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PENALIZED CONTRAST ESTIMATION IN FUNCTIONAL LINEAR
MODELS WITH CIRCULAR DATA

E. BRUNEL AND A. ROCHE ™

ABSTRACT. Our aim is to estimate the unknown slope function in the functional linear model
when the response Y is real and the random function X is a second order stationary and
periodic process. We obtain our estimator by minimizing a standard (and very simple) mean-
square contrast on linear finite dimensional spaces spanned by trigonometric bases. The novelty
of our approach is to provide a penalization procedure which allows to automatically select the
adequate dimension, in a non-asymptotic point of view. In fact, we can show that our penalized
estimator reaches the optimal (minimax) rate of convergence in the sense of the prediction error.
We complete the theoretical results by a simulation study which illustrates how the procedure
works in practice.

AMS 2000 Subject Classifications. 62G05 - 62J05 - 62GO08.

Keywords. Functional linear model, penalized contrast estimator, mean squared prediction
error, minimax rate.

1. INTRODUCTION

Functional data analysis have known recent advances in the past two decades. In many
practical situations, we aim to predict values of a scalar response by using functional predictors,
or roughly speaking, curves. Many fields of applications are concerned with this kind of data,
such as medicine, chemometrics or econometrics. This is especially the case when people have to
predict electric consumption from a daily temperature curve, or in medicine when spectrometric
signals are used to detect abnormality. We refer to Ferraty and Vieu (2006) and Ramsay and
Silverman (2005) for detailed examples and to Preda and Saporta (2005) for application in
econometrics. In this paper, we focuse on the functional linear model, where the dependence
between a scalar response Y and the functional random predictor X is given by:

(1) /5 t)dt +oe, o >0,

where the random variable € stands for a noise term. Our aim is to estimate the unknown
slope function § from an independent and identically distributed (i.i.d.) sample (X;,Y;), for

i=1,---,n. In the sequel, we suppose that the random function X takes value in L?(A) with
A a compact set and for sake of simplicity, we fix A = [0,1]. We recall that the usual inner
product (.,.) in L2[0, 1] is defined by (f, g) fo u)du for all f, g € L2[0,1]. The random

curve X will be supposed to be centred and perlodlc that is to say the function s — E[X(s)]
is identically equal to zero and X (0) = X (1). This context matches the description of circular
data considered in Comte and Johannes (2010).

*
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2 E. BRUNEL AND A. ROCHE

By multiplying both sides of Equation (1) by X(s) and by taking expectation, we easily
obtain:

1
(2) B[V X(s)] = /0 BOOBX (£)X (s)|dt =: TB(s), for all s € [0, 1],

where I' is the covariance operator associated to the random function X. Then, the problem of
the estimation of 3 is related to the inversion of the covariance operator I' or of its empirical
version:
1 n
Ty = ;QQ )X

Many authors have studied the functional linear model. Strategies using regression on func-
tional principal components have been proposed by Bosq (2000), Cardot et al. (1999) or
Cardot et al. (2007) among others. The mean squared estimator is usually obtained on the
linear space spanned by the first eigenfunctions associated to the greatest eigenvalues of the
empirical covariance operator I';,,. Although the resulting estimator is shown to be convergent,
its behaviour is often erratic in simulation studies, thus a smooth version by using splines has
been proposed by Cardot et al. (2003). Smoothing splines estimator minimizing a standard
least square criterion has been improved by Crambes et al. (2009) with a slight modification
of the usual penalty. The authors have shown that rates of convergence for the risk defined by
the mean squared prediction error depend on both the smoothness of the slope function and
the structure of the covariance operator (in particular, the decreasing rate of the eigenvalues).
They also prove that the obtained rates are minimax over large classes of slope functions. In
a different way, Cardot and Johannes (2010) propose a thresholded projection estimator to
circumvent instability problems, which can reach optimal convergence rate for the risk associ-
ated with the mean squared prediction error. Their techniques based on dimension reduction
follow inverse problems ideas starting from Efromovich and Koltchinskii (2001) and covered
more recently by Hoffmann and Reiss (2008). But all theses procedures depend on one or more
tuning parameters, which is a difficult problem to solve in practice.

Earlier, Goldenshluger and Tsybakov (2001, 2003) have considered the problem of optimal
prediction under the canonical multiple linear regression model with a random design and infin-
itely many parameters. The performance is characterized by the mean square prediction error.
They construct predictors based on a weighted regularized least square estimator. Moreover,
under the normality of the random noise sequence, the predictor is asymptotically minimax over
ellipsoids in ¢5. However, in their setting, the regressors are uncorrelated and their common
variance is supposed to be one, so that the application of their results requires to standardize
the regressors. Consequently, one needs to fully know the covariance operator and this cannot
be directly compared to our context.

Cai and Hall (2006) addressed the problem of prediction from an estimator of the slope func-
tion. Recently, Yuan and Cai (2010) have developped a smoothness regularization method for
functional linear regression and provided a unified treatment for both the prediction and estima-
tion problems. They obtain sharper results on the minimax rates of convergence and show that
smoothness regularized estimators achieve the optimal rates of convergence for both prediction
and estimation. Again, in the precedent works, the choice of the tuning parameter plays an
important role in the performance of the regularized estimators. The usual practical strategy of
empirically choosing the smoothing parameter value is performed through the generalized cross
validation.

