Geodesic flow, left-handedness, and templates - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Geodesic flow, left-handedness, and templates

Pierre Dehornoy

Résumé

We establish that, for every hyperbolic orbifolds of type $(2,q,\infty)$ and for every orbifold of type $(2,3,4g+2)$, the geodesic flow on the unit tangent bundle is left-handed. This implies that the link formed by every collection of periodic orbits $(i)$ bounds a Birkhoff section for the geodesic flow, and $(ii)$ is a fibered link. These results support a conjecture of Ghys that these properties hold for every 2-dimensional hyperbolic orbifold that is a homology sphere. We also prove similar results for the torus with any flat metric. Besides, we observe that the natural extension of the conjecture to arbitrary hyperbolic surfaces (with non-trivial homology) is false.
Fichier principal
Vignette du fichier
GeodFlow10.pdf (3.03 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00655422 , version 1 (28-12-2011)
hal-00655422 , version 2 (11-04-2012)
hal-00655422 , version 3 (25-11-2014)

Identifiants

Citer

Pierre Dehornoy. Geodesic flow, left-handedness, and templates. 2012. ⟨hal-00655422v2⟩
89 Consultations
212 Téléchargements

Altmetric

Partager

More