 σ2

3j ,
3
J

∑J/3
j=1 σ2

3j−1,
3
J

∑J/3
j=1 σ2

3j−2,
2

J(J−1)

∑J/2
1≤j<j′ σ

2
jj′),

if E(|Yk,j |4) < ∞, there exists an explicit matrix I such that

√
N


Σ̂Y −


 3

J

J/3∑

j=1

σ2
3j ,

3

J

J/3∑

j=1

σ2
3j−1,

3

J

J/3∑

j=1

σ2
3j−2,

2

J(J − 1)

J/2∑

1≤j<j′

σ2
jj′




′
 L−−−−→

N→∞
N (0, I)

We deduce that

(25)
√

N
(
σ̂2 − σ2

) L−−−−→
N→∞

N (0, A−1IA
′−1)

We assume that there exists a known upper bound for the unknown value of σε, denoted
by σε,max. By plugging σ̂2

ε in the definition (21) of m0,β , we obtain a random cutoff m:

(26) m̂0,β = m0,β(σ̂ε)/
√

2 ∧ mn =

√
log(NJ)

2
√

2σ̂ε∆
−1
minπ

∧ mn,

where mn = m0,β(σε,max)/
√

2.

The study of f̂β,m̂0,β
is complex in that case. We can prove the following upper bound

of the integrated risk.

Proposition 4. Consider Model (1) under Assumptions [A1]–[A6], and assume that ε

is Gaussian N (0, σ2
ε) with unknown σε ≤ σε,max. Then the estimator f̂β, dm0,β

with f̂β,m

defined by (7) and m̂0,β defined by (26) is such that

(27) E(‖f̂β, dm0,β
− fβ‖2) ≤ C

(
[log(NJ)]−b +

1

N

)
.

It follows from Inequality (27) that the estimator f̂β,m̂0,β
automatically reaches its best

possible rate, without requiring any information on the unknown function.

A similar proposal can be done for f̂0
α,m.

5. Estimators with unknown noise density

In this section, we consider Model (1) under Assumptions [A1], [A3], [A4] and Assump-
tion [A2’] replacing Assumption [A2]:

[A2’] Assumption [A2] holds and the measurement errors εk,j are symmetric.

Note that the symmetry of the noise together with the condition f∗
ε (u) 6= 0 imply that f∗

ε

takes values in R+/{0}, i.e. |f∗(u)| = f∗(u) > 0, ∀u ∈ R.
Furthermore, we restrict to the following assumption on the observations design:

[A7] ∆j = ∆ for all j, such that tj = j∆ and J ≥ 6.

5.1. Estimator of f∗
ε . Under Assumptions [A2’] and [A7], we can propose an estimator

of the density fε. Indeed, let us introduce

Wk = Zk,2 − Zk,1

= βk +
εk,4 − εk,3

∆
− βk − εk,2 − εk,1

∆
=

1

∆
(εk,4 − εk,3 − εk,2 + εk,1)
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which implies that

f∗
W (u) = E(eiuWk) = E(cos(uWk)) = |f∗

ε

( u

∆

)
|4 =

(
f∗

ε (
u

∆
)
)4

.

Under Assumption [A2’], we can estimate (f∗
ε )4 via

(̂f∗
ε )4(u/∆) =

1

N

N∑

k=1

cos(uWk).

Let us define estimators of fβ and fα when fε is unknown. For numerical reasons, we can

not directly plug estimators of 1/(f∗
ε )2 and 1/f∗

ε in (4) and (9) by considering 1/((̂f∗
ε )4)1/2

and 1/((̂f∗
ε )4)1/4. Therefore, following Neumann [1997], Comte and Lacour [2011] or Comte

et al. [2011], we define a truncated estimator of 1/(f∗
ε )2

1

(̃f∗
ε )2(u)

=
1

(̂f∗

ε )4(u)≥N−1/2

[
(̂f∗

ε )4(u)
]1/2

to be plugged in f̂β,m and a truncated estimator of 1/f∗
ε

1

f̃∗
ε (u)

=
1

(̂f∗

ε )4(u)≥N−1/2

[
(̂f∗

ε )4(u)
]1/4

to be plugged in f̂0
α,m and f̂α,m.

The error induced by the truncation is studied in the following lemma, which is an
extension of Neumann [1997]’s lemma for the case we study here.

Lemma 1. Assume that Assumption [A2’] holds.

(1) There exists a constant C0 such that

(28) E



∣∣∣∣∣

1

(f̃∗
ε )2(u)

− 1

(f∗
ε )2(u)

∣∣∣∣∣

2

 ≤ 2

|f∗
ε (u)|4 ∧ C0N

−1/2

|f∗
ε (u)|8 ∧ C0N

−1

|f∗
ε (u)|12 .

(2) There exists a constant C1 such that

(29) E



∣∣∣∣∣

1

f̃∗
ε (u)

− 1

f∗
ε (u)

∣∣∣∣∣

2

 ≤ 1

|f∗
ε (u)|2 ∧

(
C1 min

p∈{1,2,3,4}

N−p/4

|f∗
ε (u)|2+2p

)
.

5.2. Estimator of fβ with unknown fε. We can now define an estimator for fβ by

plugging (̃f∗
ε )2 in (4). Under Assumption [A7], J ≥ 6 and the observations used to estimate

f∗
ε can be different from those used to estimate fβ . The estimator of fβ when fε is unknown

is denoted by f̃β,m and defined by

(30) f̃β,m(x) =
2

N(J − 4)

N∑

k=1

J/2∑

j=3

1

2π

∫ πm

−πm

e−iu(x−Zk,j)

(̃f∗
ε )2(u/∆)

du.
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Applying Lemma 1 shows that the risk bound in the case of estimated noise density is
getting more complicated. We denote for any function f integrable and square integrable

Dk(m, f) =
1

2π

∫ πm

−πm

|f∗(u)|2
|f∗

ε (u/∆)|2k
du.

Then we obtain the following risk bound

Proposition 5. Consider Model (1) under Assumptions [A1], [A2’], [A3], [A4], [A7].
Assume moreover that fβ is integrable and square-integrable, then the estimator defined by
(30) satisfies

E(‖f̃β,m − fβ‖2) ≤ ‖fβ,m − fβ‖2 +16
D2(m, 1)

N(J − 4)
+4C0

(
D2(m, fβ)√

N

)
∧
(

D4(m, fβ)

N

)
+6

m

N
,

where C0 is defined in Lemma 1.

