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GEODESIC FLOW, LEFT-HANDEDNESS, AND TEMPLATES
PIERRE DEHORNOY

ABSTRACT. We establish that, for every hyperbolic orbifolds of type (2, ¢, o0) and for every
orbifold of type (2,3,4g+2), the geodesic flow on the unit tangent bundle is left-handed.
This implies that the link formed by every collection of periodic orbits (z) bounds a Birkhoff
section for the geodesic flow, and (i) is a fibered link. These results support a conjecture of
Ghys that these properties hold for every 2-dimensional hyperbolic orbifold that is a rational
homology sphere. We also prove similar results for the torus with any flat metric. Besides,
we observe that the natural extension of the conjecture to arbitrary hyperbolic surfaces (with
non-trivial homology) is false.

1. INTRODUCTION

In this paper, we investigate the dynamical properties of certain particular 3-dimensional
flows, namely the geodesic flows attached to surfaces and 2-dimensional orbifolds. If ¥ is a
Riemannian surface or, more generally, a Riemannian 2-dimensional orbifold, that is, a space
locally modelled on quotients of surfaces under the action of discrete rotation groups, the unit
tangent bundle T'Y is a 3-manifold, and the geodesics of ¥ induce a natural complete flow
in 713, This flow is called the geodesic flow of T'Y, hereafter denoted by ®x,. What we do
here is to specifically study the way the periodic orbits of ®5. may wrap one around the other.

In every 3-dimensional manifold M, the linking number of two disjoint links can be defined
in a non-ambiguous way whenever the links are null-homologous, that is, have a trivial image
in Hi(M;Q) [I7]. When the latter group is trivial, that is, when M is a rational homology
sphere, the linking number is always defined, and it yields a topological invariants of links.

If ¥ is a 2-dimensional orbifold, every geodesic on X can be lifted to 71X in two ways,
yielding a pair of orbits of ®x. It follows from Birkhoff’s results [6] that the linking number
of any two such pairs of orbits is the opposite of the number of intersections of the geodesics,
hence is nonpositive. This implies that, in a geodesic flow, there are always many pairs of
orbits with a negative linking number. By contrast, there is no simple construction necessarily
leading to collections of orbits with a positive linking number, and it makes sense to raise

Question 1.1. Assume that ¥ is a Riemannian 2-dimensional orbifold. Let 7,v" be two
null-homologous collections of periodic orbits of ®x. Does Lk(7,") < 0 necessarily hold?

There are two cases when the answer to Question [I.1]is known to be positive, namely when X
is a sphere S? with a round metric and when ¥ is the modular surface H?/PSLy(Z) [15]. In the
latter article, Etienne Ghys actually proves stronger results involving the natural extension of
the linking number to arbitrary measures. Namely, he defines a complete flow ® in a homology
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2 PIERRE DEHORNOY

3-sphere M to be left-handed if the linking number of every pair of ®-invariant measures is
always negative, and proves that the above two flows are left-handed. It is then natural to
raise

Question 1.2 (Ghys). Assume that ¥ is a Riemannian 2-dimensional orbifold satisfying
Hy(T'S,Q) = 0. Is the geodesic flow @y, on T'Y necessarily left-handed?

By definition, a positive answer to Question [I.2] implies a positive answer to Question [I.1]
As we shall explain, the converse implication, that is, the fact that the negativity of the linking
number for pairs of periodic orbits implies the negativity of the linking number for arbitrary
invariant measures, is true whenever the flow has sufficiently many periodic orbits.

The aim of this paper is to provide positive answers to Questions [I.1] and [I.2]in new cases,
namely when ¥ is a hyperbolic orbifold of type (2, ¢, 00) with ¢ > 3 and when ¥ is a hyperbolic
orbifold of type (2,3,4¢g + 2) with g > 2.

Theorem A. Assume that ¥ is (a) either an orbifold of type (2,q,00) with ¢ > 3, equipped
with a negatively curved metric, or (b) an orbifold of type (2,3,4g + 2) with g > 2, equipped
with a negatively curved metric. Then

(1) any two null-homologous collections of periodic orbits of s, have a negative linking number,

(ii) the geodesic flow of T'Y is left-handed.

In the case of a good orbifold with zero curvature, that is, a quotient of a torus with a flat
metric, the unit tangent bundle always has non-trivial homology. Nevertheless it makes sense
to address Question In this case as well, the answer is (almost) always positive.

Theorem B. Assume that ¥ is a quotient of the torus T? equipped with a flat metric. Then
any two collections 7y, of orbits of ®x, whose projections on ¥ intersect have a negative
linking number.

On the other hand, we give two examples showing that, when ¥ is not a homology sphere
or its curvature has a non-constant sign, Question has a negative answer.

Proposition 1.3. (i) Let ¥ be a hyperbolic surface. Then there exist two null-homologous
collections v,~' of periodic orbits of ®x with Lk(vy,~') > 0.

(i) Let X be a sphere with two non-intersecting simple geodesics. Then there exist two null-
homologous collections ~y,~" of periodic orbits of @y, with Lk(vy,~") > 0. The geodesic flow ®x,
s not left-handed.

When Questions [I.1] and have positive answers, an important consequence is the exis-
tence of many Birkhoff sections. A Birkhoff section for a non-singular flow on a 3-manifold is
a compact surface whose boundary is the union of finitely many periodic orbits of the flow,
whose interior is transverse to the flow and intersects every orbit infinitely many times. The
existence of a Birkhoff section for a flow is very useful as, in this case, studying the dynamics
of the flow essentially reduces to studying the first return map on the section. Therefore, it is
natural to wonder whether a flow admits Birkhoff sections. Now, as explained by Ghys [15],
the left-handedness of a flow implies the existence, for every finite collection of periodic orbits,
of a Birkhoff section bounded by this collection. Thus our current results imply
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Corollary 1.4. If ¥ is one of the orbifolds mentioned in Theorem A, every finite null-
homologous collection of periodic orbits of s, bounds a Birkhoff section.

Next, it is known [9] that every link that is the boundary of a Birkhoff section for a flow is
fibered. Therefore, a direct consequence of Corollary is

Corollary 1.5. If ¥ is one of the orbifolds mentioned in Theorem A, every link in TS formed
by a collection of periodic orbits of the flow ®x, is fibered.

Similar statements hold in the case of the flat torus (see Theorem [3.12)), with, in addition,
an explicit simple formula for the genus of the involved Birkhoff sections.

Let us give a few hints about proofs. The case of the torus T? is the most simple one.
It can be solved by elementary means, and it appears as a sort of warm-up. The key point
is to encode every null-homologous collection « of periodic orbits of ®g2 into some convex
polygon Pol, in the affine plane R? with integral vertices. Using Pol, and VanHorn-Morris’
helix boxes [28], we classify Birkhoff sections up to isotopy and derive their existence and
the explicit formulas for the genus and the linking number of two null-homologous collections
of periodic orbits (Theorem . Once these formulas are available, the negativity of the
linking numbers easily follows (Corollary .

For Theorem A, the proofs rely on a common principle but require specific ingredients
depending on the orbifold. Our strategy decomposes in two steps. We first develop a general
method for investigating the geodesic flow on a hyperbolic orbifold. A multitemplate is a
geometric 2-dimensional branched surface carrying a flow. This notion generalises Birman-
Williams’ notion of template [7], that have been introduced for studying hyperbolic flows. Here
we prove that, given an orbifold X, for every tessellation T of the hyperbolic plane adapted
to X, there exists a multitemplate By embedded in T'Y such that the set of periodic orbits
of ®y is isotopic to a subset of the periodic orbits of By (Proposition . Moreover, if the
orbifold ¥ has at least one cusp, we can choose the tessellation T so that the set of periodic
orbits of the geodesic flow is isotopic to the whole set of periodic orbits of the template By.
This result provides a combinatorial description of the isotopy classes of the periodic orbits
of @y in terms of some finite data specifying the orbifold.

To complete the proof in the case when ¥ is an orbifold of type (2, ¢, 00) with ¢ > 3, we
start from the fact that T'Y is diffeomorphic to the complement of a certain knot K. in
some lens space, and we choose a particular compactification. Then, choosing an adapted
tessellation of the hyperbolic plane and using the template provided by Proposition [1.9] we
estimate the linking number of an arbitrary pair of collections of periodic orbits and see that
it is always negative. Along the way, we also compute the linking number of a geodesic with
the knot Ko, (Proposition , a function of interest in number theory.

To complete the proof in the case of the orbifolds ¥9 3 4442, the most delicate case, we use
a covering of ¥ 344412 by some explicit genus g surface ¥,. Then, we use the template of
Proposition to bound the linking number of two collections of periodic orbits of @y, in
terms of some associated combinatorial data. More precisely, we start from a tessellation of H?
by 4g 4+ 2-gons. For every periodic geodesic v in ¥, and for every pair of edges (e;, ¢;) in a tile
of the tessellation, we denote by b; ;(y) the number of times the projection of v goes from e;
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to e;. Then, for every pair of geodesics 7,7/, we show that the linking number Lk(vy,~') is
bounded above by a certain bilinear form Syg4o involving the coefficients b; j(+) and b; (7).
The form Sigyo is not negative on the whole cone of vectors with positive coordinates (a
manifestation of Proposition. What we do here is to show that the form S4442 is negative
on the subcone of vectors that come from liftings of geodesics of ¥3 3 4442, which is enough
to deduce the main result (Proposition . The reason why the proof works in this case,
unlike for general families of geodesics on Y4, is that a familly of geodesics on 3 3 4442 lifts to
a family on X, that admits many symmetries, and that these symmetries force the associated
coefficients b; ; to live in a small subcone where the bilinear form Q442 is negative.

It should be noted that, in the case of orbifolds of type (2, ¢, o), a result similar to Propo-
sition has been established by Tali Pinsky [26] in a previous work. Precisely, when ¥ is
the orbifold H/PSLs(Z), Ghys [16] proved that the periodic orbits of the geodesic flow can
be distorted on a template which coincides with the geometric Lorenz template, so that peri-
odic orbits are Lorenz knots [7]. His construction corresponds to ours when X is the orbifold
H/PSLx(Z) (which is of type (2,3,00)) and T the tessellation of H? by ideal triangles. Later,
Pinsky [26] generalized Ghys’ construction to orbifolds of type (2, g, 00). Her construction can
be recovered in our setting using a tiling of H? by ideal regular g-gons. The presentations
of Ghys and Pinsky differ from ours in the sense that they construct a template by opening
the cusp in the associated orbifold, thus distorting the underlying manifold 7%, and then
contracting the stable direction of the geodesic flow. The notion of discretisation of geodesics
(Definition allows us to construct multitemplates even when the considered orbifold has
no cusp.

The plan of the article is as follows. First, we recall some basic definitions—linking number,

orbifold, unit tangent bundle, geodesic low—and prove two general lemmas on left-handed
flows in Section[2 We then treat the case of the torus in Section[3] Next, we turn to hyperbolic
orbifolds and construct a template for the geodesic flow on every orbifold in Section [4] where
we prove Proposition We then complete the case of orbifolds of type (2, ¢, 00) in Seotion
We investigate the geodesic flows on surfaces of genus g and complete the case of the orbifolds
of type (2,3,4g+2) in Section@ Finally, we construct the counter-examples of Proposition
and discuss further questions in Section [7]
Acknowledgement. I thank my advisor Etienne Ghys for numerous discussions on left-
handed flows and templates and for his strong support. I also thank Maxime Bourrigan for
answering many of my topological questions, and Patrick Massot for explaining me the content
of J. VanHorn-Morris article [28].

2. DEFINITION AND MOTIVATION

Here we set the general context. We recall the needed definitions, and establish some
preliminary results.

2.1. Orbifolds and their unit tangent bundles. A Riemannian, orientable, 2-dimensional
orbifold % is a topological surface locally modelled on a Riemannian surface modulo actions
by finite subgroups of rotations [27]. More precisely 3 consists of a topological surface Xy,
with an atlas of covering charts ¢; : V; — U;, where {U;} is a collection of open sets of Xy
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closed under finite intersections, {V;} is a collection of open sets of a Riemannian surface, such
that to each Vj is associated a finite group I'; of rotations of V; identifying U; with V;/T';, and
such that every change of charts qﬁi_l o ¢;, when defined, consist of isometries.

In the sequel we will restrict ourselves to orbifolds which are also good, meaning that the
whole underlying space Xy admits a finite degree covering by a surface (which needs not to
be compact), say ¥o. In this case, the orbifold ¥ can be identified with the quotient 3¢/’ for
some discrete subgroup I'g of Isom™ (). The universal cover of X is defined as the universal
cover of 3, hereafter denoted by . One can then identify ¥ with the quotient /T for some
discrete subgroup I' of Isom+(2~]). The latter subgroup is called the fundamental group of X.
If 3 has a constant curvature, then Y is either the sphere S?, the Euclidean plane R? or
the hyperbolic plane H?. Accordingly, the orbifold ¥ is said to be spherical, Euclidean, or

hyperbolic.

By definition, the orbifold structure transports the metrics, so that each point x of a good
2-orbifold admits a neighbourhood of the form V, /T, where V,, is an open disc in Y and T,
a finite group of rotations. The order of I';, is called the index of x. A point with index 1 is
called regular, otherwise it is called singular. It is important to note that singular points are
isolated.

We now turn to the unit tangent bundle of an orbifold. Let ¥ be a good 2-orbifold with
fundamental group I'. Then the action of I' on )y by isometries is properly discontinuous. The
unit tangent bundle T'Y of ¥ is defined to be the quotient of the total space TY of the unit
tangent bundle of 3 by the action of T' on the tangent space of ¥, i.e., T'% = (T'%)/T.

Let us illustrate this definition with two examples which are important for the sequel.
Assume that D? is an open disc. Its unit tangent bundle 7'D? then consists of the set of unit
vectors tangent to D?. The unit tangent vectors based at a given point form a circle, so that
the manifold T'D? is a solid torus.

Consider the action of Z/pZ on D? by rotations of angles that are multiple of 27 /p. The
action is not free because the center of D? is fixed. It is the only point with non-trivial
stabilizor. The quotient D?/(Z/pZ) is then an orbifold. Write it DZ%. Since the action of Z/pZ
is by isometries, it can be extended to the unit tangent bundle 7'D?. Given a point with polar
coordinates (z,0) on D?, and a unit tangent vector making an angle ¢ with the horizontal
direction, an element k of Z/pZ then acts by k - (r,0,¢) = (r,0 + 2kn/p, ¢ + 2km/p). The
action on T'D? is therefore free, and the quotient 7'D?/(Z/pZ) is a manifold. It is the unit
tangent bundle Tl]D)IQ) to ]D)Iz). It is also a solid torus (see Figure .

As every point in an orbifold admits a neighbourhood of the form D? or Df, for some p, the
unit tangent bundle of every orbifold is obtained by gluing solid tori of type 7'D? or Tl]D)Z%.

2.2. The geodesic flow on the unit tangent bundle. Assume that > is a good 2-
dimensional orbifold. The orientation of ¥ defines an orientation on the tangent planes,
whence an orientation on T13.

Assume now that ~ is an oriented curve drawn on X. For p lying on 7, let T),() be the
unit tangent vector to v at p. Then the family of all pairs (p,T,(7)) is an oriented curve
in T1%, the lifting of v in 7', In particular, the geodesics of ¥ are C;nonically lifted to T'3.
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FIGURE 1. On the left, the unit tangent bundle T'D? to a disc D?. It is a solid
torus. The action of Z/pZ is indicated with an arrow. It is a screw-motion. A storey
of the tower is a fundamental domain. The space located between two vertical walls
is another one. In the center, the storey model. It is obtained by identifying the floor
and the ceiling of a storey with a —27/p-rotation. Every meridian disc intersects each
fiber p times, except the central fiber, which it intersects only once. This model shows
that the unit tangent bundle is a Seifert bundle [21I]. On the right, another model for
the quotient, the slice-of-cake model, obtained by identifying two vertical walls with
a translation of length 27 /p (assuming the thickness of the cake to be 27).

More precisely, for every point p in ¥ and every direction v in S!, there exists a unique
geodesic Ypo of ¥ going through p with the direction v. Now, for ¢ in R and (p,v) in T3, let

us define ®@x(t, (p,v)) to be (p,v') where 2’ is the unique point of Yy a6 distance t from p
and v’ is the unit tangent vector to Yoo at p/. Then ®y is a continuous map of R x 7%

to T'Y and, by construction, it is additive in the first coordinate. Hence ®y, is what is called
a complete flow on T'Y, and it is naturally called the geodesic flow on T'Y. By construction,
the liftings of the geodesics of ¥ in T'Y are the orbits of the geodesic flow (but they are not
geodesic in T3, since no metric has been defined there).

2.3. Linking number and left-handed flows. Assume that M is a 3-manifold, and that K,
K' are two null-homologous links in M. Then there exists an oriented surface S (or even
a simplicial 2-chain) with boundary K that is transverse to K’. The intersection points
between S and K’ then have an orientation, and their sum is defines the algebraic intersection
number Int(S, K’). Adding a closed 2-chain to S does not change the intersection number
since K’ is null-homologous, so that Int(S, K’) depends on K and K’ only. It is the linking
number of the pair K, K’ denoted by Lk(K, K').
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In the last fifty years, several works [24] (3, [14], [5] have emphasized the interest of considering
a vector field as a long knot, or, more precisely, of considering invariant measures under the
flow as (infinite) invariant knots. Following this idea, given a flow ® on a rational homology
sphere M, one can generalize the standard definition of the linking number for pairs of periodic
orbits to pairs of invariant measures (see Arnold’s work on asymptotic linking number [3]).
Ghys then suggested to look at those flows for which this linking number is always negative,
and called them left-handed flows. We refer to the original article [I5] for a discussion about
the motivations and the properties of these flows. Below we only mention the result explaining
that, for a flow with many periodic orbits, left-handedness can be deduced from the negativity
of the linking numbers of pairs of periodic orbits only. A flow ® is said knot-shadowable if,
for every ®-invariant measure pu, there exists a sequence (7, ) of periodic orbits of ® such that
the sequence of the Dirac measures on v, weakly converges to p.

