Boundary behavior of α-harmonic functions on the complement of the sphere and hyperplane - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Boundary behavior of α-harmonic functions on the complement of the sphere and hyperplane

Résumé

We study α-harmonic functions on the complement of the sphere and on the complement of the hyperplane in Euclidean spaces of dimension bigger than one, for 1<α<2. We describe the corresponding Hardy spaces and prove the Fatou theorem for α-harmonic functions. We also give explicit formulas for the Martin kernel of the complement of the sphere and for the harmonic measure, Green function and Martin kernel of the complement of the hyperplane for the symmetric α-stable Lévy processes. Some extensions for the relativistic α-stable processes are discussed.
Fichier principal
Vignette du fichier
aHp_TL.pdf (403.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00650222 , version 1 (09-12-2011)

Identifiants

  • HAL Id : hal-00650222 , version 1

Citer

Tomasz Luks. Boundary behavior of α-harmonic functions on the complement of the sphere and hyperplane. 2011. ⟨hal-00650222⟩
118 Consultations
197 Téléchargements

Partager

More