This risk bound implies the usual bias term ‖fβ,m−fβ‖2 and three terms of variance. The
terms 16D2(m, 1)/[N(J−4)] and 6m/N correspond to the terms obtained in Inequality (12)

of Proposition 1 for known f∗
ε . The additional term, 4C0(D2(m, fβ)/

√
N)∧(D4(m, fβ)/N)

comes from estimating f∗
ε . If |f∗

β |2 decreases faster than |f∗
ε |8, it can happen that D4(m, fβ)

is bounded by a fixed constant. Then this term is negligible compared to D2(m, 1)/[N(J −
4)]. Moreover, in Comte et al. [2011], in a context of repeated measurements, similar
variance terms are also obtained and their simulation experiments show that the first
variance term remains the dominating one. We conjecture that the same thing happens
here, even if the estimation may be more difficult.

For the adaptive procedure, we customize the proposals of Comte and Lacour [2011] to
the present case. More precisely, we replace f∗

ε by its estimate in the penalty and in the
definition of the collection of cutoffs. For super smooth noise, an additional multiplicative
factor has to be added. Therefore, when the noise density is unknown, this multiplicative

factor must be systematically added “blindly". Practically, our estimator is f̃β,m̃β
defined

by (30) with

m̃β = arg min
m∈ fMβ,N

{
−‖f̃β,m‖2 + p̃enβ(m)

}

with

p̃enβ(m) = κ̃β

log(4πD̂2(m,1)
J−4 )

log(m + 1)

(
4πD̂2(m, 1)

N(J − 4)
+

m

N

)
, D̂2(m, 1) =

1

2π

∫ πm

−πm

du

(̃f∗
ε )4( u

∆)

and M̃β,N = {m ∈ {1, . . . , N}, p̃enβ(m) ≤ 1}.
For ordinary smooth noise, this multiplicative factor behaves roughly like a constant. For

super smooth noise, it provides a slight overpenalization in the Gaussian case, as required
by the theory, see Comte et al. [2006] and Comte and Lacour [2011].

5.3. Estimator for fα with unknown fε. Analogously, we define for the estimation of
fα, either, if observations for j = 0, t0 = 0 are available

(31) f̃0
α,m(x) =

1

2π

∫ πm

−πm
e−iux

1

N

N∑

k=1

eiuYk,0

f̃∗
ε (u)

du,
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or when observations at time 0 are not available

(32) f̃α,m(x) =
1

2π

∫ πm

−πm
e−iux

1

N

N∑

k=1

e−2i∆uVk,3

f̃∗
ε (−u)f̃∗

ε (2u)
du,

otherwise. In that second case, observations used for the estimation of f∗
ε are not used for

the estimation of the numerator.
Now we detail the risk bound of the estimator f̃0

α,m deduced from Lemma 1.

Proposition 6. Consider Model (1) under Assumptions [A1], [A2’], [A3], [A4] and [A7].
Assume moreover that fα is integrable and square-integrable and observations for t0 = 0
are available, then the estimator defined by (31) satisfies
(33)

E(‖f̃0
α,m−fα‖2) ≤ ‖fα,m−fα‖2+

3

πN

∫ πm

−πm

du

|f∗
ε (u)|2 +4C1 min

p∈{1,...,4}

(
Np/4

2π

∫ πm

−πm

|f∗
α(u)|2

|f∗
ε (u)|2p

du

)
,

where C1 is defined in Lemma 1.

The first two terms of the right-hand-side of inequality (33) are the standard terms,
which are also obtained for known f∗

ε . The last term comes from the substitution of f∗
ε by

its estimate. The main difference with the deconvolution estimators studied in Comte and
Lacour [2011] comes from the fact that we replace f∗

ε by a truncated estimator based on

(̂f∗
ε )4, while in Comte and Lacour [2011], the truncated estimator is based on an estimator

of f∗
ε . We notice that a similar (but still different) phenomenon happens for f̃β,m where

we replace (f∗
ε )2 by a truncated estimator based on (̂f∗

ε )4. The risk bound for f̃β,m is in
fact similar to the one found in Comte et al. [2011].

If fα is very smooth, and in particular much smoother than fε, then the integrals∫ πm
−πm |f∗

α(u)|2/(f∗
ε (u))2pdu may be convergent and the last term negligible. For instance,

if α is Gaussian and ε is Laplace i.e. ε = σεη/
√

2 where η has density fη(x) = e−|x|/2,
then, for p = 1, 2, 3, 4, ∫ πm

−πm

|f∗
α(u)|2

(f∗
ε (u))2p

du ≤ κp

and the last term is less than (2C1κ4/π)/N . If α is Gaussian with variance σ2
α and ε is

Gaussian with variance σ2
ε , then the same behavior happens provided that σ2

α > 4σ2
ε .

Practically, our estimator is f̃0
α,m̃α

defined by (31) with

m̃α = arg min
m∈ fMα,N

{
−‖f̃0

α,m‖2 + p̃en0
α(m)

}

with

(34) p̃en0
α(m) = κ̃0

α

log(2πÎ)

log(m + 1)

2πÎ

N
, Î =

1

2π

∫ πm

−πm

du

(̃f∗
ε )2(u)

and M̃α,N = {m ∈ {1, . . . , N}, p̃en0
α(m) ≤ 1}.

A similar study can be performed for the estimator f̃α,m.
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σε = 1/10 σε = 1/4 σε = 1/2
Estimator N = 200 2000 200 2000 200 2000