Lemma 2.1. Assume that ® is a knot-shadowable flow. If the linking number of every pair
of periodic orbits of ® is negative, then ® is left-handed.

Proof. Assume that u, ¢/ are two invariant measures. Let (v,), (7/,) be two distinct sequences

of knots that converge to u,u’. Write t,,t), for the lengths of 7,,7, respectively. Then
1
tnty,

negative. O

it is known [I5] that the sequence Lk(vn,),) converges to Lk(u, u'), which is therefore

Lemma [2.1] is useful only for flows that are knot-shadowable. This is the case for flows
of Anosov type, and in particular for the geodesic flows on hyperbolic 2-orbifolds. Thus a
positive answer to Question [I.2] follows from a positive answer to Question[I.1} In short, if the
curvature is negative, we only have to compute linking numbers of pairs of knots for proving
left-handedness.

2.4. Coverings. We complete this introductory section with an observation about the be-
haviour of linking numbers under quotient. The result is easy, but useful, as it gives new
left-handed flows from old ones. It will be crucial for establishing the left-handedness of @y, , ,

(Proposition [6.14]).

Lemma 2.2. Assume that M, M are two S-manifolds with a covering map 7 : M — M of
index n. Let K,K' be two null-homologous links in M. Write K,K' for the m-equivariant
lifts of K,K' in M. Then the links K,K' are null-homologous, and we have Lk(K,K') =
1Lk(K,K").

Proof. Let S be an oriented surface with boundary K. Write S for its m-equivariant lift in M.
Then we have 7(8S5) = K, hence 3S = K. Therefore K is also null-homologous. Since S
and K’ are m-equivariant, every intersection point of S with K’ lifts to n intersection points
of S with K’, so that Lk(K, K') = LLk(K, K”) holds. O

If we have a covering map between two orbifolds IR Y., then the map extends to the unit
tangent bundles and it commutes with the geodesic flow. Lemma[2.2)then implies that the sign
of the linking numbers in T3 are the same as those in T'Y, so that, if the geodesic flow Py,
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is left-handed, so does ®yx. For instance, as the geodesic flow on T'S? is left-handed [15], we
deduce that the same holds for any quotient of S?, such as the Poincaré sphere 3235

Corollary 2.3. Let X be a spherical 2-orbifold. Then the geodesic flow Py is left-handed.

3. BIRKHOFF SECTIONS FOR THE GEODESIC FLOW ON A FLAT TORUS

This section is devoted to the geodesic flow ®p2 on a torus with a flat metric. Our aim
is to establish Theorem B. By the way, we shall completely classify Birkhoff sections up to
isotopy and show that (almost) every collection of periodic orbits bounds a Birkhoff section

(Theorem and Corollary [3.13).

We first parametrize the geodesic flow on a flat torus and define the polygon Pol, asso-
ciated with a finite collection ~ of periodic orbits (§ Next, we describe how Birkhoff
sections may look like, first in the neighbourhood of so-called regular levels (§7 then in the
neighbourhood of critical levels with the help of helix boxes (§ Finally, pieces are glued

together in §[3.4]

3.1. The polygon associated with a collection of periodic orbits. We show how to
encode finite collections of periodic orbits of the geodesic flow @12 in T'T? using polygons
whose vertices have integral coordinates.

Throughout this section, T? denotes the torus equipped with a flat metric. By definition, T?
is a quotient R?/Z? of the Euclidean plane. For all p,p’ in T2, the translation by p’ —p carries
the tangent plane at p to the tangent plane at p’. Therefore, the unit tangent bundle T T?
is T? x S'. Next, the geodesics of T? are induced by those of R2. Their liftings in T'T? are
horizontal, that is lie is some level T? x {#} for some @ in S!. Hence we have @2 (¢, (z,y,0)) =
(x +tcosh,y+tsind, ). If tan @ is a rational number, then, for every initial value of (z,y),
the associated orbit goes back to (z,y) in finite time, and, conversely, every finite orbit of &2
is of this type. In such a case, we define 8 to be the slope of the orbit, and the unique pair
(p, q) of coprime numbers verifying tanf = p/q s to be he code of the orbit.

Assume that v is a finite collection of periodic orbits of ®p2. We define the combinato-
rial type of v to be the sequence ((ni1,01,p1,q1),-.., (nk, Ok, Dk, qx)), such that ~ consists of
ny1 orbits of slope 61, plus ny orbits of slope 62, ..., plus ng orbits of slope 6, we have
tanty = p1/q1,...,tan 0, = p/qx, and 01, ..., 6, make an increasing sequence in [0, 27).

Lemma 3.1. Assume that vy is a finite collection of periodic orbits in ®y2. Let ((n1,,01,p1,q1),
ey (M, Ok, Piy @) De the combinatorial type of . Then the image of v in Hy(T'T?;7Z) is zero

if and only if > ni(pi,q:) = (0,0) holds.

Proof. The image of an orbit with slope (p,q) in Hy(T'T?;Z) admits the coordinates (p, g,0)
in the standard basis. Indeed, the class of a straight line with slope (p, ¢) on T? is (p, ¢) in this
basis. As the lifts of the geodesics of T? in T'T? are horizontal, the third coordinate of the lift
of a geodesic in T'T? is constant. Therefore the third coordinate of its image in Hy(T'T?; Z)
is zero. The result then follows from the additivity of homology. O

Here comes our main definition.
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Definition 3.2. (See Figure ) Assume that « is a null-homologous collection of periodic
orbits in ®p2 with combinatorial type ((n1,61,p1,q1), ..., (N, 0k, Pk, qx)). The polygon Pol,
of 7 is the k-vertex polygon of R? whose jth vertex is Y 7_, ni(p;, ¢;) for j =1,..., k.

/

V11

F1GURE 2. A null-homologous family v of periodic orbits of the geodesic flow,
and the associated polygon Pol,.

Owing to the order condition on the slopes in the combinatorial type, Pol, is a con-
vex polygon and, as p; and ¢; are coprime for every ¢, the only points on the boundary
of Pol, that have integral coordinates are the vertices plus the intermediate points of the form

S nalpi, ai) + m(pj, q5) with m < n;.

3.2. Transverse surfaces and regular levels. We now turn to surfaces in 7'T? transverse
to ®p2, with the aim of connecting the existence of such a surface with boundary v with the
properties of the associated polygon Pol,.

Hereafter, for every 6 in R /277, the subset of 7' T? made of the points whose last coordinate
is @ will be called the th level of T'T?, denoted by Lgy. As T'T? is trivial, every level is a copy
of T2. If « is a null-homologous collection of periodic orbits in ®2 with combinatorial type
((n1,01,p1,q1), -y (nk, Ok, Pk, qr)), the k angles 6;, as well as the associated levels of T'T?
will be called v-critical, whereas the other angles will be called v-regular.

Lemma 3.3. Assume that 7y is a null-homologous collection of periodic orbits of ®p2 and S
is a surface with boundary v whose interior is transverse to ®p2. For 0 in R/2nZ, let Sy
be the intersection of S with the level Lg. Then, if 0 is y-reqular, Sy is a union of disjoint
circles. If 6,0" are ~v-regqular and the interval (6,0") contains no ~y-critical angle, Sy and Sy
are homologous.

Proof. By construction, the geodesic flow @12 is tangent to Lg whereas, by assumption, S is
transverse to ®1r2. Hence S and Ly are transverse. Therefore their intersection is a closed 1-
dimensional submanifold of Ly, hence a union of parallel disjoint circles. The family (S;):c(9,0
provides an isotopy between Sy and Sj. These (multi)-curves are therefore homologous. [

In the above context, the multicurve Sy is called a stratum of S. For every y-regular value 0,
the stratum Sy is cooriented by the geodesic flow. By convention, we orient it so that the
concatenation of the chosen orientation and the orientation of the flow gives the standard
orientation on the torus Ly. With this choice, the class [Sp] is a well-defined element of the
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group Hi(Lg;7Z), the latter being canonically identified with H;(T?;Z). Then, Lemma
implies that [Sp| is constant when 6 describe an interval of y-regular values. Our goal now is
to understand how [Sy| evolves when 6 passes a 7y-critical value.

3.3. Packing into helix boxes. VanHorn-Morris [28] constructed open book decompositions
of the torus bundles over the circle by using special boxes and controlling how they match
with each other. We use now the same elementary boxes for decomposing and describing the
surfaces whose boundary is transverse to @2 around critical levels.

Definition 3.4. A positive (resp. negative) heliz box is a cube containing an oriented surface
isotopic to the surface depicted on Figure [3] called the heliz. The oriented boundary of the
helix is made of seven oriented segments lying in the faces of the cube, plus one segment,
called the binding, lying inside the cube and connecting two opposite faces of the cube.

FIGURE 3. A positive helix box on the left, a negative helix box. The bindings
are in bold. The orientations of the helices are represented by dotted and
crossed circles. The interiors of the helices are transverse to the direction of
the binding, positively or negatively oriented according the sign of the box.

The next result asserts that almost every surface transverse to @2 is locally made of helices.

Lemma 3.5. (See Fz'gures@ and.) Assume that v is a null-homologous collection of periodic
orbits of 12 and S is a surface with boundary v whose interior is transverse to ® 2. Let v;
be an element of v. Denote by Ly, the vy-critical level containing ;. Then there exists a small
tubular neighbourhood N.,, of v; of the form ]vy; — €,vi + €[x]0; — 0, 0; +n[ in T2 x St such that

(i) if the interior of S does not intersect the level Lg,, then the surface S is negatively
transverse to ®p2 and is locally isotopic to ~y; X [0,0 + €] or to v;x]0 — €,0];

(it) otherwise N, can be decomposed as the union of a positive number t., of heliz bozes,
which are all positive (resp. negative) if S is positively (resp. negatively) transverse to @z,
and such that ; s identified with the union of the bindings, S is the union of the helices, and
the horizontal and vertical faces of N, are identified with the horizontal and vertical faces of
the helix boxes.
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FIGURE 4. Case (i) of Lemma when the surface S is negatively tranverse

to the flow and the vector 7, always points in the same half-space. The bound-
ary 05 is in bold.

Proof. We write N, for the tubular neighbourhood ]; —e, v;+¢€[x]6; —n, 0;+n[ of v; in T* xS!.
For every point p on 7;, we denote by 7, the unique unit vector orthogonal to ;, tangent
to S, and pointing inside S. If € and 1 are small enough, then the intersection of S with N,
is isotopic to the surface generated by p + tn, when p describes 7; and ¢ is non-negative. We
choose for N,, such a neighbourhood. The surface Ly, induces a trivialization of the unit
normal bundle vp(y;) of 7;, so that we can define ¥(p) to be the angle between 7, and Ly, .
We then set d., to be the degree of the map 1 : ; ~ St — v, (7;) ~ S

If S is positively transverse to ®p2, then 1)(p) increases as p describes the curve ;. Therefore
the degree d,, of 9 is positive. We then obtain the helix boxes by cutting N,, at each point
where 7, points upward. This happens d,, times, thus yielding d,, positive helix boxes. The
result when S is positively transverse follows with ¢, = d.,.

If S is negatively transverse to the flow, then 1 is a non-increasing function. Indeed, since
the geodesic flow is not parallel to +;, but rotates when level changes, the vector 7, can be
constant and the application ¢ can be of degree 0, see Figure[d If so, the surface S lies on one
side of Ly, only. It is therefore isotopic to ; X [6;,6; + €] or to 7;x]0; — €, 6;]. Otherwise, the
degree d,, of v is negative, and the situation is similar to that in the positive case. The only
difference is that the negativity of the intersection of S with ®p2 forces S to wind in the other
direction, so that we obtain —d., negative boxes. The result then follows with ¢, = —d,,. [0

In the above context, the tubular neighbourhood N, of ~; is called a product-neighbourhood
of 7;. If the interior of S does not intersect the level Ly, (case i), then N,, is assumed to be
decomposed as a union of ¢,, helix boxes.

Lemma [3.5] gives the structure of a surface transverse to the flow around its boundary. The
next result decomposes such a surface around an entire critical level.

Lemma 3.6. Assume that v is a null-homologous collection of periodic orbits of ®ye with
combinatorial type ((ni,61,p1,q1), .-, (nk, Ok, Pk, qr)), and S is a surface with boundary ~
whose interior is transverse to ®r2. Let i be an element of {1,...,k}. Call v;1,...,%in, the
ny elements of v lying in the y-critical level Ly,, and suppose that N, .. s Ny, ., are the

assoctated product-neighbourhoods. Then all the curves 7;1,...,%vin are parallel, and all the
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numbers t, |, ... sy, are equal to some number, say tg,. Moreover, if tg, is not zero, there

exists a neighbourhood of Ly, of the form ]Lgi_g,Lgﬁe[ which is tiled by n; X ty, helix boxes
such that, in each helix box, the surface S coincides with the heliz.

Proof. By definition of ®2, every orbit in the level Lg, has direction 6;. At the expense
of possibly restricting some of them, we can suppose that all rectangular tubular neighbour-
hoods N, ; have the same height 2. Then the complement of their union N, , U---UN,, in
the horizontal thick torus |Lg,_, Lg, 4| is also the union of n; solid tori admitting a rectangu-
lar section. We denote these tori by M; 1,..., M;,,. At the expense of possibly permuting the
names, we can suppose that, for every j, the torus M; ; lies between the tori N,, ; and N, ..
Since S is transverse to the flow, its intersection with M ; is transverse to the direction 6;.
Therefore it is the union of a certain number, say s; ;, of discs whose boundaries are meridian

circles in the solid torus M; ;.

If, for some j, the number ¢, ; is zero, then the two vertical boundaries of N, ; do not
intersect S. Therefore, the intersection of S with M;; is empty, which implies s;; = 0.
Considering the other boundary of M; ;, we get t,, .., = 0. By induction, we get t,, . = 0 for
every j.

If, for some j, the number ¢., . is not zero, then N, ; is tiled into ¢, . helix boxes. There-
fore the boundary between M, ; and N,, ; is an annulus that intersects S along ., ; vertical
segments, and we deduce s;; = t,, ;. Considering the other vertical boundary of M; ;, we
get s;j = ty, ;,,, and therefore ¢, .., = 1, .. By induction, all numbers ¢,, ; are equal to some
fixed number, say ty,. Finally, since the intersection of S with M; ; consists of discs only, we can
extend the solid tori NV, ; so that their union covers the whole neighbourhood |Lg, ., Lo, |-
Since every N, . is tiled by tg, helix boxes, the thick torus |Lg, ,, Lg, 15| is tiled by n; x ty,
helix boxes. ]

Considering for a moment the angular parameter 0 as a (periodic) time, a surface transverse
to @2 can be seen as the movie of its strata. By Lemma [3.3] the strata vary continuously
as long as 6 is regular. Using Lemma [3.6] we can now describe how the strata evolve when 6
crosses a critical value.

Lemma 3.7. In the context of Lemma[3.6] if the surface S is negatively transverse @2, then
for every ~y-critical angle 0;, the homology classes of the strata Sp,—, and Sp, 1, are related by
the srelation

(3.8) [So,+n) = [So;—n] + ni(pi, i)

If S is positively transverse to ®p2, then we have

(3.9) [So,+n) = [So;—n] — ni(pi, @i)-

Proof. We continue with the notation of Lemma [3.6] In particular, we assume that the neigh-
bourhood | Lg, ., Lg, 4| of Lg is tiled with n; x tg, helix boxes. The boundary of the intersection
of the surface S with | Lg, _,,, Lg, 4| consists of of pieces of three types: the curves v; 1, ..., %in,;,
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L0i+77

Ly

Lo;—n

FIGURE 5. On the left, a surface S with boundary v transverse to @2 in a
neighbourhood of a ~y-critical level Ly, of the form |Ly, —n, Ly, + n[. It is tiled
by five negative helix boxes. Here, there is only one component, say v; 1, of v
in Ly, (in red), that is, we have n; = 1. The intersection of S with one of the
five helix boxes is depicted. Its boundary consists of one fifth of the curve ; 1,
one fifth of the stratum Sp,;, (on the top, in blue), one fifth of Sp,_, (on
the bottom, in green), and of vertical segments which are glued to the four
other boxes. On the top right, the projection on a horizontal torus. On the
bottom right, the homological relation between n;(p;, ¢;), [Sp,—y] and [Se,n]
stated in Lemma [3.7] here with n; = 1, (ps, ¢;) = (=1,2), [Sp,—y] = (2,1) and
[So,4n] = (1,3). According to Lemma (1), the area of this homological
triangle (5/2) is half the number of helix boxes involved in the tiling of the
neighbourhood of the ~-critical level Ly, .

the stratum Sp,_,, and the stratum Sp,,,. Therefore, the sum of these curves, with the ori-
entations induced by the surface S, is null-homologous in T'T?. After projection on T?, this
sum is still zero.

When S is negatively transverse to ®r2, then the two orientations on Sp,_, given by S and
by ®12 agree, whereas the two orientations on Sg,;, are opposite. We thus get n;(p;, ¢;) +
[S6,—n] — [S6;4n] = 0. Similarly, when S is positively transverse to ®r2, the two orientations
on Sy, are opposite, whereas the two orientations on Sy, 1, agree, yielding Equation . O

3.4. Correspondence between pointed polygons and transverse surfaces. We can
now associate with every surface transverse to ®p2 a polygon in the lattice Hy(T?;Z) that
encodes the homology classes of all strata simultaneously.

Definition 3.10. Assume that -« is a null-homologous collection of periodic orbits of ®p2 and
S is a surface with boundary v whose interior is transverse to ®p2. The pointed polygon Polg
of S is the polygon of R? whose vertices are the points [Sy] for 6 a y-regular angle.

Lemma 3.11. (i) In the above context, let ((n1,61,p1,q1),-- ., (Nk, Ok, Pk, qr)) be the combina-
torial type of v and Poly be the polygon associated with ~y. If S is negatively transverse to @2,
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then the polygon Polg is a pointed copy of Pol,. If S is positively transverse to ®p2, then Polg
is obtained from Pol, by a reflection.