But nonasymptotic results providing adaptive data-driven estimators were missing up to the
recent paper by Comte and Johannes (2010). They propose a model selection procedure for
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the orthogonal series estimator introduced first by Cardot and Johannes (2010). The resulting
estimator is completely data-driven and it is shown to achieve optimal minimax rates for general
weighted L2-risk (without including the mean squared prediction error).

In this paper, we propose an entirely data-driven procedure to select the adequate dimension
of the functional space over which the standard mean square contrast is minimized. Though,
our goal differs mainly from Comte and Johannes (2010) since we are interested in the mean
squared prediction error. Our method is based on model selection tools developped in a general
framework by Barron et al. (1999), recently outlined in Massart (2007) and in the particular
multivariate regression model by Baraud (2002). The estimation procedure is presented in
Section 3. Then, in Section 4, the resulting penalized estimator is proved to satisfy an oracle-
type inequality for the risk associated to the prediction error and to reach optimal rates for slope
functions belonging to Sobolev classes. Finally a simulation study is presented in Section 5.

Most of proofs are relegated to Appendix A.

2. THEORETICAL FRAMEWORK

2.1. Properties of the covariance operator. We give here some useful properties of the
covariance operator I" defined by (2).

First the operator I' is a self-adjoint Hilbert-Schmidt operator and thus it is compact. By
Theorem 6.11 of Brezis (2011), there exists an orthonormal basis (¢;);>1 of L%([0,1]) where
the ¢;’s are eigenfunctions of I'. For j > 1, we denote by \; the eigenvalue associated to the
eigenfunction ;.

We have \; > 0, for all j > 1. We suppose in addition that the \;’s are positive numbers: this
condition ensures the model to be identifiable. Indeed, if there exists jo > 1 such that \;, = 0,
we have:

0= )‘j0||90j0||2 =< F(pjovsojo >=E [< X, Pjo >2] s
and < X, ¢, >= 0 almost surely. By consequence, if the slope function 3 satisfies Equation (1),
then any slope function of the form 3+ cypj,, with ¢ € R, satisfies also Equation (1): it is clearly
impossible to identify the slope function with our sample in that case.
As the curve X is supposed to be periodic and second-order stationary, the eigenfunctions of

the covariance operator are the functions of the Fourier basis (see Comte and Johannes (2010))
and we can assume that:

(3) 01 =1, ¢2j(-) = V2cos(2mj-) and @aj41(-) = V2sin(27j-).

In this context, we only have to estimate the unknown eigenvalues of the covariance operator.
2.2. Risk—Prediction error. The quality of our estimator will be evaluated in terms of mean
squared prediction error. The prediction error of an estimator 3 is the error made by predicting

a new value Y, 11, given a new curve X, independent of the sample, by using the predictor
Yoi1 :=< B, Xn41 >. This quantity can be written:

E[(ffnﬂ—E[Yn+1|Xn+1])2|X1,...,Xn] = <I(B-P).B8-8>.

Then we define a new scalar product on L?([0, 1]) by:

< f?.g >ri=< Ffag >= ZA]<f7 ¢j><g> (10]>’ for all f’g € L2([O7 1])7
7j=1
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and its associated norm || - [[p. With our assumption on the positivity of the eigenvalues A;, the
form (-, -)p satisfies the positive-definite property, otherwise we would only have a semi-norm
I llr on L([0, 1)).

3. ESTIMATION PROCEDURE

3.1. Definition of one estimator. Let N,, € N* and M,, := {1,...,N,,}. For m € M,, we de-
note by Sy, := Vect{®1, ..., p2m+1}, the linear space, called model, spanned by the trigonometric
basis defined by (3), and of finite dimension D,,, := 2m + 1.

Remark: Note that the models S,, are nested i.e. for m < m/, S,, C S,,,. Hence, the space
Sy, := Sn,, contains all the models.

We define — in case that this definition makes sense — the least square estimator Bm of B in
Sm by:

(4) Bm = arg minfeSm'Vn(f)a
where
Iy gy
W(f) == ;(Y <, Xi>)

is the least square contrast.
The function f = Z]j.j:”i aj; minimizes the contrast 7, on S, if and only if the vector
(a1, ...,ap,, ) € RPm minimizes the convex function

1 n D, 2
F(tl,...,tDm) ZZ*Z Y;—th<g0j,Xz‘>
N3 j=1
on RP7. Let us define the matrix
1 n
(5) D, = <nz < (,Oj,XZ' >< Y, X; >>
i=1 1<5,k<Dp,

and the vector
!

1 n
b= (nZYi<90j7Xi>> :
i=1 1<j<Dpm
we have:

VF(t) = —2b+ 2®,t,

with ¢ = (t1,--- ,tp,,)’ € RPm.
Therefore, we have existence and uniqueness of the least square estimator on Sy, if and only
if the matrix ®,, is invertible. In that case, the estimator is given by:

D
Bm = § ajpj,
i=1

with o = ®1b.