α Gaussian f̂0
α,m 0.324 0.037 0.402 0.048 0.745 0.105

f̃0
α,m 0.243 0.082 0.266 0.103 0.544 0.113

f̂α,m 0.469 0.055 0.520 0.094 2.022 1.014

f̃α,m 0.700 0.180 0.736 0.122 1.170 0.228

β Gaussian f̂β,m 0.427 0.044 0.313 0.032 0.402 0.041

f̃β,m 0.301 0.032 0.285 0.042 0.535 0.151

α Gaussian f̂0
α,m 0.335 0.036 0.417 0.048 0.744 0.111

f̃0
α,m 0.238 0.074 0.271 0.105 0.434 0.118

f̂α,m 0.469 0.050 0.538 0.097 2.080 1.046

f̃α,m 0.448 0.092 0.770 0.162 1.151 0.234

β Mixed f̂β,m 1.500 0.312 2.288 0.425 6.648 1.311

Gaussian f̃β,m 1.407 0.211 6.578 2.107 15.074 10.091

α Mixed f̂0
α,m 1.690 0.339 6.116 0.684 10.166 5.203

Gaussian f̃0
α,m 2.088 0.353 6.168 0.703 14.302 6.014

f̂α,m 5.673 2.269 22.945 9.926 36.288 34.551

f̃α,m 3.328 0.700 14.279 6.555 34.705 31.040

β Gaussian f̂β,m 0.424 0.053 0.283 0.034 0.428 0.043

f̃β,m 0.267 0.036 0.297 0.047 0.522 0.156

α Gamma f̂0
α,m 0.362 0.047 0.483 0.053 0.896 0.125

f̃0
α,m 0.288 0.057 0.348 0.112 0.601 0.173

f̂α,m 0.476 0.053 0.618 0.126 2.438 1.221

f̃α,m 0.612 0.118 0.730 0.179 1.477 0.307

β Gamma f̂β,m 0.395 0.053 0.351 0.047 0.410 0.080

f̃β,m 0.315 0.047 0.335 0.054 0.517 0.183

α Gamma f̂0
α,m 0.402 0.047 0.412 0.047 0.821 0.113

f̃0
α,m 0.356 0.050 0.313 0.108 0.514 0.164

f̂α,m 0.653 0.060 0.586 0.115 2.368 1.232

f̃α,m 0.859 0.106 0.876 0.136 1.295 0.289

β Mixed f̂β,m 1.247 0.360 1.228 0.465 2.848 0.639

Gamma f̃β,m 1.194 0.331 1.457 0.689 6.769 1.790

Table 1. Empirical MISE ×100 computed from 100 simulated datasets

with ε Laplace. Estimators of fα are f̂0
α,m, f̃0

α,m, f̂α,m and f̃α,m. Estimators

of fβ are f̂β,m and f̃β,m.

6. Simulation study

We consider simulations of Model (1) with noise having either Laplace density (σεη with

fη(x) = e−
√

2|x|/
√

2) or Gaussian N (0, σ2
ε) density and tj = j∆, ∆ = 2, J = 6. For both

α and β distributions, we experiment four possibilities:

• Gaussian, N (0, 1),
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• Mixed Gaussian, with 0.3N (−1, (1/4)2) + 0.7N (1, (1/4)2),
• Gamma distribution, γ(25, 1/25)/5,
• Mixed Gamma distribution, [0.3γ(2, 1/2) + 0.7γ(20, 1/5)]/

√
3.

All these densities are calibrated so that their variance is approximately 1. We consider
three values of σε: 1/10, 1/4, 1/2. This means that the ratios of standard deviations
of signal over noise are equal to 10, 4 and 2. In the last case, there is a lot of noise in
the model, and the robustness of the procedure is really tested. Moreover, to see the
improvement due to sample sizes, we take two values for N , N = 200 and N = 2000.

We compare the performances in term of MISE computed over 100 samples of the
estimators

• f̂β,m as given by (7) (known noise) with model selection as described in Section
3.3 with constant κβ of penalty (15) equal to 0.5 for Laplace errors and 0.001 for
Gaussian errors,

• f̃β,m as given by (30) (unknown noise) with model selection described in Section
5.2 and constant κ̃β equal to 0.5,

• f̂β,mopt given by (7) (known Gaussian noise) with mopt = m0,β(σε) given by (21)
with κ′

β = 1. Note that the value of κ′
β does not fulfill the constraint κ′

β < 1 but
other values seemed too small.

We also compare

• f̂0
α,m given by (8) (known noise) with model selection as described in Section 3.3

with constant κ0
α equal to 2,

• f̂α,m given by (10) (known noise) and penalization device with constant κα equal
to 0.5 in the Laplace case and 0.0001 in the Gaussian case,

• f̃0
α,m given by (31) (unknown noise) with model selection described in Section 5.3

and constant κ̃0
α equal to 2,

• f̃α,m given by (32) (unknown noise) with constant κ̃α equal to 10,

• f̂α,mopt (known Gaussian noise) with mopt = m0,α(σε) given by (22) with κ′
α = 0.5.

The results are gathered in Tables 1 and 2.

Clearly, for the estimation of fα, the estimator f̂0
α,m based on the observations Yk,0 at

t0 = 0 has better performances than the estimator f̂α,m based on the other observations.

For simple problems, f̂α,m performs well but fails to recover the two bumps of the bimodal
distributions, unless the noise level is very low (σε = 1/10). It is worth mentioning that
estimating the noise characteristic function often improves the estimation: this has been
already observed in Comte and Lacour [2011] and in Comte et al. [2011] recently. This

may be due to the truncation of f̂ε which attenuates the small values of fε involved in the
denominator of the estimators of fβ and fα. When the true fε is used, these small values
appearing in the denominator are not truncated.

The estimation of fβ is very satisfactory and quite stable even for bimodal densities.
Globally, increasing the noise level does not degrade too much the results.

As expected, for both functions, increasing the sample size improves the estimation.
In the Gaussian case, we experiment the specific proposals of Section 4. The results are

always really interesting, and rather convincing for both sample sizes 200 and 2000; the



NONPARAMETRIC ESTIMATION FOR LINEAR MIXED-EFFECTS MODEL 17

main exception corresponds to the case where α is bimodal, where the estimator fails to
correctly estimate fα even for small noise. This method can be used for estimating fβ and
more cautiously fα, if one is convinced that the noise is Gaussian.

7. Conclusion.

In this paper, we consider a linear mixed-effects model with random i.i.d. coefficients
αk and βk and we study how to estimate their unknown distributions. We propose several
solutions, depending on the available information about noise density. Since it is often
assumed to be Gaussian, we show that specific strategies can be developed in this case.
In the more realistic case where it is unknown, we also propose general solutions based on
deconvolution strategies. All this material is tested on simulation experiments which show
the relevance of the methods. These proposals are all new and very different from existing
strategies for such models.

Several extensions may be considered in future works. First, we may wish to estimate the
joint distribution of α and β, with known or unknown noise density. Secondly, remaining
in a linear setting, we may add fixed regressors with constant coefficients to be estimated.
Lastly, finding out if such strategies may be successful for more general nonlinear mixed-
effects model remains an open question.

Appendix A. Pointwise risk bound of fβ

The variance of the estimator is

Var
(
f̂β,m(x)

)
=

4

N2J2

1

4π2

N∑

k=1

Var




J/2∑

j=1

∫ πm

−πm
e−ixu eiuZk,j

|f∗
ε (u/∆j)|2

du




=
4

NJ2

1

4π2

J/2∑

j=1

Var

(∫ πm

−πm
e−ixu eiuZk,j

|f∗
ε (u/∆j)|2

du

)

+
4

NJ2

1

4π2

J/2∑

j,j′=1,j 6=j′

cov

(∫ πm

−πm
e−ixu eiuZk,j

|f∗
ε (u/∆j)|2

du,

∫ πm

−πm
e−ixz eizZk,j′

∣∣f∗
ε (z/∆j′)

∣∣2 dz

)
.

