Penalized contrast estimation in functional linear models with circular data - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Penalized contrast estimation in functional linear models with circular data

Résumé

Our aim is to estimate the unknown slope function in the functional linear model when the response $Y$ is real and the random function X is a second order stationary and periodic process. We obtain our estimator by minimizing a standard (and very simple) mean-square contrast on linear finite dimensional spaces spanned by trigonometric bases. The novelty of our approach is to provide a penalization procedure which allows to automatically select the adequate dimension, in a non-asymptotic point of view. In fact, we can show that our penalized estimator reaches the optimal (minimax) rate of convergence in the sense of the prediction error. We complete the theoretical results by a simulation study which illustrates how the procedure works in practice.
Fichier principal
Vignette du fichier
CFLM_hal.pdf (592.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00651399 , version 1 (13-12-2011)
hal-00651399 , version 2 (24-09-2012)

Identifiants

  • HAL Id : hal-00651399 , version 1

Citer

Elodie Brunel, Angelina Roche. Penalized contrast estimation in functional linear models with circular data. 2011. ⟨hal-00651399v1⟩
276 Consultations
300 Téléchargements

Partager

More