PENALIZED CONTRAST ESTIMATION IN FUNCTIONAL LINEAR MODELS 5

3.2. Penalized estimator. Let ), be the minimal eigenvalue of ®,,, we define for all m € M,,,
the set

(6) Gm = {j\m > Sn}7

with s, := % (1 — ﬁ) We also define the set:

@ G= () G
meMn

For all m, on the set G,,, the matrix ®,, is symmetric, positive and by consequence invertible.

Then, by definition (7), we can compute on G the least square estimator Bm of B on S, for all
m € M,,. Then we can define an integer

(8) m € arg min,, ¢y, (’Yn(ém> + pen(m)) ,
with

o2
9) pen(m) := 46(1 +28) Dy —

where 6 > 8 and § are two positive constants.
Finally the penalized estimator is defined by:

5. Bm on G
(10) Bi= { 0 on G-

4. MAIN RESULT—RISK BOUND
4.1. Oracle inequality. We will denote by (Hnmom) the following assumption:
(Hmom): There exists two positive constants v and ¢ such that for all j = 1,..., Dy, and for all
q=>2:

2q
< ;X >

VA

Under the assumption, we can bound the risk as follows:

-2

|
(11) E < % 2

voc?

Theorem 4.1. Suppose that there exists p > 6 such that 7, := E[|e|P] < oo, moreover suppose
that E[(B8, X1)4] < +oco and that Assumption (Hnom) s verified.
If both conditions are satisfied:

n

12 i A > 2 d Dy <K
(12) 13%111311\,” )= /n an N = In3n’

with K a numerical constant, we have, for all slope function 3 € L2([0,1]):

B[l - 62 < c(mm (inf \Iﬁ—f!!%+pen(m)>

meM, \ fE€Sm
1
(13) Fo(+ DR+ Bl< 520 > )

with C' depending only on K, I', p, 7p, %, ¢, v, 0 and §.
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Remark 1: the lower bound on minj<j<p, A; in (12) can be expressed as a bound on
the dimension Dy, provided we give some explicit condition on the A;’s, see for instance the
polynomial and exponential cases in Theorem 4.2 in the next paragraph.

Proof. Recall that S, = Sy,,. We define an empirical semi-norm naturally associated to our
estimation problem by:

1 n
17117 =~ > < f.X: >, forall f € L%([0,1]).
=1

We define the set

(14) Ap = {¥f € S, I£IF < poll FII7},

where 1 < pp < 0/8. The following inequality holds:

(15) E[|5 — Blt] < EllSn — Bl 1a,nc] + ENS — Bl 1ag] + IBIEP(G)

The second and the third terms of the inequality can be easily controlled by lemmas A.4 and
A5 deferred in Appendix A. Thus the end of the proof will be devoted to upper bound the first
term in the right-hand-side of (15).

Let B,, be the orthogonal projection with respect to the scalar product < -,- >, of 8 over
Spn. By definition (4) of B, we have 7, (Bm) < Yn(Bm), and by definition (8) of 7,

A~ ~

(16) Y (Bi) + pen(m) < yn(Bm) + pen(m).

We can write:

(17) Yo (Bin) = Y (Bm) = 1B — B2 = 18m — BIZ = 2vn (B — Brn),

with v, an empirical linear centred process defined by

1 n
1 n = - i ,Xi ,f 11 m-
(18) vn(f) n;E < f,X;>, forall feS

We can remark that E[|| 8, — B|2] = E[< B — 8, X >2%] = ||Bn — B]/2. To control the random

term || 3, — B||2 we can see that, on the set A, for all f € S, we have ||f||2 < po||f]|2. To deal
with the last term we remark that, by the linearity of v,,, we have, as 6 > 0:

~

2B — Bm) < 2018w — Bmllr sup (va(f))

fest

mvVim

(19) < gllBa Bl 40 swp @),
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with ST . == {f € Spum, [|fllr = 1}. Gathering (16), (17) and (19) and taking the expectation,

we obtain after several use of the triangular inequality:

o e N =

E[pen(m) — pen(r)]

8po + 80pg + 20 5 40%pg 5
Bm — Bllp + E| sup (v
Tt WA+ g B | s ()
8po + 80pg + 20 86po
< 1B — BIE + Opem(m)

- 0 — 8po 60— 8p

46°po 2 /
%00 S~ gl () ) ||
0—8p0 sT
m/eMpy, fe mvm/ +

with p(m,m’) .= 4(1 + 25)Dme/%2- The following lemma allows us to control the last term of
the bound which completes the proof:

Lemma 4.1. Suppose that there exists p > 6 such that 7, := E[|e|P] < co. Let vy, be the process
defined by Equation (18) and p(m,m’) = 4(1 + 25)Dme’%27 then under Assumption (Hmom,),
there exists a constant C depending only on p, T, % and & such that:

s1Q

S Bl s () —pmm) | | <
m/eMp, fesgq,\/m/ +

The proof of this lemma is presented in Appendix A and relies on Talagrand’s Inequality. [

4.2. Convergence rates over Sobolev spaces. Given an integer k£ and a positive real number
L, we define the periodic Sobolev space WP¢"(k, L) as follows:

(20) WP (k, L) := {f € WH(L), ¥j =0,..k =1, fD(0) = fO1)},
with
WEL) :={f:[0,1] = R, f* 1 is absolutely continuous and || f|| < L}.