For the first part of the decomposition, we have

Var

(∫ πm

−πm
e−ixu eiuZk,j

|f∗
ε (u/∆j)|2

du

)
≤ E



∣∣∣∣∣

∫ πm

−πm
e−ixu eiuZk,j

|f∗
ε (u/∆j)|2

du

∣∣∣∣∣

2



≤ E

(∫ πm

−πm

∫ πm

−πm
e−ix(u−z) ei(u−z)Zk,j

|f∗
ε (u/∆j)|2 |f∗

ε (z/∆j)|2
du dz

)

≤
∫ πm

−πm

∫ πm

−πm
e−ix(u−z)

f∗
Zj

(u − z)

|f∗
ε (u/∆j)|2 |f∗

ε (z/∆j)|2
du dz

≤
∫ πm

−πm

1

|f∗
ε (u/∆j)|4

du

∫
|f∗

Zj
(w)|dw



18 FABIENNE COMTE(1) AND ADELINE SAMSON(1)

σε = 1/10 σε = 1/4 σε = 1/2
Estimator N = 200 2000 200 2000 200 2000

α Gaussian f̂0
α,m 0.378 0.032 0.475 0.041 0.839 0.115

f̃0
α,m 0.273 0.078 0.281 0.102 0.871 0.115

f̂α,m 0.999 0.100 0.463 0.119 3.448 3.357

f̃α,m 0.597 0.060 0.878 0.124 2.891 0.855

f̂α,mopt
0.519 0.066 1.219 0.467 7.883 5.750

β Gaussian f̂β,m 1.542 0.171 0.448 0.058 0.245 0.044

f̃β,m 1.081 0.137 1.939 0.576 1.279 0.401

f̂β,mopt
1.201 0.154 0.339 0.051 0.449 0.126

α Gaussian f̂0
α,m 0.339 0.034 0.405 0.049 0.769 0.116

f̃0
α,m 0.251 0.073 0.276 0.103 0.771 0.119

f̂α,m 1.057 0.106 0.464 0.125 3.418 3.358

f̃α,m 0.519 0.062 0.845 0.128 2.770 0.834

f̂α,mopt
0.552 0.071 1.193 0.470 7.883 5.750

β Mixed f̂β,m 1.423 0.150 5.705 3.745 0.225 17.173

Gaussian f̃β,m 1.945 0.189 3.910 0.666 1.279 2.659

f̂β,mopt
1.212 0.146 11.329 6.843 0.449 32.819

α Mixed f̂0
α,m 1.758 0.354 6.854 1.298 16.623 7.780

Gaussian f̃0
α,m 2.270 0.391 6.785 2.300 21.627 13.979

f̂α,m 5.586 3.605 30.503 30.099 37.200 37.163

f̃α,m 6.528 0.917 22.195 13.291 36.105 34.323

f̂α,mopt
10.692 6.270 35.626 34.765 40.127 38.672

β Gaussian f̂β,m 1.464 0.163 0.534 0.052 0.253 0.040

f̃β,m 0.941 0.086 2.821 0.795 1.949 0.552

f̂β,mopt
1.186 0.145 0.386 0.047 0.463 0.126

α Gamma f̂0
α,m 0.403 0.048 0.481 0.056 0.912 0.162

f̃0
α,m 0.330 0.052 0.336 0.117 0.783 0.177

f̂α,m 1.106 0.102 0.519 0.180 3.852 3.765

f̃α,m 0.648 0.054 1.020 0.175 3.005 1.015

f̂α,mopt
0.572 0.070 1.418 0.617 8.208 6.129

β Gamma f̂β,m 1.578 0.155 0.497 0.056 0.339 0.053

f̃β,m 0.832 0.114 1.927 0.574 1.573 0.484

f̂β,mopt
1.224 0.143 0.390 0.051 0.591 0.197

α Gamma f̂0
α,m 0.364 0.045 0.462 0.050 0.948 0.158

f̃0
α,m 0.310 0.057 0.330 0.128 0.826 0.171

f̂α,m 0.968 0.085 0.483 0.176 3.839 3.757

f̃α,m 0.574 0.056 1.008 0.173 3.002 0.977

f̂α,mopt
0.534 0.064 1.404 0.611 8.199 6.128

β Mixed f̂β,m 1.743 0.305 1.120 0.551 5.719 4.999

Gamma f̃β,m 2.032 0.342 2.971 1.054 2.959 1.016

f̂β,mopt
1.418 0.308 2.229 0.977 7.094 6.656

Table 2. Empirical MISE ×100 computed from 100 simulated datasets

with ε Gaussian. Estimators of fα are f̂0
α,m, f̃0

α,m, f̃α,m and f̂α,mopt . Esti-

mators of fβ are f̂β,m, f̃β,m and f̂β,mopt .
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by applying bidimensional Cauchy Schwarz inequality with respect to the measure |f∗
Zj

(u−
z)|dudz and by using then Fubini. Thus

Var

(∫ πm

−πm
e−ixu eiuZk,j

|f∗
ε (u/∆j)|2

du

)
≤

∫ πm

−πm

1

|f∗
ε (u/∆j)|4

du

∫
|f∗

ε (w/∆j)|2dw

≤ ‖fε‖2∆j

∫ πm

−πm

1

|f∗
ε (u/∆j)|4

du

For the second part of the variance decomposition, we have

|cov
(∫ πm

−πm
e−ixu eiuZk,j

|f∗
ε (u/∆j)|2

du,

∫ πm

−πm
e−ixz eizZk,j′

∣∣f∗
ε (z/∆j′)

∣∣2 dz

)
|

= |
∫∫

[−πm,πm]2
e−ix(u−z)(f∗

β(u − z) − f∗
β(u)f∗

β(−z))dudz|

≤ 4π2m

∫
|f∗

β(w)|dw

By gathering the terms, we obtain

V ar
(
f̂β,m(x)

)
≤ 1

π2NJ2

J/2∑

j=1

‖fε‖2∆j

∫ πm

−πm

1

|f∗
ε (u/∆j)|4

du + C
4

π

m
∫
|f∗

β(w)|dw

N
.

When the observation times are equally spaced with ∆j = ∆, we obtain the following
bound

V ar
(
f̂β,m(x)

)
≤ 2‖fε‖2∆

∫ πm
−πm

1
|f∗

ε (u/∆j)|4
du

NJ
+

4‖f∗
β‖1

π

m

N
.

