Bootstrapping Intrinsically Motivated Learning with Human Demonstrations - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Bootstrapping Intrinsically Motivated Learning with Human Demonstrations

Résumé

This paper studies the coupling of internally guided learning and social interaction, and more specifically the improvement owing to demonstrations of the learning by intrinsic motivation. We present Socially Guided Intrinsic Motivation by Demonstration (SGIM-D), an algorithm for learning in continuous, unbounded and non-preset environments. After introducing social learning and intrinsic motivation, we describe the design of our algorithm, before showing through a fishing experiment that SGIM-D efficiently combines the advantages of social learning and intrinsic motivation to gain a wide repertoire while being specialised in specific subspaces.
Fichier principal
Vignette du fichier
ICDL2011Nguyen.pdf (716.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00645986 , version 1 (08-12-2011)

Identifiants

Citer

Sao Mai Nguyen, Adrien Baranes, Pierre-Yves Oudeyer. Bootstrapping Intrinsically Motivated Learning with Human Demonstrations. IEEE International Conference on Development and Learning, 2011, Frankfurt, Germany. pp.Nguyen. ⟨hal-00645986⟩
340 Consultations
133 Téléchargements

Altmetric

Partager

More