(i) For every ~y-critical angle 0;, the number of heliz boxes used for tessellation a neigh-
bourhood | Lg,_y, Lg,+y| is equal to the area of the parallelogram spanned by the vectors [Sp, ]
and [Sp, 4y

Proof. By Lemma the polygon Polg has at most k vertices. Now if S is negatively
transverse to ®r2, then implies that, for every i, the two vertices [Sp,_,] and [Sg, 4]
of Polg differ by the vector n;(p;, g;). On the other hand, if S is positively transverse to ®re,
then [Sp,_,| and [Sp,4,] differ by —n;(ps, ;). This proves (7).

For (ii), we see on Figure [5| that, for every i, every helix box used in the tiling of the
neighbourhood |Lg,_, L, +y[ of Ly, is above an intersection point between the projection of
the curve Sy, , and the projection of one component of v in Lg,. Therefore the number of helix
boxes in the tiling is the absolute value of the intersection number of the classes [Sg,,] and
ni(pi,q;) in Hi(T?;Z). As depicted on Figure right, this number coincides with the absolute
value of the intersection number of [Sy,_,] and [Sp,,], which is the area of the parallelogram
spanned by these two vectors. O

Assume that S is a surface transverse to ®r2 and Lg is a regular level of T'T? for S, so
that the stratum Sy is a smooth multicurve. Then we obtain another surface S’ transverse
to @2 by cutting S along Sy, gluing a copy of Lg, and smoothing. We say that S’ is obtained
from S by horizontal surgery. It is easy to check that the polygons Polg and Polg, coincide
although the surfaces S and S’ are not isotopic. Therefore pointed polygons do not encode
all information about the isotopy type of transverse surfaces. Nevertheless, we will see that
horizontal surgeries are the only freedom left by polygons.

For ~ a null-homologous collection of periodic orbits of ®2 with associated polygon Pol,,
we write A(y) for the area of Pol, (which is an integer by Pick’s Formula) and I(v) for the
number of integer points in the strict interior of Pol,. We can now state and establish the
main result.

Theorem 3.12. (i) The map S — Polg induces a one-to-one correspondence between surfaces
negatively transverse to the flow ®p2 with boundary made of periodic orbits, up to isotopy and
horizontal surgeries, and convex polygons with integer vertices in R? containing the origin in
their interior or on their boundary.

(i) The map S + Polg induces a one-to-one correspondence between negative Birkhoff
sections for the flow ®2 and convex polygons with integer vertices in R? containing the origin
their (strict) interior.

(7i1) There is no surface positively transverse to ®p2 with boundary made of periodic orbits.

(iv) Assume that v is a null-homologous collection of periodic orbits of ®p2 with associ-
ated polygon Pol,. Then for every surface S transverse to ®r2 with boundary vy, the Euler
characteristic of S is —2A(~y) and the genus of S is I(7).

(v) Assume that v,~' are two null-homologous collections of periodic orbits of ®p2. Then
ther linking number Lk(y,~') is equal to A(y) + A(Y') — A(yU%).
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Proof. (i) (See Figure |§|) Assume that S is a surface negatively transverse to ®p 2. Let
be its boundary and ((n1,601,p1,¢1),- - -, (nk, Ok, Pk, qx)) be the combinatorial type of ~. For
every y-regular angle 6, the stratum Sy is transverse to the direction 6. Therefore, if Sy is
non-empty and with the orientation of Sy defined in Section [3.2] the basis formed by a vector
tangent to Sy and a vector with direction 6 is direct. Hence the basis formed by the direction
of [Sp] and the direction @ is also direct. Let Dy be the line oriented by € passing through the
vertex Sy of Pol§. The previous observation implies that the point (0,0) is on the left of Dy.
Let 6; be the smallest ~y-critical angle larger than #. Then, when 6 tends to 6;, the line Dy
tends to the line supporting the edge of Polg with direction #;. Therefore, the point (0,0)
is also on the left of the edge of Polg with direction 6; (the boundary of Polg being oriented
trigonometrically). If the stratum Sy is empty, we have [Sp] = 0, and (0, 0) is also on the left
the line Dy. Taking all critical value of # into account, we deduce that the point (0,0) is on the
left of all oriented edges of Polg, and therefore lies in the interior or on the boundary of Polg.
Thus the map Pol® associates with every surface transverse to ®p2 a polygon in Hi(T?;Z)
containing (0,0) in its interior.

FIGURE 6. The Polygon Polg for a surface S negatively transverse to the ge-
odesic flow. For a v-regular angle 6, the directions [Sp] and 6 form a direct
basis. The point (0,0) is on the left of all edges of Polg, and therefore in the
interior or on the boundary of Polg.

For the surjectivity of the map Pol°, suppose that a convex polygon P containing (0,0) is
given. Let Vj be the bottom-most vertex of P. Then construct a surface S a follows. Start
with a stratum Sy that is transverse to the horizontal direction and whose homology class
is V. Let (p1,q1) denote the edge of P starting at V. Then erect helix boxes whose bindings
have direction (p1, ¢1) so that their bottom faces match with Sy. By Lemma the boundary
of the helices in the top faces form a curve whose homology class is Vj + (p1, 1), so that the
stratum corresponds to the second vertex of P. By continuing this procedure of gluing helix
boxes whose direction is prescribed by the edges of P and whose number is dictated by the
strata that have been constructed previously, we erect a surface which is negatively transverse
to @2 and whose associated polygon is P.

For injectivity, note that the surface S can be recovered from Polg by the above procedure.
The only choice arises when 6 has described the whole circle S' and comes back to 0: we have
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to glue the last floor of helix boxes to the stratum Sp. This gluing is not unique, but two such
gluings precisely differ by a horizontal surgery.

(74) Assume that S is a negative Birkhoff section for ®p2. As S is transverse to the flow,
we can apply the result of (i) and deduce that the polygon Polg contains (0,0) in its interior
or on its boundary. Since S is a Birkhoff section, it intersects all orbits of ®g2. In particular,
this implies that for every v-regular value of 6, the stratum Sy is non-empty. This excludes
the case where (0,0) lies on the boundary of Polg.

(797) Assume that S is a surface with boundary positively transverse to ®p2. Then we can
apply the same argument as in the negative case (7). The only difference is that, for every
~-regular angle 6, the basis formed by [Sp] and @ is indirect. Therefore, the point (0,0) lies
on the right of the line with direction 0 passing through the vertex [Sg]. Thus (0,0) is on the
right of all edges of PolZ, whereas the boundary is oriented trigonometrically, a contradiction.

(1v) In every helix box, the helix surface consists of a topological disc, of eight edges, seven
of them being on the boundary of the box, and of eight vertices, two of them being in the
center of a face of the box and the six others in the middle of an edge of the box. Therefore,
the contribution of a helix box to the Euler characteristic is 1 — (1+7/2) + (2/2+ 6/4), that
is, —1. Assume that S is a surface transverse to ®r2 with boundary v, and let Polg be the
associated polygon. Let 6,6 be two 7-regular angles such that there is exatly one ~y-critical
value in ]6,6'[. Then, according to Lemma the number of helix boxes used for tiling the
thick torus lying between the two levels Ly and Ly is twice the area of the triangle whose
vertices are (0,0), [Sp] and [Sy/]. By summing over all v-critical levels, we obtain that the
total number of helix boxes in twice the area of Polg, hence twice the area of Pol,. As the
genus of S is given by the formula x(S) = 2 — 2¢(S) — >_ n;, Pick’s Formula for the area of a
polygon with integral vertices gives the formula for the genus.

(v) By definition, the linking number Lk(vy,~’) is the intersection number of a surface with
boundary v and the collection +’'. It is well-defined when ~ is null-homologous, since, in
this case, the intersection number does not depend on the choice of the surface. Here, let
us pick a Birkhoff section for ®p2 with boundary ~, and call it S,. Let ((n},07,p},4}), ---,
(n, 0, D), q),) be the combinatorial type of 4/. Then the intersection number of S, with a
periodic orbit of @2 of slope (p}, ¢;) is the opposite of the area of the parallelogram spanned
by the vectors [Sy| and (p},q;). Since the area of Polg equals the area of Pol,, the jigsaw
puzzle depicted on Figure [7] shows that the sum of the areas of these parallelograms is equal
to A(yUy') — A(v) — A(Y)- O

Corollary 3.13 (Theorem B). Assume that ¥ is a quotient of T2 on which any two geodesics
intersect. Then for every pair v, of periodic orbits of ®y,, the inequality Lk(v,~") < 0 holds.

Proof. By Lemma it is enough to shows that the lifts 4,4’ of 7,7 in T'T? have a negative
linking number. As the projections of v,~" on ¥ intersect, the projections of 4,4’ on T? also
intersect. Formula (v) in Theorem shows that the linking number of two collections is
zero if and only if the latter consist of parallel lifts of one geodesics on T?. The hypothesis on
the intersection then discards this situation. O
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FIGURE 7. On the left, the polygon Polg associated to a Birkhoff section S
of @2, and the homology classes of the elements of a family 7/, each of them
based at the vertex of Polg corresponding to the class of the intersected stratum
of S. In grey, the parallelograms whose areas add up to the intersection number
of S with the collection 4/. On the right, the polygon Pol,y, is decomposed
into three parts whose areas respectively are the area of the grey zone, the area
of Polg, and the area of Pol..

Theorem |3.12|(i7) implies that almost every null-homologous collection of periodic orbits
of @2 bounds a Birkhoff section. The exceptions are the collections whose associated polygon
contains no point with integral coordinates.

For example, let v be an unoriented periodic geodesics on T2. Let (p, q) be its code. Denote
by v, v— its two lifts in T T2 (one for each of the two possible orientations of ). Then 7
and «_ are periodic orbits of ®12, and their sum is null-homologous. The associated polygon
is made of one segment with coordinates (p,q) only. As predicted by Theorem B) (i), the
union of v4 and y_ bounds two non-isotopic surfaces which are transverse to @2, namely the
two vertical ribbons in T'T? consisting of the unit tangent vectors which are based on v and
which point into one of the two sides of 7. None of these two ribbons is a Birkhoff section
for @2 since each of them only intersect half of the orbits.

For another example, consider the three orbits with respective slopes (1,0),(0,1) and
(—1,—1). They bound three non-isotopic surfaces transverse to ®p2, but they do not bound
any Birkhoff section, since the associated polygon is a triangle whose interior contains no point
with integral coordinates.

A last example, which was a surprise for us, is given by the four orbits with slopes (£1,0)
and (0,%1), in which case the associated polygon is the unit square, again containing no
integral point inside.

As explained in the introduction, Birkhoff sections give rise to open book decompositions
for the underlying 3-manifold, here for unit tangent bundle 7'T?, a 3-torus. Planar open
book decompositions, that is, decompositions where the pages are of genus 0, have been often
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investigated. Theorem B (iv) implies that none of them comes from Birkhoff sections of the
geodesic flow on the torus.

Corollary 3.14. The geodesic flow on T'T? contains no Birkhoff section of genus 0.

Since helix boxes contribute —1 to the Euler characteristics, and since every helix box
involves one boundary component, Birkhoff sections with genus 1 are very peculiar.

Corollary 3.15. A Birkhoff section of genus 1 for ®q2 is made of exactly one helix box per
boundary component.

In the article where he introduced the now called Birkhoff sections [6], Birkhoff gave ex-
amples by constructing sections for the geodesic flow on the unit tangent bundle of every
surface X. More precisely, a collection of periodic orbits of @y is said symmetric if, for every
element of the collection, the orbit corresponding to the opposite orientation of the underlying
geodesics also belongs to the collection. Birkhoff showed that every large enough symmetric
collection  of periodic orbits of &2 bounds a section. In the case when ¥ is a torus with a
flat metric, the symmetry hypothesis implies that the polygon Pol, is symmetric. The section
constructed by Birkhoff corresponds to the surface S whose associated polygon Polg in pointed
in the center, that is, contains (0,0) as symmetry center.

4. TEMPLATES FOR THE GEODESIC FLOW OF A HYPERBOLIC ORBIFOLD

We turn to hyperbolic orbifolds. The aim of this section is to show how the geodesic
flow associated with an arbitrary hyperbolic 2-orbifold ¥ can be distorted onto a certain
multitemplate (Definition lying inside T'¥. The important property of this distortion is
that its restriction to periodic orbits is an isotopy (Proposition , so that the topological
properties of the periodic orbits of the geodesic flow can be studied using this multitemplate.
What makes the construction possible is that distinct periodic geodesics on a hyperbolic
orbifold never point in the same direction at infinity.

Let 3 be an orbifold, and let I" denote its fundamental group. Our strategy for constructing
the template adapted to the geodesic flow @y is as follows. We first choose an adapted
tessellation of the universal cover H? of 3, namely, a I'-invariant tesselation such that every
tile contains at most one point whose stabilizor has order larger than 2. We also choose in
every tile a smooth immersed graph pairwise connecting the sides in such a way that the graphs
associated with adjacent tiles match on their common side. We then distort all geodesics in the
hyperbolic plane into quasi-geodesics consisting of edges of the graphs so constructed (§
Next, we lift this deformation in the unit tangent bundle T'¥ by forcing every tangent vector
to always point in its initial direction at infinity (§ Then the image of the deformation
at time 1 provides the expected template. It naturally carries a flow, namely the image of the
geodesic flow by the deformation (§.

4.1. Discretisation of geodesics. The construction starts with a tessellation of the hyper-
bolic plane that behaves nicely with respect to the orbifold.

Definition 4.1. Assume that I' is a Fuchsian group. Let ¥ denote the orbifold H?/I'. A
tessellation 7 of H is adapted to % if
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(7) T is I'-invariant;

(7i) every tile of T is a convex polygon with finitely many sides (and possibly vertices
on OH?);

(7i1) every tile of T contains at most one singular point in its interior, and points of index
at most 2 on its boundary;

(1v) every tile of T has a finite stabilizor in T’;

(v) if T, T" are adjacent tiles of T separated by an side eq, then, for all other sides e of T
and €’ of TV not both adjacent to e, the two geodesics respectively containing e and €’ do not
intersect.

For example, assume that 3 is a hyperbolic compact surface. Consider a convex polygonal
fundamental domain D for the action of 7r1(X) on H2. Then the tessellation formed by the
images of D under the action of m1(X) is adapted to ¥. Note that Condition (éii) prevents
fundamental domains from providing tessellations adapted to arbitrary orbifolds. However,
it is easy to see that, when a Fuchsian group I' and a I'-invariant tessellation 7 are given,
one can always subdivide 7 and adapt it to H2/T. Condition (v) in Definition may look
strange. It is nevertheless important in order to guarantee that the ribbons of the template
we will subsequently construct do not intersect (Lemma .

We now define, for every tessellation that is adapted to some orbifold, a graph that is dual
to the tessellation, and on which we will then distort the geodesics of H?. We have to choose
some additional data, namely to pick points on the sides of the tessellation and to choose edges
connecting them, but the construction will not depend on these choices, i.e., the templates we
will eventually associate to two such choices will be isotopic. In the sequel, we use the word
“side” when referring to the tiles of a tessellation, and “edge” when referring to a graph.

Assume that P is a polygon in H? with finitely many sides eq,...,e,, and suppose that
v1,..., U, are points on eq,...,e, respectively. Let Q?D be a complete unoriented graph with
vertices v1, ..., v, which is immersed in P so that its edges are orthogonal to the sides of P,
and such that two edges intersect at most once (see Figure . Call internal graph of P
associated to vq,...,v, the orientation cover Gp of Q%, that is, the oriented graph with twice
as many edges as Q?D, each of them corresponding to an edge of Gp oriented in one of the
two possible ways. If e;,e; are two sides of Pjg442, we denote by cij the oriented edge of Gp
connecting e; to e;.

Assume now that I' is a Fuchsian group, and that 7 is a tessellation adapted to H?/T. A
set V of points in H? is called a T -marking if every point in V lies on the common boundary
between two tiles of T, every side between two tiles of 7 contains exactly one element of V,
and V is I'-invariant.

Definition 4.2. Assume that I' is a Fuchsian group, that 7 is a tessellation of H? adapted
to H2/T', and that V is a T-marking. Suppose that in every tile T of T, there is an internal
graph Gr associated to V, and that the set of internal graphs is I'-invariant. Then the union G
of all internal graphs Gr is said to be a graph dual to T and associated with V.

It is easy to see that dual graphs exist for every tessellation. In the sequel, we will omit
to mention the set ¥V of marked points, since its choice does not influence the construction.
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FIGURE 8. An internal graph. On the left, the unoriented graph G%. On the right,
an oriented edge of Gp.

A graph dual is a sort of discretisation of the hyperbolic plane adapted to a given Fuchsian
group. If the Fuchsian group is of the first kind, that is, when its limit set is the whole
boundary at infinity d,,H?, the limit set of any graph dual to any adapted tessellation is also
the whole circle d,oH?. We now introduce a procedure that distorts the geodesics of H? to
curves included in the dual graph Gp.

Definition 4.3. Assume that I' is a Fuchsian group of the first kind, and that 7 is a tessella-
tion adapted to H/T'. Let G be a graph dual to 7. Then a discretisation of geodesics on G
is a family consisting, for every geodesics 7 in H?, of

(1) a curve embedded in G that crosses exactly the same tiles of T as 7,

y
(74) an isotogy fra [0, xR — H? between 7 and Yy i€ 2 smooth map such that

f%v(t) describes v when ¢ describes R, f%’,v(t) describes - when ¢ describes R, and, for every

s in [0, 1], the curve f%,y (R) is a smooth embedded curve in H.

In addition, the family is supposed to be I'-invariant in the sense that, if g(y) = 4 holds for

some ¢ in I', then 9(17_) = Z,T and g(ffrg(t)) = f%l' (t) hold for every (s,t) in [0,1] x R.

The invariance condition implies in particular that, if v is the lift of periodic geodesics
on H/T", then Y projects on a periodic curve on H/T. More generally, it implies that all
choices commute with the covering H — H/T.

Also, assume that a geodesic vy enters a tile T' by a side e; and leaves it by e;, then its
discretisation Y visits the same tiles as 7 before and after T'. Therefore Y contains the
edge cg? of Gr.

Given a hyperbolic 2-orbifold and an adapted tessellation, the existence of discretisation of
geodesics easily follows from the definition.