Theorem 4.1 allows us to derive a uniform risk bound over WP (k, L). We consider here as
in Comte and Johannes (2010) or Cardot and Johannes (2010) two types of rate of decrease
of the sequence (\;j);j>1.

Theorem 4.2. Assume that the assumptions of Theorem 4.1 are verified. For all k € N* and
L>0:
Polynomial case. : If there exists two constants ¢ > 0 and a > 1/2 such that, for all
J>1,57%/c <\ <cj 2, we have:

(21) sup EHB — 5”%] < Cpnf(2k+2a)/(2k+2a+1);
Bewrer(k,L)

Exponential case. : If there exists two constants ¢ > 0 and a > 0 such that, for allj > 1,
exp(—j2%)/c < \j < cexp(—j2), we have:

(22) sup  E[|B — B[] < Cpn~'(Inn)'/%,
Bewrer(k,L)

with Cp and Cg independent of n.
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Remark 2: those bounds coincide with the minimal bounds which can be found in Cardot
and Johannes (2010) under the assumption that the noise ¢ is Gaussian. Hence, in that case,
the rate of convergence is optimal.

Remark 3: the bounds (21) and (22) are the same to those obtained in Cardot and Johannes
(2010) and are very similar to those presented in Crambes et al. (2009).

Proof. First we suppose that we are in the polynomial case, we have:
(23) 18- Bmlt=" D N<Bg><c Y i <Bp>"
By lemma A.3 of Tsybakov (2004) we have that f € WP (k, L) if and only if

2 2 L
ch <f7g03 >“< ﬁ?
Jj=1
with ¢; = j* if j is an even number and ¢; = (j — 1)¥ otherwise. Then, by equation (23), we
obtain:
HB - Bm”lz‘ < C/Dr_nza_2kv
with ¢ = 272¢L2 /7% and by theorem 4.1:

2
E[|3 — 8|2] < in (/D272 4 40(1 + 26)D,, -
155181 < (i (D2 + 60+ 200,

1
+—(1+|1B]IF + E[< 8, X1 >4]”2>> |
The minimum is reached for D,, ~ n!/(2e+2k+1) and is of order n~(20+2k)/(2a+2k+1)

The proof in the exponential case is quite similar and thus omitted. O

5. SIMULATION STUDY

5.1. Sample simulation. In the sequel, we generate samples (X;,Y;)" ; from model (1) and
we consider the following slope functions:

B1(t) = log(15t2 + 10) + cos(4nt), Bao(t) = 12sin(v/27t) + 7 cos(13nt),

Bs(t) =t(t —1), Ba(t) = Licpi/2;3/4)-
The function 3; is the same as the one used in the simulation study presented in Cardot et al.
(2003). The function fs is in WP (1,1).

For the simulation of the curve X we can remark that, as (¢;);> is an orthonormal basis of
L2(0,1)),
(24) X =3 < X,p; > ¢ in L2(0,1)),
j>1

and, for all 7 > 1, < X, p; > is a centred random variable of variance A; ; this decomposition

is called the Karhunen-Loeve decomposition of X. For the simulations, as Hall and Horrowitz
(2007) and Hall et al. (2006), we have truncated the sum of Equation (24):

2J+1
X(t) = Z &ip;(t), for all t € [0,1],
j=1

with {&1,...,&2541} a sequence of independent centred random variables such that, for all j =
1,...,2J +1, Var(§;) = Aj. We choose here J = 500 and &; ~ N (0, );).
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0 10 20 30 40 50 0L

04} |
"}\
()_) I'k’-\\
) = 4L &8 8§ I

FIGURE 1. Evolution of E,, ., versus & for 8, i = 1,...,4 and X € {\(P) X(E)},
On the right-hand-side each plot is linearly transformed. (n = 2000)

We also take two sequences of covariance operator eigenvalues, corresponding respectively
to the polynomial and exponential cases of Theorem 4.2: A(F) .= (1/5%)j>1 and AE) =
(exp(—+/j));j>1. The sequence AP) decreases with the same rate as the eigenvalues of the covari-
ance operator of the Brownian motion (see Ash and Gardner (1975)), then the corresponding
curve X should have the same regularity. To our knowledge, the case where the sequence (\;);>
decreases exponentially has never been treated by simulations. The parameter a appearing in
Theorem 4.2 should not be too large otherwise the sequence (exp(—j2%));>1 is quickly too small
to be treated numerically, the choice (a = 1/4) seems to be reasonable.

The noise € has been chosen Gaussian with variance o = 0.01.

