Additive covariance kernels for high-dimensional Gaussian process modeling - Archive ouverte HAL
Article Dans Une Revue Annales de la Faculté de Sciences de Toulouse Année : 2012

Additive covariance kernels for high-dimensional Gaussian process modeling

Résumé

Gaussian process models -also called Kriging models- are often used as mathematical approximations of expensive experiments. However, the number of observation required for building an emulator becomes unrealistic when using classical covariance kernels when the dimension of input increases. In oder to get round the curse of dimensionality, a popular approach is to consider simplified models such as additive models. The ambition of the present work is to give an insight into covariance kernels that are well suited for building additive Kriging models and to describe some properties of the resulting models.
Fichier principal
Vignette du fichier
durrande2011.pdf (286.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00644934 , version 1 (25-11-2011)

Identifiants

Citer

Nicolas Durrande, David Ginsbourger, Olivier Roustant. Additive covariance kernels for high-dimensional Gaussian process modeling. Annales de la Faculté de Sciences de Toulouse, 2012, Tome 21 (numéro 3), p. 481-499. ⟨hal-00644934⟩
357 Consultations
830 Téléchargements

Altmetric

Partager

More