A discretisation of geodesics contracts many geodesics together. Indeed, if two oriented
geodesics 7,7’ have one end in common, their discretisation will necessarily coincide on some
neighbourﬂogd of their positive end. Discretisation will nevertheless be useful for studying
I'-periodic geodesics.
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4.2. Lifting the discretisation to the unit tangent bundle. Given an orbifold H?/T" and
some additional data, using the discretisation procedure of Definition we distorted the
geodesics of H? to some discrete graph. We now lift this procedure to the unit tangent bundle,
in view of subsequently constructing the expected template for @y .

Definition 4.4. Assume that I' is Fuchsian group of the first kind, that 7 is an adapted
tessellation of H?, that G is a graph dual to 7 and that a discretisation of geodesics on G
has been chosen. Then the associated tearing map of the unit tangent bundle is the map Fr
from [0, 1] x T'H? to T'H? defined as follows. For (p,v) in T H?, let 7 denote the geodesics
containing p and oriented by v, let f, 7 denote the associated isotopy, let t, be the real
parameter such that p = f277(tp), and let v, be the positive extremity of v in OH2. Then
F#(p) is defined to be the unique unit tangent vector based at f;;fr(tp) and pointing in the
direction of v L

Note that a tearing map is not continuous. Indeed, since the graph Gy is discrete, there
are pairs of arbitrarily close tangent vectors that are mapped to different edges of G. Also,
a tearing map can be injective when the time s is close to 0, but its time 1 map may, for
instance, collapse some horocyle. For these two reasons, a tearing map is not an isotopy.
Nevertheless, if we restrict to I'-periodic geodesics, that is, to geodesics which are g-invariant
for some g in I'; we have

Lemma 4.5. In the above context, the restriction of Fr to vectors tangent to I'-periodic
geodesics is an isotopy.

Proof. Suppose that F7(p1,v1) = Ff(p2,v2) holds for some s in [0,1]. Let 7,:7, denote
the two geodesics tangent to vy and v at p; and pp respectively. As the vectors Fi(py,v1)
and F7(p2,v2) point in the directions (v )+ and (7,)+, their equality implies (v )+ = (7,)+-
Therefore 7 and 7, 8get closer with an exponential rate. By hypothesis, both are I'-periodic,
hence compact in H/I'. Therefore they coincide. By definition of Frr, the equality F7(p1,v1) =
F3(p2,v2) implies ffsrﬁ1 (p1) = ]”7‘"’-711 (p2). Since fT»ll is an isotopy, we deduce p; = py. Finally,
since the vectors vy, vo point in the same direction, they also coincide. ]

4.3. Multitemplates for the geodesic flow. We have now constructed a deformation of
the unit tangent bundle that preserves the topology of periodic geodesics. Our task is now
to determine the image of the deformation. In particular, we want to show that it lies inside
some specific object that we call a multitemplate.

Definition 4.6. (See Figure [9]) Assume that M is a 3-manifold. A ribbon in M is an
embedded surface in M diffeomorphic to [0, 1]? equipped with the horizontal flow generated
by 8%. If Rib is a ribbon, we denote by Xgj, the vector field on it.

Then a multitemplate S in M is a branched surface equipped with a vector field Xg, that
is a union of finitely many ribbons, and is such that

(1) two distinct ribbons Riby, Riby of S can only intersect along their vertical edges, which
are then called branching segments,

(7i) at every point on a branching segment, there are finitely many ribbons, and the asso-
ciated vector fields all coincide,
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(7i1) for every ribbon Rib of S, the vector field Xgj, coincide with Xg on Rib.

An orbit of a multitemplate S is a complete immersion of the real line R is S that is

_—>
-,

/
Qj
FIGURE 9. A multitemplate in R3. Along the branching segment, there are, from
left to right, 1, then 2, then 1, and then 0 escaping ribbons.

everywhere tangent to Xg.

The difference with the usual notion of a template |7, [13] is that there is no uniquely defined
semi-flow, but a multiflow. Indeed, at a point of a branching segment, there may be several
escaping ribbons, and therefore several possible futures. If there were at most one escaping
ribbon at every branching point, we would speak of a template. This will only happen in our
construction when the starting tessellation consists of ideal polygons. Note also that there
may be points that are visited by no orbit of the multitemplate, as for instance the points on
the right of the branching segment on Figure [9}

Let us go back to the construction. In order to specify the ribbons making the expected
multitemplate, we describe the set of directions at infinity that are pointed in by elements in
the image of a deformation F71—

Definition 4.7. (See Figure[l0]) Assume that I' is Fuchsian group of the first kind, that 7 is
an adapted tessellation of H?, and that G is a graph dual to 7. Let T be a tile of T, and e;, ¢,
be two sides of T. Then the visual interval associated to (e;, e;) is the interval consisting of
the positive extremities of geodesics connecting a point of e; to a point e; in OsoH?. We denote
it by Visg . The associated product-ribbon is the product of the oriented edge CZZ connecting
e; to e; in G7 by the interval Vise! in T'H?, seen as the product H? x 9, H2. We denote
it by Ribgl. It is equipped with the horizontal vector field whose flow goes along the curves
ce x {*} at speed 1.

In the above context, we denote by gT the union in T'H? of the product-ribbons associated
with all oriented edges of Gr. Its quotient under the action of I' is denoted by Br 7.

Lemma 4.8. In the context of Deﬁm’tion@ l§7- is a multitemplate in T H?Z.

Proof. By definition, the set 57- is the union of several ribbons, which are in one-to-one
correspondence with the oriented edges of the graph G. Let T1,T5 be two adjacent tiles of 7.
Call e the common side of 71 and T3, and let p be a vertex of Gy lying on e. Since the tiles
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of T are supposed to have finitely many sides, there are finitely many ribbons that intersect
the fiber T*{p} of p. Since all the edges of Gr with p as an extremity are orthogonal to e,
the associated product-ribbons all are tangent in T'{p}. Now the product-ribbons that have
an extremity in 7'{p} decompose into four classes depending on whether they lie above T}
or above T5, and on whether they correspond to edges of Gy starting at p or ending at p.
Let (p,v) be a tangent vector based at p. Suppose that v points into Tj. Then the only
ribbons that may contain (p,v) are those coming from geodesics with a positive extremity on
the same side of e as T5. In this case, the vector field on any such ribbon at (p,v) is the unit
vector orthogonal to e, and pointing into T7. Therefore the vector field on all such ribbons
coincide. Similarly, if v points into T», the vector fields of all ribbons that contain (p,v) are
equal at (p,v) with the unit vector orthogonal to e, and pointing into 7.

There remains to show that product-ribbons are disjoint outside the fiber of the vertices
of Gr. Since product ribbons are in the fibers of edges of Gy, this is equivalent to showing
that, if two edges c¢’, cet of Gr intersect inside a tile, say T', of T, then the associated visual
intervals VlSei and Vis¢! are disjoint. Indeed, in this situation, at the expense of possibly
exchanging the indices and performing a symmetry, we can suppose that the edges e;, ex, e;, ¢
are cyclically ordered. Let 7 _ be the geodesics joining the right extremity of e; to the left
extremity of e;, and ’y . be the geodesics connecting the left extremity of e; to the right

extremity of e;. Define 7k , and ’Ykl similarly. Then VlSe; is the interval [(v] )+, (7' )], and

irj
Visg! is [(77 Y D+ (7k D+ (see Flgure . The geodesics 'y cand 1ntersect 1n81de T, so that
(Vk.1)+ lies on the left of ( )+ on d,,H?. Therefore Vlse; and Visg! are disjoint. O
Visg!
Visg!
€j
€l
€k
€;

FIGURE 10. The visual intervals Vis¢/, Visg! associated to two intersecting edges
of Gr. Since Visg? and Visg! are dlsJomt the assomated ribbons Ribg7, Ribg! do not

intersect.
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In the above context, since all steps in the construction of ET are I'-invariant, the quo-
tient Br 7 is also a multitemplate. We can now state the main result of this section.

Theorem 4.9. Assume that I' is Fuchsian group of the first kind, T is an adapted tessellation
of H?, G7 is a graph dual to T, and a discretisation of geodesics on Gy has been chosen. Let
Fr denote the associated tearing map of T'H?, and Br. 1 denote the associated multitemplate
in TYH?/T. Then the action of Fr on T'H/T induces an isotopy of every collection of periodic
orbits of the geodesic flow ®y2,p onto a collection of periodic orbits of By. Moreover, if all
tiles of T are ideal polygons, then Br 1 is a template, and Fr is a one-to-one correspondence
between the periodic orbits of ®yz r and the periodic orbits of Br 1 that do not lie in the
boundary of Br r.

FIGURE 11. Some ribbons of a template above a tile that is an ideal polygon. Out-
going ribbons do not overlap, since the associated visual intervals are disjoint.

Proof. Let v be a geodesic of HZ. Then its discretisation Y is included in the graph Gy. Let
p be point on v and v be the tangent vector to v at p. Then the vector Fi((p,v)) lies in a fiber
over Gr. By construction, for every edge cg’ of G7 contained in Yo the direction N belongs to
the visual interval Vis¢?, so that the part of the curve F-(y) above c¢! lies in the ribbon Rib’
and points towards 4. Therefore F%—(’y) sits in the multitemplate gT, and is everywhere
tangent to the vector field X By By Lemma@, the restriction of F'y to I'-invariant geodesics
is an isotopy. Since everything commutes with the action of I'; we can mod out by I', so that
the projection of Fr realizes an isotopy between the periodic orbits of the geodesic flow @2 /-
and their images.

Assume now that the tiles of 7 all are ideal polygons. Let p be a vertex of Gr. Then all
visual intervals associated with the edges of Gy ending at p are disjoint. Hence, for every
tangent vector v in the fiber T'{p}, there is at most one escaping ribbon. Therefore gfr is a
template, and so does Br 1.
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Suppose now that y(¢) is an orbit of X g, hot lying in the boundary of 1§7— and g-invariant
for some g in I'. Let 7y be its projection on H2. It is a g-invariant curve in Gy. Since all
tiles of T are ideal polygons, 7 is a simple curve. The assumption that y(¢) does not lie in
the boundary of gT implies that the two extremities of vy are distinct. Let v, be the unique
geodesics in H connecting (y9)— to (79)+. Then 7, is also g-invariant. It turns out that g is
then the discretisation of ;. Therefore, F'; maps the vectors that are tangent to ; to vectors
that are tangent to (). O

FIGURE 12. Some ribbons of a template above a tile that is not an ideal polygon.
Both incoming ribbons (on the left) and outgoing ribbons (on the right) overlap, since
the associated visual intervals overlap.

To conclude this section, we introduce some terminology that will be useful when Theo-
rem is applied in the sequel. Assume that 7 is a tessellation of the hyperbolic plane,
and that G7 is an associated graph. Let T be a tile of 7 with n sides. Then the part of the
template BNfr that lies above T, that is, the intersection of gT with 71T, consists of n(n—1) rib-
bons, as depicted on Figure 11| and Figure In particular, there are n branching segments
on which the template flow enters the solid torus 7T, which we call incoming segments, and
n branching segments where the template flow escapes 71T, which we call outgoing segments.
We call such a part of a template a switch tower. If T has a trivial stabilizor in I', then the
part of the template Br 7 above the quotient of T by I' is also a complete star.

Suppose now that 7" has a non-trivial stabilizor, say I'r, in I". Then the part of Br 1
above T'/T is the quotient of By by I'p. If I'y has order d, then the part of the template has
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n(n —1)/d ribbons. In particular, if T' is a regular n-gon and if its stabilizor 'y is of order n,
then there are only n—1 ribbons in the quotient, all of them joining a unique incoming segment
to a unique outgoing segment, see Figure [I3] We call such a part of a template an elevator.

FIGURE 13. On the left, a simplified version of some ribbons of a template above
some tile with an order 5 symmetry. Here we displayed only 4 of the 20 ribbons, and
only one orbit per ribbon; the other ribbons are obtained by iterating a screw-motion
(remember Figure . In the middle, the quotient of the unit tangent bundle by the
order 5 symmetry, in the storey model. This is what we call an elevator. On the right,
the same elevator, but in the slice-of-cake model. We show, for every ribbon, its two
possible deformations on the boundary.

5. GEODESIC FLOW FOR THE ORBIFOLDS OF TYPE (p, ¢, 00)

We now turn to the linking properties of orbits associated with hyperbolic orbifolds of
type (2,q,00) with ¢ > 3. The goal of this section is to prove the first case of Theorem A,

that is, to prove that the linking number of every two orbits of &y, _ is negative.

The idea is to apply the construction of Section [4 thus obtaining a template that describes
the topology of the periodic orbits of ®yx, (§, and then to compute the linking number
of a pair of periodic orbits. Actually, we do more and first compactify the unit tangent
bundle into a lens space (§. As a lens space is a rational homology sphere, the linking
number is defined for every pair of links. We then show that the linking number of every pair
of periodic orbits of the template is negative (Proposition and case (a) of Theorem A).
By the way, we consider a slightly more general context and construct a template for every
orbifold of type (p,q,00) with p > 2. The advantage of this approach is to also provide a
precise formula for the linking number of a periodic orbit of ®x _ with the fiber of the cusp
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in the unit tangent bundle, that is, with the link that has been added for the compactification

(Proposition [5.7)).

5.1. A template for &y, . Here we introduce orbifolds of type (p,q,0), choose adapted
tessellations of the hyperbolic plane, and describe the associated templates. In the case p =
2,q = 3, we recover Ghys’ template for the geodesic flow on the modular surface [16], and, in
the more general case p = 2,q > 3, we recover Pinsky’s template [26].

Until the end of Section [5] we assume that p, ¢ are fixed integers satisfying p > 2 and ¢ > 3.
Since 1/p + 1/q < 1 holds, there exists a hyperbolic triangle PQZ in H?, with the two
vertices P, inside H? with respective angles 27/p and 27/q, and the vertex Z lying at
infinity on OH?. For convenience, we also suppose P,(Q,Z trigonometrically ordered. Let
I} 4 be the group generated by the symmetries around the sides of PQZ, and let I', ; be
its index 2 subgroup consisting of orientation preserving isometries, often called the Hecke
triangular group. The group I'y, acts properly and discontinuously on H?. The action is
not free since, for example, P and ) have stabilizors of order p and ¢ respectively. The
quotient H?/ I'p.4 is then an orbifold, with two singular points of order p and ¢, and one cusp.
We call it ¥, 4 -

FIGURE 14. The tessellation of H? by copies of the ideal polygons Ap et Ag), here
with p =3 and ¢ = 5.

Fork=1,...,q—1,let ZZ; be the image of Z by a rotation of center @) and of angle 2k7/q.
Then Z, Z(}, ceey Zgil are the vertices of an ideal g-gon, say Ag. Let I'g be the stabilizor of @)
in I'y 4. Then A is invariant under the action of I'g.

Assume now p > 2. Define similarly the points Z;, ey Zg_l on OxoH? and the polygon Ap.

Note that the points Z; and Zg_l coincide (Figure E left). Call e the geodesics ZZ}. Then
the polygons Ap, Ag lie on different sides of e, hence they are distinct. One easily sees that
the images of Ap and Ag under I'j ; cover the whole hyperbolic plane, and therefore form
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a tessellation (Figure . We denote it by Tp. The sides of the tiles of Tpg exactly are
the images of e under I', ;. Since all tiles are ideal polygons, no two sides in the tessellation
intersect inside H2. Also, every tile is a copy of either Ap or A, and therefore contains
exactly one singular point in its interior.

The unit tangent bundles to Ag/I'g and Ap/I'p are both non-compact solid tori (remember
Figure [1)). The unit tangent bundle T'%, , » is then obtained by identifying the tangent
vectors that constitute the boundaries of the unit tangent bundles to Ag/T'g and Ap/I'p.
These are exactly the images in the quotient of the tangent vectors based on e, that is, the
image of T'e in the orbifold Ypg,00-

1
Zp
p
THZ}
P ‘p
Z
2
Zy Q
Cp
Ca T{Z}
71 Z
q
Q “
72 74 P “a
73 /
! P

Q

FIGURE 15. On the left, the tiles Ap and Ag, with p =3 et ¢ = 5. On the right a
fundamental domain for the action of I', , on H?. The curves c,, ¢, and T*{Z} are
also depicted. They lie on the common boundary T'e of the two solid tori T*Ap /T'p
and T1 AQ/FQ.

We still assume p > 2. Let M be the intersection of the segment PQ with e, let BSp_,¢ be
the set of all tangent vectors at M pointing into Ag, and let BSg_,p be the set of all tangent
vectors at M pointing into Ap. Then the template Br, , 75, given by Propositionconsists
of two parts: one elevator (Figure sitting inside the solid torus T'Ag/T'g with ¢ — 1
ribbons, say Rib(ll, .. .,Ribg_l, all connecting BSp_,g to BSg_,p, and one elevator sitting
inside T'Ap/I'p with p — 1 ribbons, say Ribzl,, . ,Ribg_l, all connecting BSg_,p to BSp_,q.

If p = 2, then, with the above definition, Ap is a bigon with an empty interior. In this
case, the tessellation Tp g consists of copies of Ag only. In the quotient of H? by I'pq, the
edges of Ag are quotiented by order 2 rotations, so that the unit tangent bundle of ¥, o
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is obtained by considering the solid torus TlAQ /T'g, and identifying pairs of points on the
boundary with the order 2 rotation around P.

For convenience (especially in view of the pictures in Section , we slightly modify the
tessellation in this case. We consider a tile A’ which is the e-neighbourhood of Ap, and
we change Ag accordingly. If € is positive, the sides of the tiles are no longer geodesic, so
that the construction of Section [4] does not apply. We rather see € as infinitely small. The
unit tangent bundle of ¥ ; - is then the union of TlA’Q /T'q, which is infinitesimally smaller
than T1Aq /T, with the infinitesimally small solid torus T'A’/T'p. The role of the latter
solid torus is to identify pairs of points on the boundary of TIA’Q /To.

Mimicking the case p > 2, we denote by M the point on the segment [PQ)] that is at
distance € from P, by BSp_,g the set of all tangent vectors at M pointing into A’Q and
by BSg_,p the set of all tangent vectors at M pointing into A’,. Then Br, ,7po consists of
one elevator in TlA’Q/I‘Q with ¢ — 1 ribbons, say Rib;, .. .,Ribgfl, all connecting BSp_,

to BSg— p, and one ribbon in TlA}/Fp connecting BSg_,p to BSp_,q.