5.2. Rough calibration of the constant appearing in the penalty. Recall that the con-
stant k£ = 46(1 4 20) is a (unknown) numerical constant involved in the penalty term defined by
(9). In practice, we have to fix the value of x for any slope function and any rate of decrease of
the covariance operator eigenvalues. Our strategy consists in choosing x so as to minimize the
risk E[|| 5 — f||2] for our choice of slope functions and rates of decrease of the eigenvalues defined
in Paragraph 5.1. As it cannot be calculated, we have to approach it by a Monte-Carlo method:
we simulate nes; = 1000 independent samples {(XZ(J ),Yi(j )), i =1,...,n} and we calculate, for
all j =1,..., nest, B(j) the corresponding estimator. For all 7 > 1, according to Paragraph 2.2,
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the quantity HBU ) — B||2 can be approached by:
2J+1

BV =3 A< BY =B,y >7.
j=1

Then the mean squared error of prediction can be approximated by:

. 1 Nest .
Enest = Zé(ﬂ(])>
Nest -
7j=1
A= \P A= A\
5 5
4 4
=3 =3
9 9
07 07 06 08 1 0701 0% 08 1
t t

FIGURE 2. Plot of 81 (bold) and By computed for 10 independent samples of size
n = 2000.

~

On Figure 1-left, we plot eight (approximated) risk curves E,_, versus k, corresponding to
B1, B2, B3, Ba and the eigenvalues A, XE) We also present Figure 1-right, the risk curves
linearly transformed to avoid the scale effect. We can see the optimal value of x seems to be
around 2.5, this is the value used hereafter in the simulations. It is not in accordance with the
theoretical lower bound on «, induced by the condition 8 > 8. The methodology we used here
for the calibration should be improved with sharper tools, but this is out of the scope of the

paper.

5.3. Results. On Figures 2 and 3, we can see that the estimators of 85 and B3 are reasonably
close to the estimated function. Figures 4 and 5 show that the quality of the estimation is not
as good for B3 and (4. This is due to the difficulty to approximate polynomials and piecewise
continuously differentiable functions (Gibbs phenomenon) with the Fourier basis. On all figures,
the quality of the estimation seems to be better when \ = AE) | which is coherent with the
theoretical results given in Theorem 4.2. Moreover, we observe in Table 1 a decreasing of the
empirical version of the mean squared error of prediction when the size n of the sample increase
in all cases. Note that it is difficult to compare the rate of decrease on Table 1 for the different
curves since the approximated mean squared prediction error Ene.st depends on the value of A
which is taking successively value A or \(). Moreover, there is also a size effect due to the
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TABLE 1. Mean and median for 1000 Monte-Carlo replications of é(30))

b1 B2
n =100 n=1000 n=>5000 n=100 n=1000 n = 5000
AP mean 0.0084  0.0018  0.0011 0.13 0.03 0.01
median 0.0054  0.0013  0.00098  0.13 0.028 0.011
AE) mean 0.0045  0.0011  0.0005 0.54 0.021 0.083
median 0.0036  0.00096  0.00044  0.54 0.021 0.080
B3 Ba
n =100 n=1000 n=>5000 n=100 n=1000 n = 5000
AP) mean (x107%) 29 3.7 0.66 17 9.8 7.5
median (x107%) 10 1.1 0.26 9.2 5.4 4.8
AE) mean (x107%) 18 2 0.52 14 8.8 7.2
median(x107%) 11 1.2 3.4 11 6.7 5.5
A=AP A= AE)
20
10
= 0
_lO L
—20

FIGURE 3. Plot of 2 (bold) and Bg computed for 10 independent samples of size
n = 2000.

range of the functions 8 we have chosen. This makes the comparison between the different
curves (3 difficult.

We also try to quantify the rate of decrease of the prediction risk as shown on Figure 6 and 7.
For all the curves, except for 5, we observe quite the same behaviour: this is why we only show
the results for 81 and s on Figure 6 and 7. On Figure 6, we can notice the rapid decrease of the
prediction error (mean, median and deciles computed over the 1000 independent replications)
both for the sequences A(*) (at top) or A\(#) (at bottom). The logarithmic transformation of the
mean prediction error on Figure 6-right makes appear a linear trend (red line). This corresponds
to the theoretical rate of convergence in Theorem 4.2. As we can see on Figure 7, the behaviour
of the mean squared error of prediction for (B, is less obvious: there is a stable period for
small samples before starting to decrease. This can be explained by the fact that o has a
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A=\ = \E)

0.1 0.1

0 0
=01 —0.1F
%—0.2 —0.2r
—0.3 —0.3}

_0‘40 0.2 0.4 0.6 0.8 1 _O‘JIO 0.2 0.4 0.6 0.8 1
t t

FIGURE 4. Plot of 3 (bold) and B3 computed for 10 independent samples of size

n = 2000.
A= AP A=AB
) 2
1 |
S ; , : =l ” - . :
0 02 04 06 08 1 0 02 04 06 08 1
£ {

FIGURE 5. Plot of 84 (bold) and B4 computed for 10 independent samples of size
n = 2000.

non-homogeneous behaviour (multiple monotonicity changing) and hence can be approximated
accurately only by fonctions belonging to a space of sufficiently high dimension. Though, the
adequate dimension can be achieved only if the size of the sample is sufficiently large.