Thus the MSE is bounded by

Proposition 7. Consider Model (1) under Assumptions [A1]–[A5] with fβ integrable and
square integrable, and fε ∈ L2(R) then,

E

(∣∣∣f̂β,m(x) − fβ(x)
∣∣∣
2
)

≤ (
1

2π

∫

|u|≥πm
|f∗

β(u)|du)2

+
2‖fε‖2

π

1

NJ2

J/2∑

j=1

∆j

∫ πm

−πm

1

|f∗
ε (u/∆j)|4

du +
4‖f∗

β‖1

π

m

N
.(35)
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Appendix B. Proofs

B.1. Proof of Proposition 2. We can easily calculate the expectation of the estimator

f̂α,m(x) defined by (10). We have

E
(
f̂α,m(x)

)
=

1

N

N∑

k=1

1

2π

∫ πm

−πm
e−iux E

(
eiVk,1u/p1

)

f∗
ε

(
u

p1t2

)
f∗

ε

(
−u
p1t1

) du

=
1

N

N∑

k=1

1

2π

∫ πm

−πm
e−iux

f∗
Vk,1

(u/p1)

f∗
ε

(
u

p1t2

)
f∗

ε

(
−u
p1t1

) du

=
1

2π

∫ πm

−πm
e−iuxf∗

α(u) du = fα,m(x)

The integrated bias is therefore given by:
∥∥∥fα − E

(
f̂α,m

)∥∥∥
2

≤ 1

2π

∫

|u|≥πm
|f∗

α(u)|2 du

The integrated variance is

∥∥∥f̂α,m − fα,m

∥∥∥
2

=

∥∥∥∥∥∥
1

2π

∫ πm

−πm
e−iux

f̂∗
Vk,1

(u/p1) − f∗
Vk,1

(u/p1)

f∗
ε

(
u

p1t2

)
f∗

ε

(
−u
p1t1

) du

∥∥∥∥∥∥

2

=
1

2π

∫ πm

−πm

∣∣∣∣∣∣
f̂∗

Vk,1
(u/p1) − f∗

Vk,1
(u/p1)

f∗
ε

(
u

p1t2

)
f∗

ε

(
u

p1t1

)

∣∣∣∣∣∣

2

du

Therefore, as for (12),

E

(∥∥∥f̂α,m − fα,m

∥∥∥
2
)

≤ 1

2πN

∫ πm

−πm

1∣∣∣f∗
ε

(
u

p1t2

)
f∗

ε

(
u

p1t1

)∣∣∣
2 du +

m

N
.

Gathering bias and variance bounds gives the result of Proposition 2. �

B.2. Proof of Theorem 1. Let Sm = {t ∈ L1 ∩ L2, such that t∗ = t∗1[−πm,πm]} be the
subspace of L2 with functions having Fourier Transforms supported by [−πm, πm]. Now

we can notice that f̂β,m is the minimizer over Sm of the contrast

γN,J(t) = ‖t‖2 − 4

NJ

N∑

k=1

J/2∑

j=1

1

2π

∫
t∗(−u)

eiuZk,j

|f∗
ε (u/∆j)|2

du

since γN,J(t) = ‖t‖2 − 2〈t, f̂β,m〉. Then defining

νN,J(t) =
2

NJ

N∑

k=1

J/2∑

j=1

1

2π

∫
t∗(−u)

(eiuZk,j − E(eiuZk,j ))

|f∗
ε (u/∆j)|2

du

we have the decomposition, for all functions s, t integrable and square integrable,

(36) γN,J(t) − γN,J(s) = ‖t − fβ‖2 − ‖s − fβ‖2 − 2νN,J(t − s).
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By definition of m̂β , we have that ∀m ∈ Mβ,N ,

γn(f̂β,m̂β
) + penβ(m̂β) ≤ γn(fβ,m) + penβ(m)

and with (36), this yields, ∀m ∈ Mβ,n,

‖f̂β,m̂β
− fβ‖2 ≤ ‖fβ − fβ,m‖2 + penβ(m) + 2νN,J(f̂β,m̂β

− fβ,m) − penβ(m̂β)

≤ ‖fβ − fβ,m‖2 + penβ(m) + 2‖f̂β,m̂β
− fβ,m‖ sup

t∈Sm+Sm̂β

νN,J(t) − penβ(m̂β)

≤ ‖fβ − fβ,m‖2 + penβ(m) +
1

4
‖f̂β,m̂β

− fβ,m‖2

+4 sup
t∈Sm+Sm̂β

ν2
N,J(t) − penβ(m̂β)

≤ ‖fβ − fβ,m‖2 + 2penβ(m) +
1

2
‖f̂β,m̂β

− fβ‖2 +
1

2
‖fβ − fβ,m‖2

+4( sup
t∈Sm+Sm̂β

ν2
N,J(t) − p(m̂β, m))

where 4p(m, m′) ≤ penβ(m) + penβ(m′). We can prove

Lemma 2. Under the assumptions of Theorem 1,

E

(
sup

t∈Sm+Sm̂β

ν2
N,J(t) − p(m̂β, m)

)
≤ C ′

N

Applying Lemma 2, we get ∀m ∈ Mβ,N ,

E(‖f̂β,m̂β
− fβ‖2) ≤ 3‖fβ − fβ,m‖2 + 4penβ(m) +

C ′

N
.

This is the result of Theorem 1. �

Proof of Lemma 2. Let us define ϕ(x) = sin(πx)/(πx) and ϕm,ℓ(x) =
√

mϕ(mx − ℓ) for
ℓ ∈ Z. We recall that (ϕm,ℓ)ℓ∈Z is an orthonormal basis of Sm and it fulfills

∑
ℓ∈Z ϕ2

ℓ ≤ m.
Let us denote by

ηk,j =
εk,2j − εk,2j−1

∆j
.

Then the (ηk,j)k,j are independent. We split νN,J in two parts and write νN,J(t) = ν
(1)
N,J(t)+

ν
(2)
N,J(t):

ν
(1)
N,J(t) =

2

NJ

N∑

k=1

J/2∑

j=1

1

2π

∫
t∗(−u)

eiuβk(eiuηk,j − E(eiuηk,j ))

|f∗
ε (u/∆j)|2

du

and

ν
(2)
N,J(t) =

1

N

N∑

k=1

1

2π

∫
t∗(−u)(eiuβk − f∗

β(u))du =
1

N

N∑

k=1

(t(βk) − 〈t, fβ〉).
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For ν
(2)
N,J(t), we find the bounds

sup
t∈Sm+Sm′ ,‖t‖=1

[ν
(2)
N,J(t)]2 ≤ sup

t∈Sm+Sm′ ,‖t‖=1

∑

ℓ∈Z

a2
m∨m′,ℓ

∑

ℓ∈Z

[ν
(2)
N,J(ϕm∨m′,ℓ)]

2

≤
∑

ℓ∈Z

[ν
(2)
N,J(ϕm∨m′,ℓ)]

2

where m ∨ m′ = sup(m, m′), and

E

(
sup

t∈Sm+Sm′ ,‖t‖=1
[ν

(2)
N,J(t)]2

)
≤
∑

ℓ

1

N
Var(ϕm∨m′,ℓ) ≤

m ∨ m′

N
:= H2

2 .