5.2. Compactification and coordinates. The unit tangent bundle T'Y,,~ is a non-
compact 3-manifold with fundamental group Z. This can be seen in the previous discussion by
considering a loop of tangent vectors based along a horocycle centered at Z, and checking that
this loop is not null-homologous. For addressing Question [I.1] we want to compute linking
numbers in TlEp,qpo.

As stated in the introduction, we will make a more general computation by first compact-
ifying TIEWLOO into a rational homology sphere, and then compute linking in the resulting
manifold. Since ¥, , + has one cusp, a natural compactification that does not change the
homology type consists in adding a boundary-circle. For TIEWI’OO, this corresponds to the
addition of a boundary-torus. As we want a compactification with trivial first rational homol-
ogy group, we need to fill this torus. A natural choice is to fill the boundary-circle with a disc
and to lift this filling. But this choice is not appropriate for the hyperbolic structure, and a
more adapted choice is to force all vectors tangent to a given horocycle to bound a disc in the
compactification. These two compactifications are defined according to whether we see the
boundary circle as a hole or a cusp. Actually, there is one filling of the torus, and therefore one
compatification by a circle for every choice of a Euler number, thus leading to a fiber bundle
with the chosen Euler class (see Pinsky’s thesis [26]). The hole-like filling corresponds to Euler
number 0, while the cusp-like filling has Euler number —1. This leads to the following

Definition 5.1. The hyperbolic compactification T Y, 4 o of TlEp,q,oo is obtained by adding
a fiber associated to the cusp Z, that is, by considering the topology induced by the compact-
ification of ¥, 4 « in the hyperbolic disc.

The compactification T'%, ; ~ is obtained by gluing the two solid tori T'Ag/T'g and
T'Ap/Tp (with A" instead of A in the case p = 2) along their boundaries. It is then a lens
space. In order to describe it, let us introduce some notation (see Figure . We write Tle
for the 2-torus that is the boundary between T'Ag/Tg and T'Ap/T'p. We define az to
be the loop in TTe describing the fiber TY{Z} with the trigonometric orientation, and cp

to be the curve consisting of tangent vector based on € and oriented by the geodesics going
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through P. We define cgp in the same way. We also consider the set Dp of all vectors
based on points of Ap and pointing in the direction of Z, and its quotient Dp under the
projection T'Ap — T'Ap/T'p with the induced orientation (see Figure . We write 0Dp
for the oriented boundary of Dp. We define Dg and 0Dg in the same way.

Lemma 5.2. (i) The set Dp is a meridian disc of the solid torus T'Ap/Tp.

(i7) The homology classes [cp] and [cq] form a basis of Hy(T'e;Z). In this basis, we have
the decompositions [az] = (1,1), [0Dp] = (p — 1,—1) and [0Dg] = (—1,q — 1).

Proof. (i) The disc Dp is contractible in T'Ap and its boundary belongs to the bound-
ary T1(OAp). Therefore its quotient Dp is also contractible in TYAp/T'p, and its bound-
ary dDp belongs to the boundary T1(A p /T p), which is, by definition, the 2-torus Tle. The
loop dDp is not contractible in Te because its projection on the basis is not. Therefore Dp

is a meridian disc in T'e.

Q1 Q2

P

FIGURE 16. On the left, the meridian disc Dp, with p = 5. It is the set of all vectors
pointing at Z. On the right, the union of its iterated images under the rotation of
angle 27 /p. Tt is the set of all vectors pointing at one of the p vertices of Ap. The
meridian disc Dp (Lemma is obtained by restricting to a fundamental domain,
for example the tinged part. On the bottom, the p —1 intersection points between cg
and 0Dp (the leftmost and the rightmost vectors are identified in the quotient). The
unique intersection point between cp and 0D p is the vector based at Z with a squared

origin.

(i1) We write - for the intersection form on the torus Hy(T'e;Z). By definition, and as
indicated on Figure the three curves cp, cg and az have one point in common, namely the
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unit tangent vector based at Z and oriented by outgoing geodesics. Therefore, we have

|[ep] - [eQll = l[az] - [ep]| = llaz] - [cQ]| = 1,

so that the classes [cp] and [cg] form a basis of Hj(Tle;Z). We orient the 2-torus T'e in
such a way that the basis ([cp], [cq]) is positive. The signs of the intersections [az] - [cp] and
laz] - [cp] can be determined by checking that the concatenation of the loops cp and cq is
isotopic to az, so that, in the basis ([cp], [cq]), we have [az] = (1,1).

In order to determine the coordinates of [0Dp|, we compute the intersection numbers with
the basis vectors. For the intersection between [0Dp| and [cp], we see on Figure |16 that there
is only one vector in [0Dp] N [cp|, namely the vector based at Z and oriented by outgoing
geodesics. For the intersection between [0Dp] and [cg], we have to count the vectors emerging
from ) and pointing into one of the vertices Z]]f . There are p — 1 such vectors, depicted
on Figure [I6] Once again, the signs can be determined by checking that the loop dDp is
isotopic to the concatenation of p times c¢p and one time ayz, taken backwards, whence the
relation [0Dp| = (p — 1, —1).

The coordinates of [0Dg] are determined in the same way. 0

FIGURE 17. The median torus Tle, in the basis (cp,cq), here with p = 5 and
g = 3. The hyperbolic compactification T'%, , - is obtained by gluing two solid
tori T'Ap/T'p and T1Ag/T'g, with respective meridian 0Dp and 0Dg, along Tle.
The fibers of the points of e are the curves on Tle that are parallel to az.

We can now deduce the topology of TlEp’qvoo.

Lemma 5.3. The hyperbolic compactification T1YE, ; o of the unit tangent bundle to the orb-
ifold X 4 00 15 diffeomorphic to the lens space Lpg—p—qp—1, the circle added when compactifying
being a (p,q)-torus knot drawn on a median torus of Lpg—p—qp—1-

Proof. (See Figure ) We continue with the same notation. Since T1%, , o is obtained by
gluing the two solid tori T'Ap/I'p and T1Ag/T'q, it is a lens space. By Lemma the
two curves 0Dp, 0D are respective meridians in the two solid tori. Using their coordinates,
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p—1 -1
-1 qg-—1
intersects D¢ once, it is a parallel for the solid torus T'Ag. As cq intersects p—1 times dDp,

we deduce that their intersection number is

‘ = pg —p — q. As the curve cq

the 3-manifold m is the lens space Lpg—p—g.p—1-

The circle that has been added when compactifying is the fiber az of the point Z. By
Lemma it intersects p times the circle dDp, and ¢ times dDg. Therefore it is a (p, q)-
torus knot O

Remark 5.4. Since (p—1)(¢—1) =1 mod pg — p — ¢, Brody’s theorem asserts that the lens
spaces Lpg—p—qp—1 and Lpg_p—q 41 are diffeomorphic. This can be seen in the above proof by
exchanging p and q.

Remark 5.5. One can check that the alternative compactifications of 7't 2p,q,00 associated with
other Euler numbers can be obtained by cutting along T'e, making a transvection along the
curve az, and gluing back. This changes the manifold into Lipg—p—q rp—1 for some k in Z, see
Pinsky’s thesis [26] for more detail.

We now have a full description of the template Br, , 75, , and of how it embeds into T3, 4 0o
(see also Figure . It is worth noting that in the case p = 2,¢ = 3, the compactifi-
cation T'%, ; ~ is the 3-sphere, the fiber az of the cusp is a trefoil knot, and the tem-
plate Br, , 7p, is Lorenz’ template, as stated by Ghys [16].

5.3. Linking with the fiber of the cusp. Forp > 2, ¢ > 3, we use now the template Brp’q’prQ
for computing the linking number in T1%, ; o between a periodic orbit of ®x  _ and the
(p, ¢)-torus knot az that has been added when compactifying 7%, ; o (Proposition. This
computation has been done in the case p = 2,¢ = 3 by Ghys [16]. In this case, the linking
number equals the Rademacher function of the underlying geodesics—a function of interest in
number theory [22]. As before, we assume that we are given a triangle PQZ in H?, that ', , is
the associated Hecke triangular group, that 7p g is the associated adapted tessellation of HZ2,
and that Br,

Let 7 be a geodesic of H whose extremities are not lifts of the cusp of X g,00, that is, 7

Tp.q 18 the associated template.

and vy are not in the orbit I',4(Z). Then picking an arbitrary starting point on it, v is
determined by a starting tile Ty and a bi-infinite code ...u'~1vi-1y?0pioyi1ydt | describing
how v behaves in each tile of the tessellation Tpg. Precisely, if v enters a copy of Ap by a
side, and goes out by another side that is obtained from the entering one by a rotation of
angle 2i7/p, then the corresponding letter is u’. Similarly, when v enters a copy of Ag, the
corresponding letter v/ describes how to pass from the entering side to the outgoing side. As
Ap has p sides, every index i is between 1 and p — 1. Similarly, every index jj lies between
1 and ¢ — 1. Considering another starting tile induces a shift of the code. If two geodesics are
obtained one from the other by the action of an element g of I, 4, then their starting tiles are
also obtained from one another by g, and their codes coincide. Therefore, there is a one-to-one
correspondence between codes up to shift and geodesics on the orbifold X, ; o not pointing
into the cusp. Moreover, if a geodesic on X, 4 o is periodic, then its code is periodic, that is,
of the form (u®t ...v/m)%. In this case, we call the word u' ...v/m which is assumed to be of
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0Dp

cp ayz
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FIGURE 18. The projection of the template Br, 75, on the 2-torus TTe, here
with p = ¢ = 4. The source of the projection is the fiber T1{P}, inside the solid
torus T'Ap/T'p. On the top left, the part of Br, , 75, lying inside T*Aq/T'g. On
the top right, the part of Br, , 75, lying inside T'Ap /T'p. Note that the two pictures
differ by a transvection. This is due to the choice of the compactification. Chang-
ing the compactification of T'%, , » leads to another transvection for the identi-
fication. Since the two solid tori are glued outgoing normal vs. incoming normal,
the two pictures have opposite orientations, namely the front/back order of the rib-
bons is reversed. On the bottom left, the vectors [cp], [cg], [az], [0Dp] and [0Dg] in
H,(T'e;Z). The slope —1 of [cp] explains the transvection on the top right picture.
On the bottom right, the directions of the two possible deformations of the ribbons
that constitute Br
Rib;’d, Ribfz’g and Ribfl’d. The key point for proving the negativity of linking num-
bers (Proposition is that, in each of the two vertical intervals between BSp_,g
and BSg_, p, all ribbons go in the same direction.

b0 Tr.o 00 Te. The four colors correspond to the four types Rib;’g ,

33
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minimal possible length, a reduced code of the periodic geodesic. Different reduced codes for
a given periodic geodesic differ by a cyclic permutation of the letters.

We now define an invariant of periodic geodesics that will be useful for expressing the
linking number of their liftings in 7%, ; - with the fiber of the cusp. Assume that v is a
geodesic in H? with code ...u!-tvi-1yf0pioy?iyit | For a more symmetric expression, we
set ¢ = ir —p/2 and j;, = jr —q/2. Then the discretisation ZTPQ of v lies in the tree depicted
in Figure By definition, for every index k, the discretisation ij o turns by an angle 2mi) /p
in the corresponding copy of Ap and by an angle 27j; /¢ in the cdrresponding copy of Agq.

Definition 5.6. Assume that v is a periodic geodesic on ¥ 4 . Let utvly®2 L vim be a
reduced code of y. Then the wheel turn Oyhee1(7) of v is the rational number >, ) /p+7; /q.

Here is the expected evaluation of the linking number between a geodesic of @y, and
the fiber of the cusp in terms of an analog of the Rademacher function.

Proposition 5.7. Assume p > 2,q > 3. Then, for every periodic orbit v of the geodesic

flow &y, we have

P,q,007

pq
G)Wheel (’7)7

Lk(y,az) = ——— gl
pPa—p—q

where v 1s the projection of v on Xp g oo-

The principle of the proof is as follows. Write r for the number pg —p — ¢. Since the funda-
mental group of Lyq—p—q p—1 i Z /77, we know that for every element [c] of H(Lpg—p—q.p—1;Z),
the cycle r[c| is a boundary of an integral 2-chain. The idea will be to construct a 2-chain with
boundary r[y] which is transverse to az, and then to count the intersection number with az.
Since + is isotopic in the complement of az in an orbit of the template Br, , 75 ,, we can then
make use of the available information about the position of the latter in T'%, ; .

In order to implement the argument, let us write i for the orbit of Br, , 75, whose code
is (u'v')%, where (we recall) u'v'u?v?...u*v¥ is a reduced code of v. Note that h is one of
the two periodic orbits of Br, , 75, that is not isotopic to a periodic orbit of the geodesic
flow, but to a periodic orbit of the horocyclic flow. Write ap for the curve that describes the
fiber T1 P. It is the core of the solid torus T1!Ap /T p. Similarly, write aq for curve describing

the fiber T'Q. We begin with a preliminary computation.

Lemma 5.8. In the above context, the cycle [7y] is homologous in lep,q,oo to the 1-cycle
m

3 ([h} T (it — Dlap] + G — 1>[aQ1).

k=1

Proof. Let ' be the image of v under the deformation F71'p@' Then ~' is an orbit of the

template Br, , 75, ,- Suppose that v first travels along the ribbon Ribll), and then along Ribé.
Then it is homologous to A in T 1Zp,q7oo during the corresponding interval of time, and its

1. Otherwise, the homology class of v in the complement of az during

code starts with u'v
one period is obtained by adding to h the cycles consisting in traveling along Rib,, backwards

and then along Rib?™! frontwards, for every i between 1 and iz, and by also adding the cycles
P
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consisting in traveling along Ribé backwards and then along Rib{;"l frontwards, for every j
between 1 and ji. Every cycle in the first category is equal to [ap], so [ap] is added ij—1 times.
Every cycle in the second category is equal to [ag], so [ag] is added jj — 1 times. O

We can then complete the argument.

Proof of Proposition[5.7]. In T'Y, ; ~, the cycle h bounds a disc whose intersection number
with az equals —1. Indeed, since h is homologous to a horocyle, the latter bounds a horodisc,
say dj,, which is foliated by horocycles parallel to h. By definition of the compactification, the
family of all vectors tangent to these horocycles extend to the fiber of the cups, and therefore
form a disc in 7%, , « that intersects az in exactly one point, namely the limit of the tangent
vectors. Hence we have Lk(h,az) = —1/r.

Let us turn to Lk(h,az). Write ¢, OD} and 9D/ for the curves cp,dD, and 0D slightly
pushed away from T'e in T'Ap/T'p, so that they do not intersect az. As cg is a parallel

for the solid torus T'Ap/T'p, the cycle r[ap] is homologous in 7%, ; o to 7[c5]. The latter
has coordinates (pg — p — ¢,0) in the basis ([cp], [cq]) of H,(T'e;Z). By Lemma the
cycles [0D}] and [0D]] have coordinates (p — 1,—1) and (—1,¢q — 1), so that r[c}}] equals
(1 —q)[0D}] — [0Df]. On the one hand, [0D,] bounds a meridian disc for TYAp/T'p that
does not intersect az. On the other hand, since 0D, and az intersect g times on TTe, the
curve 9D, bounds a meridian disc for T'Aq/T'q that intersect —q times az. Therefore we

have Lk(ap,az) = g/r. We obtain in the same way Lk(ag,az) = p/r. The result then follows
from Lemma [5.8 O

5.4. Linking number between collections of geodesics. We now restrict to the case p = 2,
and study the linking number between two collections of periodic geodesics of @5, . Our
goal is to show

Proposition 5.9 (case (a) of Theorem A). Assume g > 3. Then, for all collections of periodic
orbits 7,7 of the geodesic flow ®x, , . in T'%9 g.00, the linking number between v and ~' is
negative.

The proof of this statement will occupy the rest of Section [5} The strategy is as follows.
Owing to Proposition it is enough to show that the linking number of every pair ~,~/
of collections of periodic orbits of the template Br, 75, is negative. By Lemma @, the
fundamental group of T3, ; o is Z/(¢ — 2)Z, so that the 1-cycle (¢ — 2)[y] is the boundary
of some chain. What we shall do is to explicitly construct a 2-chain S whose boundary
is (¢—2)[v], and to show that the intersection number of S with 4/ is negative. As the family ~/
lies in the template Br, , 75 ,, working with the 1-skeleton of the template as in the proof of
Proposition is impossible. Instead, we shall choose a particular projection of Br, 75,
on T'e and reduce the problem to computing intersection numbers on Tle. Practically, we
shall construct the 2-chain S as the union of three parts, namely a 2-chain Sgg lying inside the
solid torus T' 1A/Q /T, a 2-chain S3 lying inside the solid torus T'A’, /T'g, and a 2-chain S7 in
the torus T'e. Then we shall show that the intersection number between SZ) and v/ is slightly
positive, that the intersection number between S; and 7' is zero, and that the intersection
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number between S¢ and 7/ is very negative, so that the sum of these three numbers is negative,
as expected.

Let us turn to the construction of the 2-chains SJ, S), and S¢. They will be defined
by glueing discs whose boundaries will consist of elementary arcs, some particular segments
drawn inside the ribbons of the multitemplate Br, , 75 -

As depicted on Figure every ribbon Ribg of Br,, 75, can be distorted in two ways
on Tle, according to whether the ribbon is pushed on its right or on its left (see Figure
again). We denote by Ribé’l and Ribff the two ribbons in Te produced that way. Similarly, the
ribbon Rib,, can be pushed on the right or on the left, and can thus be distorted on two ribbons
on Tle. We denote them by Ribé and Ribj,. What we shall do is to decompose the orbits
of Br, , 75, into pieces lying inside a ribbon, and choose for every such piece a combination

of the two possible projections, so that the sum of these projections is null-homologous in Te
(see Figure . Here is the precise notion.