APPENDIX A. TECHNICAL LEMMAS AND PROOFS

Proof of Lemma 4.1. The proof relies on the following integrated version of Talagrand’s Inequal-
ity which can be found in Comte et al. (2006):
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1021
) 10—2.8
00500 1000 1500 2000 10 103
n n
1073
00500 1000 1500 2000 10°
n

FIGURE 6. On the left-side : Plots of the empirical mean (blue line), median
(black dotted line) and first and last deciles (red lines) of the mean square pre-
diction error Enest versus n, for the curve (1; on the right-side : logarithmic
transformation of the mean of E,_, (in blue) and linear mean-square approxi-
mation (in red); for both choices of AF) (left-top) and A(F) (left-bottom).

Lemma A.1. Let T1,...,T,, be i.i.d random variables and F a denombrable class of measurable
functions. For all f € F we define r,,(f) :== 2 30 (f(T3) — E[f(T})]). We have, for all § > 0:

T n

E

H2
sup | (f)? —2(1+25)H2] < KiKexp (—chsnv>
feF n 1n

SM? KiC(Vé&)VonH
TR P\ v )

where C(6) = V1 + 62 — 1, Ky is a universal constant and with

sup || flleo < My, E
feF

sup |rn(f)|] < H and sup Var(f(1T1)) < V.
fer fer

We can write v, = I/T(Ll) + 1/7(,,2) with:

1 n
v(f) = EZ&' <[ Xi>1lg. , —E [61 < f,X1> 1Q€i,X1} ;
i=1

1 n
V}f)(f) — E E g < f’ X’L > 1Qgi»X¢ —E |:<€1 < f7 Xl > 1Qgiyxi:| )
=1
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FIGURE 7. On the left-side : Plots of the empirical mean (blue line), median
(black dotted line) and first and last deciles (red lines) of the mean square pre-
diction error Enest versus n, for the curve (; on the right-side : logarithmic
transformation of the mean of E,_, (in blue) and linear mean-square approxi-
mation (in red); for both choices of AF) (left-top) and A(F) (left-bottom).

< X, ;>

<by;
Se|<ul

where K, := n?/(P=2) and b, = Ky C(V9)v/5 y/n/Inn For all m’ € M,,, we have:

and:

Qz—:,X = {|5| < Kn,

W2 22"
2 ' (1) 5 p(m,m’)
E sup  (vn(f))” — p(m,m’) < 2E sup - (v, (f))" = =
tESfRVm + fesfn\/m —+
(25) +2E sup (12 )
fESErLVm
Control of 5" : For all fesh., . we define a function gy : R x L%([0,1]) — R by g(z,X) =

r < f,X > 1q, ,, we denote by F = {gy, f € St i} Usual den81ty arguments allows us
to apply Lemma A.1 to the non denombrable family of functions F, by taking T = (g, X),

rn(gf) = 1/7(11)( f) and provided that we can find the quantities M;, H and V such that:

Sup ||g||OO S M17 E
gEF

sup |Tn(g)] < H and sup Var(g(71)) < V.
geEF geEF
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For all f € SI . for all X € L%([0,1]), we have that

Dm\/m’
< 5, X >
<LX>= D N <fe> P
j=1 VA
Then by Cauchy-Schwarz Inequality, for all z € R

|.’E < faX > |]-Ql.7x < Kn V Dm\/m’b%HfHF
Hence, as ||f||r = 1 and by definition of g € F

sup HgHOO S K‘nbn\/m = Ml-
geF
By linearity of V,(ZI), for all f € ST

Dy 2
() = (X vi<sesw ()

S (e ()

VA

< 7E [< gOJ,Xl > :| ’
n
as E[< ¢j, X1 >?] =

<T'¢j,p; >= Aj, we obtain

) 2
2
Bswplr(@)l| =B| s 0| < Dy T = 12
geEF fest "
Finally, for all f € ST

E[< f,X1 >% = ||f||} = 1, then we have

sup Var(g(e1, X1)) < sup E[ef < f,X; > =0*=V.
ge]: fesfn\/m
Then by Lemma A.1, we have, for all § > 0 and with p(m,m')

= 4(1 + 28)0% D,y /12
2
(1) V12 p(m,m’) < _
E fezlrlp v () 5 <% exp (= K10 Dmym)
mvm/ +
2b2
+C1Dme’ €xXp (_CQ \/ﬁ )
Knb
with Cp := 8/(K102(5)), Cy =

(K10C(v/5)V/§)/v/2. This leads to the following bound

/

S o[ s wpp- K
m/'eM,, fGSF

<

5 <
mvm/

with C' depending exclusively on o2 and §

z‘Qz

J’_
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Control of V7(L2). By Cauchy-Schwarz Inequality we have, for all f € anwn,:
D'm\/'m’ 2
¥j 2
PP < o v ( ﬁ> I£1IE.
j=1 )‘j
then:
Dm\/m/ 2
Pj
E| sup [V (P < E |43
fesm\/m’ " ]gl " v )\‘]

By independence of X and e:

2
E uﬁf) L] = lVaur 57< i X > loe
\/>\j n \/>\j 8’

< QOJ',X >2
Aj

IN

1
B [ 1eon,y ] B [

< (pj,X >21
A {

1 2/2
— < ?2 + 02 /_2q!v20q_2> ,
n \ kb by

1
+-E[¢*|E
n

<X,(pj>

\/Tj

N

by using Assumption (Hmem) With ¢ an integer greater than % + 1. We obtain then:

> E

m/'eMy

D T, o2 C
< N, v ( Lo+ 2q!v20q_2> <=,
n 4 bl n

sup |2 (f)I?
fesm\/m’

with C' depending exclusively on p, Tp, v, ¢ and 0. Inequality (25) allows to conclude the
proof. (]

The demonstration of lemmas A.4 and A.5 requires some technical results about the eigen-
values of Gram matrices given in the following lemma:

Lemma A.2. For m € M, let A, be the smallest eigenvalue of the matriz ®,, defined by (5)
and fi, be the smallest eigenvalue of the matriz

1= <@, X > < o, X >
(26) U, = ( y = .
IS VA V Ak 1<j,k<Dm

Then:
(1)

Xm ~ EN . !

p(r) = fim = <1<I§1<Hf5m A’) |
with p(I') the spectral radius of the operator T'.

(2) If, in addition, iy, > 0:

2
N T

= 11 .
mreSa\o} || £IIE
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Proof of Assertion 1. Let m € M, and:

VA1
A, =
AD,,
We have:
D, = AV A,
Hence, fi,, = 0 if and only if Am = 0, and in case fm = 0, the assertion is true. On the other
hand, if fi,,, > 0 then both ®,, and W,, are invertible and we have:

i =p (U7 and A, =p (@)

m
Denote by ||| - ||| the matrix norm induced by the usual euclidean norm on RP™ denoted by |- |a.
We recall that:
[||A]|| = sup |Aals, for all square matrix A.
|a\2:1

If A is symmetric, p(A) = ||| 4]||, then we have:

p (1) = [ll@M ] = 1A T A
< AP = p (A7 0 (w51

m
Hence:
Am > min - Aj fiy,.
1<j<Dn,

In the same way, as Ut = A,,,®, 1A,,, we have that:

anl < max A A< p(T)AE

T 1<j<Dm
which gives the result.
Proof of Assertion 2.
D
Let f =320 ajp; € Sp\{0} :
Dny, 1
Iz = Z % Z <5, Xi >< o, X >
Gk=1 i=1
pal 1 o < @), X; > < op, Xi >
= \/Aj\/ )\kajak— St i = t(AmOz)\I/NnAmOé.
j,%% " ; VA VAL
We have:
Dn,,
IFIE =D Ajad = [Anal3.
j=1
Consequently:
2
11l = inf ta\IJNna.

m =
Sn\{0} Hf”% a€RPNn |a|y=1
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On the condition iy, = min Sp(¥y, ) > 0 the symmetric matrix Wy, is also positive. Then there
exists an orthogonal matrix U such that *UV¥y U is a diagonal matrix whose main diagonal
entries are the eigenvalues of Uy, . Then we have:

inf LaUy, a = inf La'UV N, Ua = jiy,,.
a€RPNn |a|a=1 a€RPNn |a|p=1

The following lemma allows us to control the minimal eigenvalue of W,,:

Lemma A.3. Let 7 be a real number such that 0 < 7 < 1. For m € M,,, consider the smallest
eigenvalue fiy, of the matriz V., defined by (26), then, under Assumption (Hmom):

P (i, < 7) < 2D2 exp | —n (-
Hm = Sm P TY D ax(202,0) )

Proof. We have:
{fim <7} ={1—fi, >1—7}.
As1—71>0,
{1—fm>1—7}C{l=fim|>1 -7} {p (¥, =) >1—7}.

We know that the trace of a matrix is equal to the sum of its eigenvalues (counted according to
their algebraic multiplicities), then:

(27) (W — 1) < (T — 1)) = ta( (s — 1)( T, — 1)),

as VU, — I is symmetric. The last term of the inequality being equal to the sum of the squared
coefficient of ¥, — I.
Define, for j,k =1, ..., Dy, :

k) _ < P5 Xi > <o, Xi >

Y YN

we have, for all, 7, k, E [ij’k)} = 0, . Hence, by (27) :

n

2
p(U,, —I)? < Z (:L ZZi(j’k) _E [Zi(j,k)D .
i=1

1<j,k<Dm



PENALIZED CONTRAST ESTIMATION IN FUNCTIONAL LINEAR MODELS 19

This gives:
n 2
1 . .
Pl < P S (A -n[#Y]) sa- o
1< k<D \"V =1
n 2
1 k) (j.k) (1 — 7)2
< . ]7 ‘]’
< {(nZZ ~EB |27 >
1<z,j<Dm =1
n 2
1 (Gik) (Gik) (1—7)?
< P (nZZ -B |z ) > o
1<y, ]€<Dm =1 m
1 <& (jk) 1—71
< — N
S S S | ==
1<j,k<Dm i=1
L~ (k) Gl L 1-7
< - (G:k) _ G e
< Z P<n22z E{Zl }> o
1<5,k<Dm, =1
1 k) Gkl 1—7
(28) + P( n;z +E|20Y] > |

Assumption (Hmoem) allows us to apply Bernstein’s Inequality (we use here the particular

form which can be found in Birgé and Massart (1998)) to the sequence Z§j’k), s Z{F)

Jk=1,...,D,. We obtain, for all z > 0 :

P <1 Z Zi(j’k) -E [Zi(j’k)} > o2z + cx) < exp(—nx),
n 1=1

and in the same way, for all x > 0 :

(—ZZ]’ +E[ (’k} >v\/ﬂ+cx> < exp(—nz),

, for all

by applying Bernstein’s Inequality to the sequence —ij ’k), e

(1—7)2

—zJ").