Moreover Var(t(β1)) ≤ E(t2(β1)) ≤ ‖t‖∞E(|t(β1)|) ≤ ‖t‖∞‖t‖‖fβ‖ and for any t ∈ Sm∨m′ ,

‖t‖∞ ≤
√

m ∨ m′‖t‖ (see Comte et al. [2006]) yield

sup
t∈Sm+Sm′ ,‖t‖=1

Var(t(β1)) ≤
√

m ∨ m′‖fβ‖ := v2

and

sup
t∈Sm+Sm′ ,‖t‖=1

‖t‖∞ ≤
√

m ∨ m′ := b2

Thus Talagrand Inequality implies

E

(
sup

t∈Sm+Sm̂β

[ν
(2)
N,j(t)]

2 − 4
m ∨ m̂β

N

)
≤

∑

m′∈Mβ,N

E

(
sup

t∈Sm+Sm′

[ν
(2)
N,j(t)]

2 − 4
m ∨ m′

N

)

≤
∑

m′∈Mβ,N

K1(
v2

N
e
−K2

NH2
2

v2 +
b2
2

N2
e
−K3

NH2
b2 )

≤ K1

N

∑

m′∈Mβ,N

(‖fβ‖
√

m ∨ m′e−K2

√
m∨m′/‖fβ‖ +

m ∨ m′

N
e−K3

√
N )

≤ C ′

N

since the sums are convergent or bounded.

For ν
(1)
N,J we compute the same bounds conditionally to (βk)1≤k≤N . Then we proceed

analogously to Comte et al. [2008] and Comte et al. [2006], and we get the result.�

B.3. Proof of Proposition 3. The bias order given in (13) under Assumption [A6],
is O(m−2b) which gives the announced order when choosing m = m0,β . Moreover, the

variance terms are made negligible by this choice. Indeed the integrated variance of f̂β,m

is of order

(πm)−1

2NJ
exp(2σ2

ε∆
−2
minπ2m2) +

m

N

which leads to a variance of order

σε∆
−1
min

(NJ)1−κ′

β
√

log(NJ)
+ κ′

β

√
log(NJ)

N2πσε∆
−1
min
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and the convergence rate of order (log(NJ))−b. �

B.4. Proof of Proposition 4. The proof is based on the following decomposition

(37) E(‖f̂β,m̂0,β
−fβ‖2) ≤ E(‖f̂β,m̂0,β

−fβ‖2
1|cσ2

ε−σ2
ε |≤σ2

ε/2
)+E(f̂β,m̂0,β

−fβ‖2
1|cσ2

ε−σ2
ε |>σ2

ε/2
)

First, remark that when |σ̂2
ε − σ2

ε | ≤ σ2
ε/2, we have 1

2σ2
ε ≤ σ̂2

ε ≤ 3
2σ2

ε . Consequently
1√
3
m0,β ≤ m0,β(σ̂ε)/

√
2 ≤ m0,β with m0,β = m0,β(σε). Thus, looking at (11), we get

‖f̂β,m̂0,β
− fβ,m̂0,β

‖2
1|cσ2

ε−σ2
ε |≤σ2

ε/2
≤ ‖f̂β,m0,β

− fβ,m0,β
‖2

and clearly as [A6] holds, we have

‖fβ,m̂0,β
− fβ‖2

1|cσ2
ε−σ2

ε |≤σ2
ε/2

≤ CL(πm̂0,β)−2b
1|cσ2

ε−σ2
ε |≤σ2

ε/2
≤ C ′L(πm0,β)−2b.

Therefore

E(‖f̂β,m̂0,β
− fβ‖2

1|cσ2
ε−σ2

ε |≤σ2
ε/2

) ≤ C[log(NJ)]−b.

On the other hand, by using that m̂0,β ≤ mn, we get

‖f̂β,m̂0,β
− fβ,m̂0,β

‖2 ≤ CN

and ‖fβ,m̂0,β
− fβ‖2 ≤ ‖fβ‖2, so that

E(‖f̂β,m̂0,β
− fβ‖2

1|cσ2
ε−σ2

ε |>σ2
ε/2

) ≤ CNP(|σ̂2
ε − σ2

ε | > σ2
ε/2).

The following lemma yields the result.

Lemma 3.

(38) P(|σ̂2
ε − σ2

ε | > σ2
ε/2) ≤ C/N2.

Proof of Lemma 3. We take J = 3 for simplicity. We know that σ̂2
ε is a linear combination

of σ̂2
Y.j , j = 1, 2, 3 and (say) σ̂2

Y.2 Y.3. Therefore as P(|X+Y | > a) ≤ P(|X| > a/2)+P(|Y | >

a/2), the result follows if we prove that for j = 1, 2, 3,

P(|σ̂2
Y.j − σ2

.j | >
1

2
c2
j ) ≤

Cj

N2
, and P(|σ̂2

Y.2 Y.3 − σ2
.2,3| >

1

2
c2
j ) ≤

C4

N2
.

We provide few details for the first term and j = 3. The bound relies on a Rosenthal in-
equality which states that for independent centered random variables X1, . . . , Xn admitting
moments of order p

E(|
n∑

i=1

Xi|p) ≤ cp




n∑

i=1

E(|Xi|p) +

(
n∑

i=1

E(X2
i )

)p/2

 .

Consequently

P := P(|σ̂2
Y.3 − (σ2

α + t23σ
2
β + 2t3σαβ + σ2

ε)| > λ)

= P(| 1

N

N∑

k=1

(A2
k − E(A2

k)) − (Ā − E(Ā))2| > λ)
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where Ak = (αk −E(αk))+ t3(βk −E(βk))+ εk,3 and Ā = N−1
∑N

k=1 Ak. Then by Markov
inequality stating that P(|X| > λ) ≤ E(|X|p)/λp, we get

P ≤ P(| 1

N

N∑

k=1

(A2
k − E(A2

k))| > λ/2) + P((Ā − E(Ā))2 > λ/2)

≤
(

2

λ

)4

E



∣∣∣∣∣
1

N

N∑

k=1

(A2
k − E(A2

k))

∣∣∣∣∣

4

+

(√
2

λ

)4

E(|Ā − E(Ā)|4)

≤
(

2

λ

)4
E(A4

1)

N2
+

4

λ2
(N−3E(A4

1) + N−2(E(A2
1))

2)

under a moment condition of order 4 for α, β and ε. This gives the announced result.