Definition 5.10. We say that « is an elementary arc (of Br, , 15,) if a is

- (type 1) either a segment of an orbit in Br, , 75, that goes from a point Ay of BSp_,q
to a point A; of BSg—,p and travels along the ribbon Riby for some i between 1 and ¢ — 1;
then we write ol and o for the segments of Te that connect Ay to A; and are orbits in the
ribbons Ribfl’l , Ribff respectively,

- (type 2) or a segment of an orbit in Br, 75, that goes from BSp_,o to BSgp by

travelling along Rib,; then we write ol and o for the deformations of a that are orbits of the

ribbons Ribl, and Riby.

We now choose a canonical projection of every elementary arc to a convenient multicurve.
So assume that a,a’ are elementary of type 1 and 2 respectively, and that the end of «
coincides with the origin of o/. Note that the condition about the ends implies that o is
uniquely determined by a. Then we denote by a, the multicurve consisting of i times o/ and
q—2—1 times ", followed by i times o/ and g — 2 —1 times /. The reason for this particular
choice is the following

Lemma 5.11. Let aq,q ..., an,al, be the decomposition of v into a concatenation of ele-
mentary arcs of type 1 and 2 alternately. Then the union v, of the multicurves (1), (&) r,
s (an)r, (a)x is a multicurve on T'e that is trivial in homology.

Proof. We see on Figure that, for every ¢, the ribbon Ribfl”" (blue on the picture) cuts
the curve az (the vertical boundary on the picture) i times and the curve cg (the horizontal
boundary) —1 times. Similarly, Ribf]’l (orange) cuts az (vertical) ¢ —i times and cg zero time.
In the same way, Rib;, cuts az minus one times and cq one time, whereas Ribfu cuts az one
time and cg zero time.

Suppose that «, o/ are two consecutive elementary arcs of v, with « lying on the ribbon Ribz
for some ¢ and o lying on Rib,. Then the above remark implies that the (non-close) multi-
curve o U o/ has zero-intersection with both ayz and ¢g. By adding the contributions of all
elementary arcs of , we deduce that ~ is null-homologous in T'e. (|



GEODESIC FLOW, LEFT-HANDEDNESS, AND TEMPLATES 37

Rib7?

Ribj?

FIGURE 19. The two projections of Br, , 75, on Tle, with ¢ = 5, in the slide-of-
cake model. The curve ayz is the vertical boundary of the depicted square, while the
curve cq is the horizontal boundary. The solid torus T*A’%/Tp is in front of the
picture, so that we see on the front the two projections of the ribbon Rib,. On the
back, the two projections of each of the four ribbons Rib;, e 7Ribé.

We are now going to define the 2-chains SJ and 522. If o is an elementary arc of type 1,
we denote by Sg' the 2-cycle consisting of ¢ times a disc in TIA’Q /T'q with boundary oo U —at
plus ¢ — 2 — i times a disc with boundary aU —a”. Symmetrically, if « is of type 2, we denote
by S) the 2-cycle consisting of ¢ times a disc in T'A’, /T p with boundary aU —a! plus g—2—1i
times a disc with boundary a U —a’.

Definition 5.12. With the above notation, we define 522 to be the union of the 2-cycles

Sgty.. ., 8¢, and S3 to be the union of the 2-cycles Sgl, e Sg”.

The next step is to complete Sy US() into a 2-chain with boundary 7. Owing to Lemma

this can be done inside TTe. Indeed, the multi-curve 7, divides Tle into a finite number of
regions, say Ri,..., Ry, that can be seen as 2-chains. Since [v,] is zero in Hy(T'e;Z), there
exists an integral linear combination ) | Ax[Rk] with boundary v.. In fact, the coefficients Ay
are defined up to a constant only. With our particular choice of the projection 7., at every
point of BSp_,g or BSg_, p, the number of segments of 7, that come from the left (resp. right)
equals the number of segments that leave to the left (resp. right).

Definition 5.13. Let us choose numbers A;, so that, for every region R; intersecting BSg_, p,
the associated coefficients ); is zero. Then we define S¢ to be the 2-chain > \x Ry.
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Note that, by construction, the boundary of the 2-chain S7 is the multicurve .

At this point, we have associated with the first collection of periodic orbits v a certain
2-chain S5 U 529 U SZ that, by construction, has boundary 7. Let us now consider the second
collection of periodic orbits 4/, which is assumed to be disjoint from . We shall estimate the
intersection number between 4/ and each of the 2-chains 57, Sgg and S, and prove that their
sum is negative. For this, we introduce specific combinatorial data encoding the position of

the collections v and /' inside the template Br, o TP.o"

Lemma 5.14. The collection " does not intersect the 2-chain Sy, and the intersection number
between ~' and SZ—2 is at most

(5.15) > <V;iJ+1>(i—1)bib;+ > Qi;jJH)(q—l—i)bibg,

1<i<j<q—1 1<j<i<q—1

where, for every i between 1 and g — 1, b; (resp. b;) is the number of elementary arcs of
(resp. v') lying in the ribbon Riby,.

FIGURE 20. An elementary arc of 7' (red) may intersect the 2-chain S¢, (green) only
if it lies on a ribbon under the ribbon containing v (blue). Since the projection of this
intersection point corresponds to a positive crossing (see Figure , the intersection
number is +1.

Proof. Every intersection point between 7/ and the 2-chains S, SZ) is the intersection between

one of the discs bounded by an elementary arc, say «, of v and one of its two projections o

or o, and an elementary arc, say ', of 4/. This implies (see Figure that «, o’ project
on T'e on a double point, and that the ribbon containing o’ between T'e and the ribbon
containing «. In particular, these two ribbons have to be different.

On Figure one sees that all intersections between projected ribbons on TTe correspond
to two ribbons of type Ribf]’l and Ribg’l, or to two ribbons of type Rib;”" and Rib{;’". Therefore
no intersection point comes from Ribé or Riby, so that 7" does not intersect S5. We also
see that, for every i, j, the two projected ribbons Ribfl’l and Rib{;l intersect ||i — j|/2] times
transversely, and overlap just before the gluing segment BSq_, p.

The collection of the numbers b; does not determine the position of the orbit v on Br, , 75,
completely. In particular, it does not say whether two orbits on Ribé’l and Ribf;l respectively
will overlap before BSg_, p. Nevertheless, since all projected crossings are positive, we obtain
an upper bound for the intersection number when assuming that two such elementary arcs

always overlap before BSg_, p.
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By construction, there are i b; elementary arcs of v, on Ribf]’l, and (¢ —2 —14)b; on Ribfl’r.
Each elementary arc of type 1 yields at most (|(j —4)/2] + 1)b9- intersection points with
elementary arcs of 4/ lying on Rib} if j > i, and no intersection point of j < . Similarly, for
j < 1, each elementary arc of type 2 yields at most (|(j —17)/2] + 1)b;- intersection points with
elementary arcs of 7/ lying on Ribg. All intersection points are positive, and follows. [

We now compute the contribution of S7 to the linking number of v and 4. For convenience,
weset A=3o. (i—1)(g—1—1)b;.

Lemma 5.16. The intersection number between v' and S¢ is at most

(5.17) STEAED (E=DbY+ > (A (g—1— k)b

j<q/2 k<j i>q/2 k>j

Proof. Since ~' intersects the torus Tle on BS pP—q and BSgp_,p only, we have to estimate
the coefficients \;, of the associeted regions in the 2-chain S7. By definition of S¢, the co-
efficient of every region intersecting BSg_,p is zero. Since every elementary arc of -/ that
intersects BSp_,¢ goes from the solid torus 7' IA’Q /T into TIAZD /T p, the intersection number
between 7" and S¢ is exactly the sum of the levels of the intersection points of 7/ with BSp_,q.
Let us cut the segment BSp_, into ¢—1 segments, say [M;Ms], ..., [My_1M,], corresponding
to the origins of the ribbons Ribé, e ,Ribg_l.

We claim that the level of the points My and M, is —A. Indeed, starting from M, (the top
point in the segment BSp_, on Figure , and following the fiber until we reach BSg_,p, we
intersect the projections of all several ribbons of type Ribfl’l. For every 4, there are g — 1 — ¢
such intersections, all being positive. Since the ribbon Ribfl’l contains 7 b; elementary arcs of -,
we cross v exactly A times along the path. The same argument works for M;.

Now we claim that, for i < ¢/2, the level at every point of [M;M;1] is at most A +
> i<i(k—1)bg. Indeed, when starting from M; and following BSp_,q, the level changes when
we cross an intersection point of v with BS p—qQ- Let B be such a point. Then there are g — 2
elementary arcs of v arriving at B from the ribbon Rib,. Depending on the ribbon Ribé
followed before Rib,, the ¢ — 2 elementary arcs of the projection v, arriving at B decompose
into [ — 1 of them arriving from the left along Ribg’r, and ¢ — 1 — [ arriving from the right
along Rib{;l. Similarly, since ~ leaves B along Ribé, there are ¢ — 2 elementary arcs of 7, that
leave B, ¢ — 1 of them on the left along Ribf]’l, and ¢ — 1 — 4 of them on the right along Ribf]’r.
Therefore the difference of level under and above B is ¢ — [. In particular, it is at most .
Using an induction on 4, we deduce that the level is at most A + >, . (k — 1) b, at My,
and a fortiori at every point on [M;M;11]. We get s similar result for i larger that q/2.

Equation ([5.17)) easily follows. O

We are now able to complete the argument.
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Proof of Proposition[5.9. We continue with the same notations. Equation (5.17) bounding
the intersection number between 4" and S¢ expands into

— > OG- D@—2-0)bi + > (i~ 1)(g— 1 — i) b))V

1<j<q/2 i<j i>j
— Y OG- -1k + > (- 2)(g— 1) bi)b,.
q/2<j<q—1 i<j (2]

By adding Equation (5.15]), we obtain the following expression
S Ny —-D(g—2—i—[G-1)/2]-1)b

1<j<q/2
+ Vs —la=1-0(-1G—-)/2]-1)b ) b
+ Y (X —G-D(e—1-i—|(G—i)/2]-1)b

q/2<j<q-2
+ Yy —la=1-d(i-2-[G-5)/2)-1)b ) ],
plus some terms in bib;- whose coefficients all are negative. Therefore, the intersection number

between 7’ and S is bounded from above by a quadratic form in the families (b; ), (] ;), all
of whose coefficients are negative. Therefore, the linking number Lk(v,~’) is negative. O

6. SURFACES AND ORBIFOLDS OF TYPE (2,3,4¢g+2)

We now turn to the hyperbolic 2-orbifolds ¥ 3 4412 and to case (b) in Theorem A, namely
the result that every two collections of periodic orbits of the geodesic flow on X3 34442 are
negatively linked. We recall from the introduction that, as the unit tangent bundle T 12273,4%2
is a quotient of the unit tangent bundle of a specific hyperbolic surface X, of genus g, our
strategy will be to lift the question to TlEg, estimate the linking number between lifts of
orbits of @y, ; ,..,, and eventually use Lemma .

In the whole section, g denotes a fixed integer larger than or equal to 2. The successive
steps are as follows. We start in §[6.1] with a 4g+2-gon in the hyperbolic plane and consider
the multitemplate Bg42 provided by Proposition @ Mimicking the method of the previous
section, we bound in § the linking number of a pair of collections of periodic orbits of Bg2
by a quadratic form Q442 in terms of the number of arcs that travel along every ribbon
of Byg42. The form Q4442 is not negative on the cone of admissible coordinates for geodesics
on Y4, but, using symmetries to reduce the set of possible coordinates, we introduce a refined
form Syg42 in § and show that the linking form is negative on the reduced cone.

6.1. A template for @5, . From now on, we fix a regular 4g+2-gon Pjy2 in the hyperbolic
plane whose angles all are equal to 27/(2g+1) . We write eq, ..., eqg42 for the sides of Pygo.
For every side e;, we write eé for its left extremity (when looking at e; from inside Pyg42),
and e} for its right extremity. We also write e; for the side opposite to e; (that is, we
set ¢t = i+2g+1 mod 4g+2). We call 3, the genus g-surface obtained by identifying opposite
sides of Pj442. The vertices of type ej, then project to one point of X/, say Vy. Similarly,
the vertices of type eék project to one point, say Vj. The unit tangent bundle to P42 is
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the product Pygy9 X OsoH?, where a tangent vector is identified with its direction on 0. H?2.
Then T1P4g+2 is a solid torus whose boundary is made of the 4g+2 annuli e, ..., T" €4g42-
The unit tangent bundle leg is obtained from T1P4g+2 by identifying opposite annuli via
homographies of H2. Precisely, if gi 7 denotes the isometry that maps e; to ez, then g;; extends
to OsH?, and the fibers of two paired points of e; and e; are identified using the extension
of g;; to O-cH?. We also introduce two small discs Dy, D1 on X3 centered at Vg, V3 respectively.
We write ]54g+2 for the complement of Dy U Dy in Pjg42. This is a domain whose boundary
is made of 4g+2 geodesic segments and 4g+2 arcs of circle are small radius.

FIGURE 21. On the left, the regular 14-gon Pi4. The surface X3 is obtained by
identifying opposite sides. On the right, the unit tangent bundle is obtained in the
standard coordinates Py 2 X JsoH? by gluing opposite walls using homographies.

The fundamental group m1(3y) is generated by the isometries gy 71,..., 049414931 We
write T, for the tessellation of H? induced by the images of Pyy42 under m(3,). One easily
checks that 7, is adapted to 3, (only point (v) in Definition [4.1| requires some attention). Fi-
nally, we choose a graph Gr, dual to 7, and an associated discretisation of geodesics. We then
write Bygt2 for the corresponding template in 7'%,. By definition, it consists of (4g+2)(4g+1)
ribbons connecting every pair of distinct boundary annuli. For every 4, j, we denote by Rib; ;
the ribbon that connects Tle; to Tle]-. Above every side of Py442, there are two branching
segments, corresponding to geodesics crossing the side in both directions. The length of each
branching segment is half the length of the fiber. Since we are interested in the topology
of Byg42 only, we can distort it using an isotopy, so that each branching segment has a small
length, say e, and consists of vectors that are almost orthogonal to e;. We then obtain a
template similar to the one depicted on Figure For every edge e; of Pjy42, we denote
by BS;; the branching segment that contains the orbits arriving on the side e; and leaving
from the side e;, and by BS;; the other branching segment that contains the orbits arriving
on the side e; and leaving from the side e;.
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FIGURE 22. On the left, a ribbon Rib;j and its projection Ribé)j on T'OPy,+2. By
definition, it is horizontal in every wall of type T'e;. As stated in Lemma it goes
down around every vertex. This long descent (which is reminiscent of a picture by
Escher) stems from the observation that a vector travelling along the left boundary
of Pyg12 and staying tangent to 0P,y has to turn right at every vertex. On the
right, the two projections of the whole template Bygio on TM0Pyg4o (with 5 instead
of 4g+2): every ribbon has a blue and an orange projection.

In the sequel, we need two particular deformations of Byg42 on T' 1(“)]54g+2 that we describe

now. Assume that Rib; ; is a ribbon of Byg42. We isotope Rib; ; to the boundary of T1]54g+2
without changing the extremities in two ways. For the first deformation, we push Rib; ; to the
left until reaching T 1]54g+2 (see Figure 22| left). The image is denoted by Ribﬁ’j. Moreover,
we choose the isotopy so that
- the part of Ribij lying in T'e; has width e and consists of vectors almost orthogonal to e;,
- for every ¢ satisfying j < ¢ < i in the cyclic order, the part of Ribéj lying in T"e,. has width e
and consists of vectors almost parallel to e,
- the part of Ribij lying in T e; has width € and consists of vectors almost orthogonal to e;.
We construct Rib; ; similarly by pushing Rib; ; to the right in T1P4g+2. We write Bflg o for the
union of all left projections of ribbons of Byg+2, and By, 5 for the union of all right projections
(see Figure 22| right).

6.2. Bounds for the linking number of orbits in &y . Our goal is now to estimate and to
bound the linking number between two null-homologous collections of periodic orbits of Byg42.
We will do that by considering the number of times the given collections travel along every
ribbon of Byg42. The formula may look convoluted, but hopefully the meaning of every term
should be clear from the proof. The key point is that the bound we establish is bilinear in the
number of times each collection travels along every ribbon, so that it can be easily estimated.
We use Knuth’s convention and write {-} for the characteristic function of a property. Also
the inequality signs refer to the cyclic order in Z/(4g+2)Z. The functions vy, vy, ho, h1 will be
defined in Definitions [6.10] and [6.11] below.
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Definition 6.1. For every i,j,k,l in {1,...,49+2} with i # j and k # [, we define the real
number g; ;. by

1({i<k<l§j}+{k<i<j§l})

({k#i.4} + {k #1,7})

-+ UO(iaj)hO(ka l) + Ul(iaj)hl(kv l) +

ol — N

5= (0(0.) + 0 Do (kD) + v (kD)

we write QQ4g42 for the bilinear form on RMA9+2)(49+1) whose coefficients are the Qi j kol

Definition 6.2. Assume that = is a null-homologous collection of periodic orbits of the tem-
plate Bygqo. For every i,j in {1,...,4g+2}, let b; ; denote the number of arcs of v that travel
along the ribbon Rib; ;, respectively. The family (b;;j)1<ixj<ag+2 consists of (4g+2)(4g+1)
non-negative integers, it is called the linear code of ~.

Proposition 6.3. Assume that v,~' are two null-homologous collections of periodic orbits of
the template Bagy2. Denote by (b;;) and (b; ;) their linear codes. Then the linking number

/ . /
Lk(v,7") is at most Z1gi,j,k,z§4g+2 Qi,j,k,lbi7jbk,l'

Note that, in the expression for g; j x; given in Definition the roles of v and 7/ are not
symmetric. This is connected with our subsequent choice of a particular 2-chain, and with
the fact that the coefficients b; ; satisfy some linear constraints, so that the above formula is
one among many other possible expressions.

The idea of the proof of Proposition [6.3]is to construct a rational 2-chain S7 with bound-
ary v, and to bound its intersection number with 4/. The 2-chain S” will consist of four parts,
denoted by Sz, S, Sy, and Sy, , each being a combination of several rational 2-cells.

We now establish several intermediate results consisting in evaluating various intersection
numbers. First, we consider the above defined projections Bflg 4o and By o of Bygyo. We
write v for the image of « that lies in Big +9, and 77 for the image that lies in Bj 5.