Taking z = IDZ max(20%.0)? e have that:

1—7 V20/2 1—7 c 1—7

W2z + cx < + < ,

Dy, ( max(202,¢) 4Dy, max(2v?, c)) Dy,

and by (28) :
P (i <7)<2 Z exp(—nz) < 2D2, exp(—nz).
1<j,k<Dm

This concludes the proof. O

Lemma A.4. Under Assumption (Hutom), if Dy, < Ky/n/In®n and if E[(8, X1)%] < 400,
there exists a constant C' depending only on pg, K, ¢ and v such that:

!

. C
E[||8 - Blf1lac] < —(El<8,X >S4YV2 41817 + 1),
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Proof. First, by triangular inequality,
B3 - 8l31ag) < 2B [(IBIF + 1812) 1a;)]
(29) = 2B [|BalR1agne] + 2IBIRP(AS).

With Lemma A.2, it is easy to see that G C {An, > sn} C {fin, > sn/p(I)} and that for any
function f € S,\{0}, on the set G, we have:

o _ DI
< —-.
1 < 250
By taking f = By, we obtain:
3 P &4
(30) E |8l 1ag0c] < 2B (183 1ag00
n
Now, since S, is a mean-square-type estimator, the vector (<Bm,X1>, e ,(Bm,Xn))’ can be

seen as the orthogonal projection (w.r.t the Euclidean scalar product on R™) of the vector
(Y1,---,Y,) on the subspace {({(f, X1), -, (f,Xn)),f € Sn}. Since the squared empirical

norm || - |2 corresponds to the Euclidean norm up to the multiplicative factor 1/n, we deduce
that:
n
n|Bmllz <> V7, for all m,
i=1
as the norm of the vector (Y7,---,Y},) is larger than the norm of its projection. Then, we can

use that Y; = (8, X;) + ¢; and have:
2 n
1Bals < 20817+ = > el
i=1
By gathering the last inequality and inequalities (29) and (30), we obtain:
~ 4p(T) 1<
E[|5 - Blf1as] < —_— 18115 + - 2512 LYNTYe
" i=1
The ¢;’s are independent of the X;’s, and the set A, depends only on the X;’s so that:
1 n
(3 e
i=1

On the other hand, by Cauchy-Schwarz Inequality, we have:
E[18121a506] < BIISIY2V/P(A)

+2|BlIEP(AT).

E = o?P(AY)

n

B 1/2
= (GEUs x0T+ ) VPR

1 491/2 2 c
< ( B XY +|mup) P(A)

As P(AS) < /P(AS) and s, < 2, we get:

B[F - flilag] < VISR (p<r> [;ﬁw,xoﬂm 18I+ aﬂ n HBH%) |

Sn
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To end the proof, we study the term /P(A¢)/sy. The definition of A, and the Assertion 2 of

Lemma A.2 gives us the following inclusions:

- I£1I7 1} N 1
Ay C { inf 5 < C L < .
resapoy £z =0 Ui, < po")

Then by Lemma A.3 and by the assumption Dy, < Ky/n/In3(n), we can easily see that:

P(A%) < K/\/§ (1nn)_3/2n3/2 exp (_ (1 - pal)2 ln3n )

S, - 1-1/vInn 8 K2 max{2v?, c}
3 Cl/
< Cexp (lnn — C”ln3n> < —.
2 n
with C, C" and C” depending only on K, pg, v and c.
O
Lemma A.5. Under Assumption (Harom) and if mini<j<py, Aj > 2/n we have:
P(G°) < D%, exp | — n .
- 2InnDF, max{2v?,c}
Proof.
(31) P(GY) = P ( U G;) <Y P (S\m < sn>.
meMy meMy,
By Assertion 1 of Lemma A.2 we have that:
P(S\m<sn> gP(ﬂm<,8">.
ming<;j<p,, Aj
Since minj<j<py Aj > 2/n and by definition of s,, we have:
. o < o =1- ! )
mlnlstDm )\j \/m
by applying Lemma A.3 with 7 =1 — 1/v/Inn, we obtain:
A 1
P (A ) <202 - .
m S on ) S Sl EXP < "1 nD2, max(2v?, c)>
As Dy, < Dy, and N,, < P23
ZP(S\ <S><D§’Vexp -n !
m n = n .
v 4InnD3, max(2v?c)
Then Inequality (31) allows us to complete the proof. O
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