B.5. Proof of Lemma 1. (1) We first prove assertion (1) of the lemma. We denote by

R(u) =
1

(f̃∗
ε )2(u)

− 1

(f∗
ε )2(u)

.

First we write a decomposition:

E(|R(u)|2) = E

(
1

(̂f∗

ε )4(u)<N−1/2

(f∗
ε )4(u)

)

+
1

(f∗
ε )4(u)

E


1

(̂f∗

ε )4(u)≥N−1/2

(
(̂f∗

ε )4(u) − (f∗
ε )4(u)

)2

(̂f∗
ε )4(u)

[√
(̂f∗

ε )4(u) + (f∗
ε (u))2

]2




Then, using that 1/[

√
(̂f∗

ε )4(u) + (f∗
ε (u))2]2 ≤ 1/(̂f∗

ε )4(u), we obtain

E(|R(u)|2) ≤ 1

(f∗
ε )4(u)

+
N

(f∗
ε )4(u)

E

[(
(̂f∗

ε )4(u) − (f∗
ε )4(u)

)2
]

≤ 2

(f∗
ε )4(u)

which is the first term of the bound.

(i) if (f∗
ε )4(u) ≤ 2N−1/2, we have N−1/2/(f∗

ε )8(u) ≤ 2N−1/(f∗
ε )12(u). Moreover, start-

ing in the same way as above, using that 1/[

√
(̂f∗

ε )4(u) + (f∗
ε (u))2]2 ≤ 1/(f∗

ε (u))4, we also
have

E(|R(u)|2) ≤ 1

(f∗
ε )4(u)

+
N1/2

(f∗
ε )8(u)

E

[(
(̂f∗

ε )4(u) − (f∗
ε )4(u)

)2
]

≤ 1

(f∗
ε )4(u)

+
N−1/2

(f∗
ε )8(u)

≤ 3
N−1/2

(f∗
ε )8(u)
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(ii) If (f∗
ε )4 > 2N−1/2, using the Bernstein Inequality yields:

P
(
|(̂f∗

ε )4(u)| < N−1/2
)

≤ P
(
|(̂f∗

ε )4(u) − (f∗
ε )4(u)| > (f∗

ε )4(u) − N−1/2
)

≤ P
(
|(̂f∗

ε )4(u) − (f∗
ε )4(u)| > (f∗

ε )4(u)/2
)

≤ 2 exp
(
−N(f∗

ε )8(u)/16
)

≤ O
(
N−1(f∗

ε (u))−8
)

and completing the decomposition above, this yields

E(|R(u)|2) ≤ E

(
1

(̂f∗

ε )4(u)<N−1/2

(f∗
ε )4(u)

)

+
1

(f∗
ε )8(u)

E


1

(̂f∗

ε )4(u)≥N−1/2

(
(̂f∗

ε )4(u) − (f∗
ε )4(u)

)2

(√
(f̂∗

ε )4(u) + (f∗
ε )2(u)

)2




+
1

(f∗
ε )4(u)

E


1

(̂f∗

ε )4(u)≥N−1/2

(
(̂f∗

ε )4(u) − (f∗
ε )4(u)

)2

(√
(̂f∗

ε )4(u) + (f∗
ε )2(u)

)2

(
1

(̂f∗
ε )4(u)

− 1

(f∗
ε )4(u)

)



Then, using that 1/[

√
(̂f∗

ε )4(u) + (f∗
ε (u))2]2 ≤ 1/(f∗

ε (u))4, we get

E(|R(u)|2) ≤ 1

(f∗
ε )4(u)

P
(
(̂f∗

ε )4(u) < N−1/2
)

+
N−1

(f∗
ε )12(u)

+
N1/2

(f∗
ε )12(u)

E

[∣∣∣(̂f∗
ε )4(u) − (f∗

ε )4(u)
∣∣∣
3
]

≤ CN−1

(f∗
ε )12(u)

+
N−1

(f∗
ε )12(u)

+
N1/2

(f∗
ε )12(u)

N−3/2 ≤ c
N−1

(f∗
ε )12(u)

Thus, in that case where N−1/2/(f∗
ε )8(u) ≥ 2N−1/(f∗

ε )12(u), we get

E(|R(u)|2) ≤ N−1

|f∗
ε (u)|12 .

This ends the proof of assertion (1).
(2) We now prove assertion (2). Set

R0(u) =
1

f̃∗
ε (u)

− 1

f∗
ε (u)

.
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First we write:

E(|R0(u)|2) = E

(
1

(̂f∗

ε )4(u)<N−1/2

(f∗
ε )2(u)

)

+
1

(f∗
ε )2(u)

E


1

(̂f∗

ε )4(u)≥N−1/2

(
(̂f∗

ε )4(u) − (f∗
ε )4(u)

)2

(
(̂f∗

ε )4(u)
)1/2

[√
(̂f∗

ε )4(u) + (f∗
ε (u))2

]2 [(
(̂f∗

ε )4(u)
)1/4

+ f∗
ε (u)

]2




≤ 1

(f∗
ε )2(u)

+
N

(f∗
ε )2(u)

E

[(
(̂f∗

ε )4(u) − (f∗
ε )4(u)

)2
]
≤ 2

(f∗
ε )2(u)

which is the first term of the bound.

(i) if (f∗
ε )4(u) ≤ 2N−1/2, we have

N−3/4

(f∗
ε )8(u)

∧ N−1/2

(f∗
ε )6(u)

∧ N−1/4

(f∗
ε )4(u)

≤ N−1

(f∗
ε )10(u)

.

Moreover, starting in the same way as above, we also have

E(|R0(u)|2) ≤ 1

(f∗
ε )2(u)

+

(
N1/4

(f∗
ε )8(u)

∧ N1/2

(f∗
ε )6(u)

∧ N3/4

(f∗
ε )4(u)

)
E

[(
(̂f∗

ε )4(u) − (f∗
ε )4(u)

)2
]

≤ 1

(f∗
ε )2(u)

+
N−3/4

(f∗
ε )8(u)

∧ N−1/2

(f∗
ε )6(u)

∧ N−1/4

(f∗
ε )4(u)

≤ 3
N−3/4

(f∗
ε )8(u)

∧ N−1/2

(f∗
ε )6(u)

∧ N−1/4

(f∗
ε )4(u)

where the last line follows from the assumption (f∗
ε )4(u) ≤ 2N−1/2.

