CEVCLUS: Constrained evidential clustering of proximity data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

CEVCLUS: Constrained evidential clustering of proximity data

Résumé

We present an improved relational clustering method integrating prior information. This new algorithm, entitled CEVCLUS, is based on two concepts: evidential clustering and constraint-based clustering. Evidential clustering uses the Dempster- Shafer theory to assign a mass function to each object. It provides a credal partition, which subsumes the notions of crisp, fuzzy and possibilistic partitions. Constraint-based clustering consists in taking advantage of prior information. Such background knowledge is integrated as an additional term in the cost function. Experiments conducted on synthetic and real data demonstrate the interest of the method, even for unbalanced datasets or non-spherical classes.
Fichier principal
Vignette du fichier
eusflatlfa2011.pdf (302.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00651392 , version 1 (13-12-2011)

Identifiants

  • HAL Id : hal-00651392 , version 1

Citer

Violaine Antoine, Benjamin Quost, Marie-Hélène Masson, Thierry Denoeux. CEVCLUS: Constrained evidential clustering of proximity data. 7th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2011), Aug 2011, Aix-Les-Bains, France. pp.876-882. ⟨hal-00651392⟩
105 Consultations
146 Téléchargements

Partager

More