Definition 6.4. Let 7, be the combination %’yfr + %'ﬂr. Then we define S, to be the sum,
for each elementary arc a of v, of a (rational) disc d!, with boundary (o U —al) and of a
(rational) disc d7, with boundary 1(a U —aZ).

It follows from the definition that S; connects v to ;.

Lemma 6.5. The intersection number between the collection v and the rational 2-chain S;
is at most 3, iy s{i<k<l<j}+{k<i<j<l}) bi, b

Proof. We have to estimate, for every pair of elementary arcs (o, o’) of v and 7/ respectively,
whether o intersects the discs d!, and d%, defined above, how many times it possibly does, and
what is the sign of the intersection points. Let Rib; ; denote the ribbon containing o, and let
Riby; the ribbon containing o'

First, suppose ¢ # k and j # (. Figure right then shows that o/ intersects dl, if and only
if ¢+ < k <1l < jin the cyclic order. In this case, there is only one intersection point, and
its sign is positive (Figure [20|is also relevant here). Since the disc df, has a coefficient %, the
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contribution of this intersection point to the total intersection number is +%. Similarly, o/
intersects dla if and only if ¢ < j < I < k in cyclic order, and the contribution is then +%.

Second, suppose i # k and j = I. Then o/ may intersect d, or d%, or not, depending on
which arc is above the other on BS i3 and which arc comes from the right or the left before
reaching Tlej. Since we look for an upper bound on the linking number, and since the sign of
the intersection, if any, is positive, we can assume that there is always an intersection, so that
the contribution is —1—%. This happens if i < k <l =jori < j =1 < k in the cyclic order.
(Note that this is the only approximation the make our computation of the linking number
not exact. It will be refined for symmetric collections of orbits in the next section.)

Third, suppose ¢ = k and j # [. Then, as in the previous case, the arc o/ may intersect dfx
or d}, or not. But, unlike the previous case, we can ignore this potential intersection point.
Indeed, let A, B denote the respective starting points of v and o', which are located in the
branching segment BS;;. Then there is an intersection point if A is under B and at the
same time we have j > [, or if A is above B and we have j < [. At the expense of possibly
performing a symmetry, we may restrict to the first case. A under B means that a points
on the right of o/ on O,H?, whereas j > [ means that o escapes on the left of o/. This
is possible for j = [ + 1, but this implies that the geodesics of H? that have been distorted
onto 7 and 7' intersect after crossing e;. As they are geodesics, they cannot intersect twice,
so that they did not intersect before crossing e;. Therefore the factor +% that was counted
for the corresponding pair of arcs in the previous paragraph was overestimated, and we can
compensate it by ignoring the current intersection.

Fourth, suppose i = k and j = [. Then «,a’ lie on the same ribbon, and o’ does not
intersect the discs d%, and d.,.

Summing up, we obtain the announced upper bound. ]

The second part of S7 will lie in the 2¢g+1 annuli Tle. with1<e¢< 2g+1 (we recall that e,
is identified with e.i94+1). Its boundary will be made of 7, plus some curves lying in 70D,
and T'0D;. Before describing it, we must describe vy, in more detail.

Lemma 6.6. (See Figure left.) Let e. be a side of Pygya. Then the part of vr that lies
in T'e, consists of

(1) %Z#C bi. arcs joining the fiber T'el. to the branching segment BS.z, plus %Z#C bi.c
arcs joining T'e’ to BScz, plus %Zﬁéz bej arcs joining BS.z to Tlefj, plus %Zﬁ&z be,j arcs
joining BS.z to T'er,
from Pygyo almost orthogonally,

all these arcs lying at a height that corresponds to vectors escaping

(17) %Ziﬁ biz arcs joining T'el to BSz., plus %Ziﬁ biz arcs joining T e”. to BSe, plus

v T, all these arcs

%Zj# be,; joining BSz . to Tre., plus %Zﬁéc be,j arcs joining BSe. to Tler
lying at a hseight that corresponds to vectors entering Pyg,10 almost orthogonally,
g+
iii) 1> b i+ _.b; ) arcs joining the fiber T e’ to T e, | all these arcs lying
2 1<c<j<i ] 1<g<e<t "] c c
at a height that corresponds to vectors almost tangent to e. and pointing toward e,
itd) L _ b +> . _.b; i) arcs joining the fiber T el to T e , all these arcs lying
2 1<j<c<i "] 1<c<j<t "HJ] c c
at a height that corresponds to vectors almost tangent to e. and pointing toward e...
C
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FIGURE 23. The templates Bflgﬂ and By, , inside a wall of type T'e;. Between
the two branching segments, all ribbons have the same orientation. If v is a null-
homologous collection of orbits of Bs42, then there are as many arcs of v, traveling
from left to right (along the pink ribbons) as arcs of v, traveling from right to left
(along the green ribbons).

Proof. Let Rib;; be a ribbon of Bsgi2. Then every arc of v N Rib;; projects on an arc
of ¥' N Ribﬁyj and on an arc of ¥" N Rib; ;. First suppose that the index c differs from both i
and j. If e, lies on the right of Rib; j, then the arcs of 4" NRib; ; travel along T'e., from T'e,
to T'el. By construction of Ribaj, they are at the height of vectors almost tangent to e..
Therefore they contribute to (é¢i). Similarly, if e, is on the left of Rib; ;, then the arcs of
PN Ribaj travel along T'e., and contribute to (iv). In the same vein, we obtain the two
others terms of (iii) and (iv) by recalling that T'e. identified with Tez, so that, if ¢ differs
from both 7 and j, the arcs of v N Rib; ; also project on T’ lez in the same way.

Suppose now ¢ = j. Then the arcs of 7' N Ribévj finish their travel by connecting 7"e.
to BS.z, and the arcs of 4" N Ribf;j connect Tleg to BScz. Thus they all contribute to (7).
Similarly if € = ¢, then the arcs of 4/ N Ribij begin their travel by connecting BS.z to T1 el =
T'e. to, and the arcs of v N Rib; ; connect BS.z to T'er, thus all contributing (). Similarly,
we get the expression for (i7) by considering the cases ¢ =i and ¢ = j. [l

As the collection -y is null-homologous, the collection , is also null-homologous, so that for
every side e. of Pyg12, the number of arcs of v, that travel along e. in one direction is equal
to the number of arcs in the other direction. This implies that the numbers of arcs given by

Lemma (731) and (iv) are equal. We then define A, to be their common value, which then
admits the more symmetric expression

1
1 Yoobigt Y bigt Y bt Yo biy),
i<e<j<i i<j<e<i i<j<e<i i<e<j<i
or simply i(zl jteDi T2 e ig)- Also, since every arc of y that arrives on BS, is followed
by an arc that leaves BS.z, the numbers ), 4z bizand ) ke be,j are equal. Hence it is possible
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to choose a 2-chain in T'e. whose boundary is v, N T"e., plus some arcs in the fibers Tel,
and Te”. This 2-chain is unique up to adding multiples of T e, so that we can make a specific
choice that will be convenient for estimating the contributions of the last two components S?,O
and 5‘7/1 of S7.

Definition 6.7. (See Figure ) With the above notation, we define S} to be the 2-chain
consisting, for every side ¢ of Pygy2, of A, cells in T'e. whose oriented boundary consists of
the A, arcs of 7, that join T'el, to T'e’, plus the A, arcs of v, that join T'e% to T'el, plus
A./2 arcs that go up and A./2 arcs that go down in the fiber T1e., plus A./2 arcs that go

up and A./2 arcs that go down in the fiber Te’.

Lemma 6.8. The intersection number between the collection +' and the rational 2-chain Sg
s equal to
1 . . . T . T
_ Z g({z #kand j #k} +{i # k and j # k}) b; b}, .
Z'7j7k7l

Proof. The collection v intersects Sg only on branching segments. Figure then shows
that all intersection points have negative sign. For every side ej of Pyg12, there are Z#k b?c,l
arcs of 7/ that cross T'ej, in each direction. Every such arc then intersects Ay /2 cells of Sg
negatively, so that the total contribution of T'e;, to the intersection number is Ay, > 2k b;c,l'
Therefore the total intersection number is the sum over all sides e of P42 of the terms
A Z#k bz’l. As the sides e, and eg coincide, the latter sum admits the more symmetric
expression % e Ak Zl;ﬁk by, ;- We then find the expected value by expanding Ay. O

The boundary of the 2-chain S; U Sg that was constructed above is 7, plus some multiples
of the fibers 7'V, and T'V; that we now determine.

Lemma 6.9. Assume that Rib; ; is a ribbon of Byg12. Then
i) the part of Ribl ; that lies in the neighbourhood of T el goes down by a height (2g—3)7/(4g+2),
i,] i
the part ofRibéJ that lies in the neighbourhood olee§ goes down by a height (2g—3)7/(4g+2),
except if = i+1, in which case the part of Ribijj that lies in the neighbourhood of T'el = Tleg
goes up by a height 47 /(49+2),
ii) the part of Rib. . that lies in the neighbourhood of T'el, for j +1 < ¢ < i, goes down
4,7 C
by a height (49—2)m/(49+2),
ii1) the part of Ribl . that lies in the neighbourhood of T el goes up by a height (29—3)m/(4g+2),
1, 7
the part of Ribj ; that lies in the neighbourhood of Tleé- goes up by a height (29—3)7/(49+2),
except if j = i—1, in which case the part of Rib; ; that lies in the neighbourhood of Tler = Tleé
goes up by a height 47 /(49+2),
1) the part of Rib; ; that lies in the neighbourhood o €., fori1 <c<jy—1, goes up by
iv) th Rib; ; that lies in th ighbourhood of T'e”, ' —1 b
a height 47 /(49+2).

Proof. The proof is illustrated on Figures and 24 Tt relies on the assumption that the
angle between adjacent sides of Pjg49 is 2m/(2¢g+1), and on the height we chose for the
parts of the ribbons Ribé,j and Rib; ; above each edge of ]54g+2. The values follow from the
equalities 7/2 — 27 /(2¢9+1) = (29—3)7/(49+2) and 7™ — 27/(2¢9+1) = (4g—2)7/(49+2). O
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Definition 6.10. For ¢, j in the range {1,...,49+2}, we define vy(, j) to be the sum over all
even vertices of Pyy1o of the increases of Ribéyj and of Rib; ; around this vertex.

For example, if ¢ = 1 and j = 2, then Riblm contributes 47 /(4¢9+2) to vp(0,1) and 0
to v1(0,1). On the other hand, Ribj, contributes 2g times +(4g—2)m/(4g+2) to vo(0,1)
and 2 times (2g—3)7/(49+2) plus 2g—1 times (49—2)7/(4g+2) to v1(0,1). Therefore we
have v(0,1) = (8¢g> —4g+4)7/(49+2) and v1(0,1) = (8¢g° —4g—4)7/(4g+2). With the above
notation, the boundary of the 2-chain S7 U S} consists of the union of v, of — Z” vo(%, 7)bi
times the fiber T'Vj and of — Y, ;v1(4, j)bi; times the fiber TV

FIGURE 24. The templates Bflg+2 and B}, o on the neighourhood of a vertex V;.
For B}, ,, most of the ribbons go down by (49—2)7/(4g+2) (in blue), or they are
close to a branching segment and they go down by (2g—3)7/(4g+2) (in yellow), unless
they are close to both branching segments and they go up by 47/(4¢g+2) (in pink).
For Bj, 5, the signs are reversed.

In order to complete the chain S7, it suffices that we add a 2-chain whose boundary is
(> vo(4,7)bi ;)T Vo and a 2-chain whose boundary is (> 0 (4,7)bi ;) TVi. Since ¥, has
Euler characteristic 2—2g, there exists a vector field on Y, with only one singularity at Vp, the
index of the latter being 2—2g. By lifting this vector field in T'3,, we obtain a surface with
boundary (29—2)T'Vy. We then define Sy, to be 29%2(2” vo(4,j)b; ;) times this surface.
Similarly, we can construct a surface with boundary (29—2)7'Vi, and we then define S%
to be Tlﬂ(zw v1(%,7)bsj) times the latter surface. We have now only to determine the
intersection number of 74/ with both S&O and S;}l. For this it is enough to determine the linking
number of 4" with the fibers TV, and T'Vj, and then to multiply by 29%2(2” vo (%, 7)bi )
and %%2(2” v1(4, j)b; ;) respectively.

Definition 6.11. For 4, j in the range {1,...,49+2}, we define ho(i, j) as the number of even
vertices of Pyg492 on the left of Rib; ;, minus the number of even vertices on the right of Rib ;,

divided by 2g+1. Similarly, we define hy(4, j) as the number of odd vertices of Ps412 on the
left of Rib; j, minus the number of odd vertices on the right, divided by 2g+1.
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The precise expressions for hg (i, j) and hq (i, j) are ((j—i)[4g+2]—(29+1)+7[2]—i[2]) /(29+1)
and ((j7 —i)[49+2] — (29+1) — j[2] + i[2])/(2g+1), respectively. Moreover, we fix two arbi-
trary points Vg and V{ on the boundaries of Dy and D; respectively. We also choose two
meridians mg and m; of the solid tori 7' Dy and T1D;.

Lemma 6.12. The collection ' is cohomologous, in the complement of T'Vy U T'Vy, to
(X vk, Dby VTV + (g w1 (ks Dby YTV + (3 ho (R, DBy, ymo + (3 7 (R, DY), )ma.

Proof. A construction similar to the construction of the 2-chain S; U S’g, applied to v instead
of v, realizes a cobordism between v and the announced collection of curves. ([l

Lemma 6.13. The intersection number between 5"7/0 U S‘W/1 and ~' is equal to

3 {vou,j)ho(k,z) on (i, )P (k1) +
,5,k,l

29+1 (’Uo(i,j) + Ul(iaj))(vo(ka l) + Ul(k, l)) bi,jb;f,l'

Proof. The curve mg bounds a meridian disc for 7' Dy, so that its linking numbers with TV
and T'Vj are 0 and 1 respectively. Similarly one has Lk(m, T Vp) = 0 and Lk(mq, T1V;) = 1.
The lift of the vector field on ¥3 with only one singularity p defines a surface in TIEQ whose
boundary is (2g—2)7T'p and which intersects every other fiber once. Therefore, Lk(T'p, T'p’) =
2g%2 holds for every point p’ distinct from p. O

Proposition [6.3] now follows from Lemmas and which together give the ex-
pected bound for Lk(v,~’) directly.

The set of linear codes (b; j) that correspond to geodesics on ¥, is a subset of R(4g+2)(49+1)

Actually, it is a cone included in R$g+2)(4g+l) that we denote by C,. It is not hard to see
that Cy is a proper subset of Rsfg+2)(4g+1), i.e., that there are more constraints on the possible

values of (b; ;) than the positivity of the coefficients. For example, there are linear equality
constraints coming from the fact that every arc of the associated collection that crosses a side
of P42 continues on the other side, as well as linear equalities coming from the fact the the
collection is null-homologous. There are also inequality constraints coming from the fact that
the collection consists of geodesics, so that it cannot always wind around a vertex. Precisely,
some coefficients of the form b; ; with |i — j| > 2 cannot be too small when compared with the
coefficients of the form b; ;4 1.

Implementing the above constraints in a computer program leads to numerical bounds for
the linking numbers of orbits of ®x . However, as we shall see in Section m some collections
of orbits have a positive linking number, so there is no hope to prove a uniform negativity
result.

6.3. Linking of geodesics on the orbifolds ¥9 3 4412. We now consider the case of the
orbifold Y23 4942. Our goal is to establish upper bounds for the linking numbers of pairs of
orbits in the associated geodesic flow. We shall prove

Proposition 6.14 (case (b) of Theorem A). Let v,~ be two orbits of D5y 54040 10 T12273,4g+2.
Then we have Lk(vy,~") < 0.
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FIGURE 25. On the left, the covering of ¥ 3 4412 by genus g surface. A fundamen-
tal domain for ¥g 34442 is obtained by taking the union of any white triangle with
a neighbouring orange triangle. On the right the intermediate tiling 74442 of the hy-
perbolic plane by equilateral triangles with angles 7/(2g+1). Each triangle is a 3-fold
cover of X933 49+2. The polygon Py442 (and therefore the surface ;) is obtained by
gluing 49+2 triangles that are adjacent to a vertex.

The proof relies on a a more precise study of the template Byy42 and refinement of Propo-
sition The starting point is that a3 4942 admits a covering of index 3(4¢g+2) by a
genus g surface ¥, obtained by identifying sides of a regular 4g+2-gon (see Figure . So,
by the behaviour under quotient of the linking number (Lemma , in order to establish
Proposition it is enough to prove that I's 3 444 2-invariant geodesics of ¥, have a negative
linking number. These I'g 3 444 2-invariant geodesics have three advantages that are needed
in the proof. First, their symmetry properties allows to use reduced linear codes with 4g+1
coordinates instead of (4g+2)(4g+1), thus also simplifying the matrix Q4442 bounding the
linking number to a more simple (4g+1) x (4g+1) matrix (Lemma[6.15)). Second, it is possible
to refine the bounds on the linking number by refining the intersection number between the
2-chain S7 and the curve «/, thus refining the first term in Definition The price to pay
is to add 2g coordinates to the reduced linear code that describes how many consective times
the family takes the rightmost and leftmost ribbons of the template. These two first steps
then associate to every collection of I'p 3 4442-invariant geodesics a reduced linear code with
6g+1 coordinates, so that the linking number between two collections in bounded by a bilinear
form Syg42 in the reduced linear code. Third, we determine a cone Ca 34442 in RO9+1 that
(strictly) contains all reduced linear codes, and whose extremal rays are easy to determine.
The proof of Proposition @ then consists in proving that the form Sy442 is negative on all
pairs of extremal rays of C2 3 4442.