(ii) If (f∗
ε )4 > 2N−1/2, we use as in the proof of (1) that P(|(̂f∗

ε )4(u)| < N−1/2) ≤
C1

(
N−1(f∗

ε (u))−8
)
, and completing the decomposition above, this yields

E(|R0(u)|2) ≤ E

(
1

(̂f∗

ε )4(u)<N−1/2

(f∗
ε )2(u)

)

+
1

(f∗
ε )4(u)

E


1

(̂f∗

ε )4(u)≥N−1/2

(
(̂f∗

ε )4(u) − (f∗
ε )4(u)

)2

(√
(̂f∗

ε )4(u) + (f∗
ε )2(u)

)2 [(
(̂f∗

ε )4(u)
)1/4

+ f∗
ε (u)

]2



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+
1

(f∗
ε )4(u)

E


1

(̂f∗

ε )4(u)≥N−1/2

(
(̂f∗

ε )4(u) − (f∗
ε )4(u)

)2

(√
(̂f∗

ε )4(u) + (f∗
ε )2(u)

)2 [(
(̂f∗

ε )4(u)
)1/4

+ f∗
ε (u)

]2

×


 1√

̂(f∗
ε )4(u)

− 1

(f∗
ε )2(u)






≤ 1

(f∗
ε )2(u)

P
(
(̂f∗

ε )4(u) < N−1/2
)

+
N−1

(f∗
ε )10(u)

+
N1/2

(f∗
ε )10(u)

E

[(
(̂f∗

ε )4(u) − (f∗
ε )4(u)

)3
]

≤ C1N
−1

(f∗
ε )10(u)

+
N−1

(f∗
ε )10(u)

+
N1/2

(f∗
ε )10(u)

N−3/2 ≤ c
N−1

(f∗
ε )10(u)

Thus, in that case where N−1/(f∗
ε )10(u) is smaller than the three other terms found for

case (i), we get

E(|R0(u)|2) ≤ N−1

|f∗
ε (u)|10 .

This ends the proof of the lemma. �

B.6. Proof of Proposition 5. Clearly

‖f̃β,m − fβ‖2 = ‖f̃β,m − fβ,m‖2 + ‖fβ,m − fβ‖2

≤ 2‖f̃β,m − f̂β,m‖2 + 2‖f̂β,m − fβ,m‖2 + ‖fβ,m − fβ‖2

We already know that E(‖f̂β,m − fβ,m‖2) ≤ (4/(N(J − 4))D2(m, 1) + m/N . Moreover,

‖f̃β,m − f̂β,m‖2 =

∥∥∥∥∥∥
1

2π

∫ πm

−πm
e−iux 2

J − 4

J/2∑

j=3

f̂∗
Zj

(u)R
( u

∆

)
du

∥∥∥∥∥∥

2

=
1

2π

∫ πm

−πm

∣∣∣∣∣∣
2

J − 4

J/2∑

j=3

f̂∗
Zj

(u)R
( u

∆

)
∣∣∣∣∣∣

2

du

≤ 1

π

∫ πm

−πm

∣∣∣∣∣∣
2

J − 4

J/2∑

j=3

(f̂∗
Zj

(u) − f∗
Zj

(u))

∣∣∣∣∣∣

2

|R
( u

∆

)
|2du

+
1

π

∫ πm

−πm
|f∗

β(u)|2|f∗
ε (u/∆)|4|R

( u

∆

)
|2du

Then, applying Lemma 1, using the independence of f̂∗
Zj

(u) and R(u) for j ≥ 3, and that

E



∣∣∣∣∣∣

2

J − 4

J/2∑

j=3

(f̂∗
Zj

(u) − f∗
Zj

(u)

∣∣∣∣∣∣

2
 =

1

N

4

(J − 4)2




J/2∑

j=3

Var(eiuZj ) +
∑

j 6=j′

cov(eiuZj , eiuZj′ )



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≤ 1

N

4

(J − 4)2

(
J − 4

2
+

(J − 4)2

4
(1 − |f∗

β(u)|2)|f∗
ε (

u

∆
)|4
)

≤ 1

N

2

J − 4

(
1 +

J − 4

2
|f∗

ε (
u

∆
)|4
)

yields

E(‖f̃β,m − f̂β,m‖2) ≤ 1

π

∫ πm

−πm

1

N

2

J − 4

(
1 +

J − 4

2
|f∗

ε (
u

∆
)|4
)

du

|f∗
ε ( u

∆)|4

+
C0

π

∫ πm

−πm
|f∗

β(u)|2
(

N−1/2

|f∗
ε ( u

∆)|4 ∧ N−1

|f∗
ε ( u

∆)|8

)
du

≤ 4

N(J − 4)
D2(m, 1) +

2m

N
+ 2C0(

D2(m, fβ)√
N

) ∧ (
D4(m, fβ)

N
).

Now, gathering all term gives

E(‖f̃β,m − fβ‖2) ≤ ‖fβ,m − fβ‖2 +
16

N(J − 4)
D2(m, 1) + 6

m

N
+ 4C0(

D2(m, fβ)√
N

) ∧ (
D4(m, fβ)

N
),

which is the announced result. �

B.7. Proof of Proposition 6. The proof of Proposition 6 follows the same line as the
proof of Proposition 5 in a somehow simpler setting. Clearly

‖f̃0
α,m − fα‖2 = ‖f̃0

α,m − fα,m‖2 + ‖fα,m − fα‖2

≤ 2‖f̃0
α,m − f̂0

α,m‖2 + 2‖f̂0
α,m − fα,m‖2 + ‖fα,m − fα‖2

We already know that E(‖f̂0
α,m − fα,m‖2) ≤ (2π)−1(

∫ πm
−πm du/|f∗

ε (u)|2)/N . Moreover

‖f̃0
α,m − f̂0

α,m‖2 =
1

2π

∫ πm

−πm
|f̂∗

Y0
(u)R0(u)|2du

which yields the result by writing that |f̂∗
Y0

(u)|2 ≤ 2|f̂∗
Y0

(u) − f∗
Y0

(u)|2 + 2|f∗
α(u)f∗

ε (u)|2,
using the independence of f̂∗

Y0
(u) and R0 and applying Lemma 1.�
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