So, let 7,7 be two orbits of ®x,,, ... Let 4,4" be the images in the template Bygy2 of
the I'g 3 4¢42-invariant lifts of v and ~" in Tlﬁg. Denote by b; ; and bgyj their linear codes,
as defined in Definition [6.2] Since the collection ¥ is invariant under an order 4g+2 rotation
around the center of Pjg42, we have b; ; = b; 1 41 for every 7, j. Therefore, one can consider
a simpler code l;i,j defined for j = 1,...,49+1 by b, = Zz‘:(),...,4g+1 biiyj. Similarly, we



50 PIERRE DEHORNOY

introduce a reduced form (@2 34442 on R%*1 whose coefficients Gju are defined by ¢;; =

D k=0, dg+1 Disitjohe k41

Lemma 6.15. With the above definitions, for j,l =1,...,4g+1, we have

(6.16) G =29+ 1|7 1] —29(29 +1) (J—29-1(0—-29-1).

+ 297_2
Proof. We start from the formula for ¢; ;;; given by Definition with replacing j by i + j
and [ by k+1. The first term —3({i <k < k+1 <i+j}+{k <i<i+j <k-+I}) equals & if
the two chords connecting the edges e; to e;;, and ey, to e do not intersect and are parallel,
or if they have a common head (see Figure . When the differences j and [ are fixed, they
are 4g+ 2 possible choices for the first chord, and then there are |j — | positions for the second
chord that give an admissible position. This gives the first term of Equation .

i+

.

FIGURE 26. Once the chord connecting e; to e;;; is chosen (with j = 4 on the
picture), there are |l — j| choices for k, so that the chord connecting e to egy;
contributes to {i < k < k+1 < i+j} or to {k < i < i+j < k+I} (with { = 11 on the
picture).

For the second term, we note that when ¢,i+j are fixed, there are 4g values of k that
add 1/8 to the sum, and 4g values of k that also add 1/8. So this yields a contribution of g
when i is fixed. By summing over all 7, we obtain the second term.

The third term in Definition depends of the parity of 7,i+7, k, k+I, because we are
considering the rotation amount of the chord with respect to the two different vertices of Pygy2.
When summed over all 4, j, these two rotation amounts are equal, so that we only consider
the mean rotation of the chords. These are equal to j — 29 — 1 and [ — 2g — 1 respectively.
Then the contribution to §;,; is a multiple of (j — 29 — 1)(I — 2g — 1). The constant is given
by Lemma [6.9] O

The symmetry of the families 4,4’ now allows us to refine Lemma at the expense of
expanding the code. The idea is that if several consecutive arcs of 4 all travel along the
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rightmost ribbon, then they cannot cross as many arcs of 4’ as the bound (and the proof) of
Lemma suggests. For the sequel, it is important to remember that the families 4 and 4/
are invariant by a rotation of order 4g+2 of Pygo.

Definition 6.17. For m = 1,...,g, let ¢, (resp. d,,) denote the number of arcs of 4 that
travel exactly m consecutive times along Ribg 1 (resp. Ribgg+1). Define ¢}, and d/,, similarly.
The set ((bj)j=1,...4g+1, (€m)m=1,....g> (dm)m=1,....¢) is called the linear reduced code of 4.

For m,n = 1,...,2g, define r,,, to be —2g—1if i = j # 1 and 0 otherwise. Let R442
denote the bilinear form on RY with coefficients 7, ,, and let Sy;42 denote the bilinear form
on R89+1 which is the direct sum Q4g+2 ® Rigr2 ® Ragto.

Note that if an arc travels m consecutive times along a ribbon, then it travels m — 1 times
at it next move. Thus we have ¢,,—1 > ¢ and d,—1 > dy, for every m. Note also that
some orbits of the template could travel more than g times along the leftmost ribbon, thus
making more than one half-turn around the corresponding vertex of Py4y2. These orbits do
not interest us, since they cannot come from geodesics.

Lemma 6.18. With the above notation, the z'ntersection number between 4’ and the 2-chain Sy
is at most Z4g+1(29+1)|j—l|blb’ (2g+1) o(emC,+dmd,,). The linking number Lk(%,4)

is smaller than Sig+2(((b7), (cm), (dm)), ((by), (cm),(dm)))-

Proof. (See Figure ) We use the notation introduced in the proof of Lemma . In the
second case of this proof (i # k,j = ), we assumed that there was always an intersection
between the considered arc o’ on Riby; and any elementary piece d’, or d7, of the 2-chain Sy.
Actually, if o/ is an arc that lies in the rightmost ribbon Ribj; ; there is an intersection
point with d., or d’, if and only if o does not lie in Rib;;1; and the head of o/ in the vertical
branching segment BSjJ is under the head of a. In particular, we know that there are ¢,
elementary arcs of 4’ in Ribj; ; whose heads are above all tails of arcs of 4 that will travel
more than one time along the rightmost ribbon. Indeed, if an arc travels two or more times
along the rightmost ribbon, then its direction at infinity is on the right of the direction of an
arc travels only once on the rightmost ribbon (see Figure . Since there are at least dy such
arcs in 4 at each branching segment, we can add a term —%dgdé to the previous bound
on the intersection number between S7 and 4’. Similarly, we can consider the dj arcs of 4/
that reach BS = along the rightmost arc and that will travel along it two more times. Their
heads cannot be above the tails of the d3 arcs of 4 that arrive at BS = from a different ribbon
and that travel two or more times along the rightmost ribbon. At the end, we can then add
a term —(2g + 1)(dady + d3dy + - - - + dydy)). Considering also the leftmost ribbons gives the
announced extra-term.

The formula for total linking number then follows by replacing the first term in Equa-

tion (6.16]) by the above one. O

The goal is now to bound the value of the quadratic form S4442 on the set of linear reduced
codes that come from geodesics of 32 34442. In order to do this, we first determine a cone
in R%*1! that contains the set of linear reduced codes.
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Ribjt1,5

FIGURE 27. A neighbourhood of a branching segment BS, 5 in T'S,. Both rib-
bons Rib;4; ; and Rib;;fl are subdivided into subribbons containing arcs that travel
1,2,3,... consecutive times respectively along the rightmost ribbon. For a family of
orbits of the template that is invariant by rotation of P44, the arcs on Rib;; ; and

on Ribs >, are in one-to-one correspondance.

Definition 6.19. For z,y in {1,...,2g}, let V, , be the vector in R¥ 1 &RISRY with coordi-
nates ((x—1,0,...,0,1,0,...,0,1,0,...,0,y—1),(2,...,2,(1),0,...,0),(2,...,2,(1),0,...)),
where the two 2 in the first block are in position y + 1 and 49 — x 4 1, where there are [%‘”
coefficients 2 in the second block, one 1 if  is even, and there are |_yT_1J coefficients 2 in the

last block, and one 1 if y is even.

Let C4g42 be the conway hull in R69+1 of the rays generated by the 4¢2 vectors Vay-

Lemma 6.20. With the above definition, the reduced linear code of every collection of I'g 3 4+2-
periodic geodesics belongs to Cagyo \ {0}.

Proof. (See Figure ) Let 74942 denote the I'g 3 4940-invariant tessellation of H? by equilat-
eral triangles with angles ngZ%' Note that a fundamental domain for the action of I'y3 4442
on H? is given by a third a tile of Tag+2- Note also that by considering the 4g+2 triangular tiles

that are adjacent to a given vertex, we obtain a fundamental domain P42 for the surface X,.

As before, let 4 be a I'y34440-periodic geodesics, considered in H?. We associate to it
a dynamical code in the following way. Starting from an arbitrary intersection point between 4
and an edge of 74442, we follow the geodesics 4. Everytime we cross a triangle of Tig42, we
add a letter L to the dynamical code if 4 goes to the left in this triangle, of a letter R if it
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RLSR

RL*R
LR3L

R2

FIGURE 28. Some dynamical codes. The lenght of the code equals the number of
crossed triangles.

goes to the right. Of course we stop after one period. At the expense of a cyclic permutation,
the dynamical code can then be assumed to be of the form L**RY1[*2 ... RY".

The key-point is that 1 < zp < 2¢g and 1 < yi < 2g hold for every k. Indeed, a curve that
go more than 2¢g consecutive times on the left crosses one of the geodesics containing edges of
the tiling more than once, and therefore it cannot be a geodesics.

The second point is that the linear reduced code depends linearly of the exponents xy, yx
in an explicit way. Indeed, every arc o of 4 in P449 is associated to a unique position in the
dynamical code that describes the dynamical code when starting at the tail of a. Conversely,
to every position in the dynamical code are associated 4g + 2 arcs of 4 that are obtained one
from another by a rotation about the center of Pjgo.

Now, if an arc « goes from an edge e; to the edge e;4; in Pyg4o with 2 < j < 2g+1, then
the corresponding dynamical code is LR/~'L, while the linear reduced code contains only
a 1 in j—1-st position. Similarly if an arc goes from e; to e;y; with 2g+1 < j < 4g, then
the dynamical code is RL*T'"7R and the linear reduced code contains only a 1 in j—1-st
position. (There is an ambiguity in the case j = 2g + 1 for the dynamical code, depending on
which side of the center of Py, 2 the geodesics go. But both give rise to the same the linear
reduced code, so that this ambiguity is of no consequence.)

In the remaining case, if an arc goes from e; to e; 1, then the dynamical code begins with L?,
and the linear reduced code begins with a 1 in 1-st position. However, the second block of
coordinates (that corresponds to the vector (¢;,)) can be non-zero, depending on how many
times the geodesics 4 will go on the left after escaping Psgy12. The point here is that the
dynamical code actually begins with L*R, and the number of times that 4 will travel along
the leftmost ribbon is |J|. Therefore the second block there contains a 1 in |F |-th position.
The case j = 49 + 1 is treated similarly.

Finally, we truncate the dynamical code of 4 into the n blocks RL*'*RY'~! RL*>Rv>~1 .
RL* RY»~! The linear reduced code that corresponds to a block RL** RY~! is the sum of
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the linear codes corresponding to each of the xj, + y; letters, which turns out to be V,, ,, by

the above discussion. Therefore the linear code asociated to 4 is the sum of n such vectors.
Thus it belongs to Cyg42 \ {0}. O

Lemma 6.21. The form Sigyo is negative on Cygia \ {0}.

Proof. The form Sy442 is bilinear, so that it is enough to show that it is negative when
evaluated on every pair (V, y, V) of extremal vectors. Now we note that Syg12(Vy y, Var o) is
a function of z, 2/, y, ¥’ which is almost linear in each of the coordinates. Indeed, we can expend
Equation corrected with the term of Lemma and obtain for Syg42(Vy,y, Var ) the

value

(29+1) ((x—1)(y/+4g—2") + (y—=1)(4g—y'+2") + (2'=1) (y+4g—2z) + ( —1)(4g—y+x)
+4g(x—1)(y' 1) + 49(z'-1)(y—1) + [y—¢/| + ly—4g+a'| + |z—2'| + |y —4g+z])

g D@min( T amin ) )

2
— 2929+ 1)(z+y)(2" +y)
E( —2¢g(x—1) + (y—29) + (29—x) + 29(y—1))

29—2
x(—2g(2'—1) + (y'—29) + (29—2") + 29(y'-1)).

The second term—which corresponds to the correction that we added—contains an extra
term dealing with the parity of x and y. Since it is negative, forgetting it can only increase
the result.

The observation here is that, except for what concerns the integer part operation in the
second term, the above formula is linear in the variables x, 2, vy, vy’ on the four components of
the complement of the diagonals x = 2’ and y = 3/. By replacing L%‘lj by ””2;1, thus slightly
increasing the result, we obtain a formula that is linear is all four variables.

Therefore, in order to prove that Sygyo(Va,y, Var ) is negative, we only have to evaluate the
above formula on the extremal points of the four connected components of the domain that we
are considering. These turn out to be 16 vertices of the cube [1,2¢]*. Using symmetries, we can
actually reduce the computation to six points, namely to (1,1,1,1),(1,1,1,2g), (1,1, 2g, 2g),
(1,2¢,1,29), (1,29,2g,1), and (2g, 2¢g, 29, 2¢g). It is then easy to check that the form is negative
on these points. O

Note that for all six points except (1, 1, 2g, 2g), the correction term provided by Lemmam
is useless. However, at (1,1, 2g,2g), the uncorrected form is positive, while the corrected one
is negative. This vertex corresponds to the linking number of two collections that go as right
as possible, that is whose dynamical code is LR?9. It is not a surprise that this vertex is where
the form is the least negative, as the linking number of two (non-geodesic) collections whose
dynamical code contains only R is positive (such collections are isotopic to a multiple of a
fiber in T122,374g+2, and two such fibers are positively linked).

We can now conclude.
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Proof of Proposition[0.14 Since leg is a finite cover of T122,374g+2, it is enough by Lemma
to show that the invariant lifts of the families v and 4/ have negative linking number in 713,
By the construction of the template Bsy42 and by Theorem @, these lifts are isotopic to two
families 4,4 of periodic orbits of Bigt2. By Lemma the reduced linear codes of 4,4/
belong to the cone Cyy12 \ {0}, and, by Lemma the form Sygy2 is negative on the pair
formed by the two codes. By Lemma the linking number between Lk(%,4’) is then
negative, and so is Lk(vy, %) O

Thus the proof of Theorem A is complete.

7. FURTHER QUESTIONS

We conclude with a few remarks and questions about extensions of the above results. Here
we shall both construct counter-examples showing some limitations for possible generalizations
and discuss a few plausible conjectures.

7.1. Left-handed flows. We exhibited in Theorem A some hyperbolic orbifolds with no
rational homology on which any two orbits of the geodesic flow have a negative linking number.
It is natural to ask for further examples of orbifolds with the same property. One could even
wonder whether the property could be true for every hyperbolic orbifold. This is not the case,
and there exist counter-examples on every hyperbolic surface.

Proposition 7.1. Let Yo be a genus two hyperbolic surface. Then there exist two null-
homologous collections v,~' of periodic orbits of ®y, satisfying Lk(vy,~") > 0.

Proof. Let v be the lift of the green collection, and 7' be the .

lift of the orange collection in the picture on the right. g \&(_x

Then the lift of the green vector field is a surface whose bound-
ary is the union of v and twice the fiber of a point, and which
does not intersect 7/. The same vector field on the other pair
of pants connects 4’ to twice another fiber. Then one checks
that the linking number between two fibers is —1—%, and we
thus obtain Lk(vy,~') = +2. 0

However, let us mention that such counter-examples are rare. Indeed, using the techniques
of Section [6] and a computer, we have explored the possible linking numbers of periodic orbits
of @y, and Py,. In a vast majority of cases, the linking number is negative, and the situation
of Proposition [7.1]is exceptional. So far we have no explanation for this rarety.

Question 7.2. Let Y, be a genus g hyperbolic surface. Characterize those collections of
periodic orbits of @y that have a positive linking number.

We note that the counter-examples of Proposition[7.1]involve parallel collections of geodesics.
A more specific, and maybe more accessible question, could be
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Question 7.3. Let X, be a genus ¢ hyperbolic surface. If y, 7 are two collections of periodic
orbits of @5, whose projections are not parallel and intersect, do we have Lk(v, ) <07

In another direction, it is natural to wonder whether the assumption of a negative curvature
can be dropped. Corollary shows that the geodesic flow is also left-handed on orbifolds
with constant positive curvature, and, although their unit tangent bundle is not a homology
sphere, orbifolds with constant zero curvature also yields flows that are left-handed in some
weak sense (see Theorem B and its corollaries). Nevertheless, one cannot hope for the geodesic
flow on every sphere to be left-handed.

Proposition 7.4. If a surface X admits at least two separating geodesics that do not intersect,
then the geodesic flow ®x is not left-handed.

Proof. The picture in the margin corresponds to the case of
a sphere whose curvature has a non-constant sign. The lifts
of the two drawn curves are cohomologous, in the comple-
ment of the other curve, to a fiber and the opposite of a fiber
respectively. Their linking number is +%. The argument is

similar in the general case. U

The situation of Proposition [7.4] cannot happen for a sphere with a positive curvature, and
we propose

Conjecture 7.5. Assume that ¥ is a 2-sphere with a (not necessarily constant) positive
curvature. Then the geodesic flow @y is left-handed.

The particular case of an ellipsoid could be accessible as, in this case, the geodesic flow is
integrable.

On the other hand, the counter-example of Proposition heavily relies on the fact that
the homology of > is non-trivial. Therefore the conjecture of Ghys claiming that, if ¥ is a
hyperbolic 2-orbifold with H;(X,Q) = 0, then the geodesic flow ®y is left-handed remains
open and plausible.

So, in view of the known results and the above conjectures, the only cases for which the
situation is totally unclear are those of orbifolds whose curvature has a non-constant sign
and in which any two geodesics intersect, typically a pair of pants capped with three round
hemispheres and slightly distorted so that the circles bounding the pants are not geodesic.

7.2. Template knots. The construction of Section[4]associates a (multi)-template with every
regular tessellation of H?. Among all templates arising in this way, it is natural to pay
special attention to those associated with the orbifolds ¥, ; o of Section [5| In this case, the
tiles exclusively are ideal polygons and, therefore, there exists a one-to-one correspondence
between the periodic orbits of the template and the periodic geodesics on the orbifold. The
knots appearing in this approach generalize Lorenz knots, which correspond to the special case
p = 2,q = 3. Lorenz knots have many interesting properties, and one can wonder whether
similar properties could be true for those knots that appear in the above more general setting.
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Question 7.6. Which knots appear as periodic orbits of &y 7

In this direction, Pinsky announced [26] that every periodic orbit of ®x, . is a prime knot.
On the other hand, our current results show that these knots are fibered. So, in particular,
all knots cannot appear in this way.

7.3. Gauss linking forms. Let M be 3-manifold. A Gauss linking form on M is a differential
(1,1)-form whose integral along every pair of null-homologous curves equals their linking
number. Gauss linking forms exist on arbitrary 3-manifolds, but explicit formulas are known
in very few cases: essentially, the only known examples are the those of [II] for the cases
of S, R3, and H?.

Now, Ghys’ theorem [I5] states that a flow is left-handed if and only if their exists a Gauss
linking form that is negative on the flow. Therefore, Theorem A implies the existence, for the
considered orbifolds ¥, of a Gauss linking form in T'Y that is negative along ®x. However,
our proof of Theorem A gives no indication about the involved Gauss linking forms.

Question 7.7. Are there explicit formulas for the Gauss linking forms implicitly involved in
Theorem A?

More generally, better understanding Gauss linking forms appears as a plausible way to

address Question [I.2] and Conjecture
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