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ADDITIVE COVARIANCE KERNELS FOR

HIGH-DIMENSIONAL GAUSSIAN PROCESS MODELING

by

Nicolas Durrande, David Ginsbourger & Olivier Roustant

Abstract. — Gaussian process models –also called Kriging models– are often used
as mathematical approximations of expensive experiments. However, the number of
observation required for building an emulator becomes unrealistic when using classical
covariance kernels when the dimension of input increases. In oder to get round the
curse of dimensionality, a popular approach is to consider simplified models such as
additive models. The ambition of the present work is to give an insight into covariance
kernels that are well suited for building additive Kriging models and to describe some
properties of the resulting models.

Résumé. — La modélisation par processus gaussiens –aussi appelée krigeage– est
souvent utilisée pour obtenir une approximation mathémathique d’une fonction dont
l’évaluation est coûteuse. Cependant, le nombre d’évaluations nécessaires pour con-
struire un modèle basé sur des noyaux de covariance usuels devient démesuré lorsque
la dimension des variables d’entrée augmente. Afin de contourner le fléau de la di-
mension, une alternative bien connue est de considérer des modèles simplifiés comme
les modèles additifs. Nous présentons ici une classe de noyaux de covariance adaptée
à la construction de modèles de krigeage additifs et nous décrivons certaines propriété
des modèles obtenus.

1. Introduction

The study of numerical simulators often deals with calculation intensive computer

codes. This cost implies that the number of evaluations of the numerical simulator is

limited and thus many methods such as uncertainty propagation, sensitivity analysis,

or global optimization are unaffordable. A well known approach to circumvent time

limitations is to replace the numerical simulator by a mathematical approximation

called metamodel (but also emulator, response surface or surrogate model) based on

the responses of the simulator for a limited number of inputs called the Design of

Experiments (DoE). There is a large number of metamodels types and among the

Key words and phrases. — Additive Models, Kriging, Gaussian Processes, GAM, Interpretable
Modeling, Computer Experiment.
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most popular we can cite regression, splines, neural networks. In this article, we

focus on a particular type of metamodel: the Kriging method, more recently referred

to as Gaussian Process modeling [13]. Originally presented in spatial statistics [3]

as an optimal linear unbiased predictor of random processes, Kriging has become

very popular in machine learning, where its interpretation is usually restricted to the

convenient framework of Gaussian Processes (GP). The latter points of view allows

the explicit derivation of conditional probability distributions for the response values

at any point or set of points in the input space.

Since Kriging is usually based on local basis functions, it requires an increasing

number of points in the DoE to cover the domain D when the number of dimensions

d of the input space D ⊂ Rd becomes high [16, 4]. An approach to get around this

issue is to consider specific features lowering complexity such as the family of Additive

Models (AM). In this case, the emulator m can be decomposed as a sum of univariate

functions:

(1) m(x) = µ+
d

∑

i=1

mi(xi),

where µ ∈ R and the mi’s may be non-linear. Since their introduction by Stones in

1985 [17], many methods have been proposed for the estimation of additive models.

We can cite the method of marginal integration [12] and a very popular method de-

scribed by Hastie and Tibshirani in [1, 9]: the GAM backfitting algorithm. However,

those methods do not consider the probabilistic framework of GP modeling and do

not usually provide additional information such as the prediction variance. Combin-

ing the high-dimensional advantages of AMs with the versatility of GPs is the main

goal of the present work. For the study functions that contain an additive part plus

a limited number of interactions, details can be found found in a recent article of T.

Muehlenstaedt [11].

The first part of this paper focuses on the unsuitability of usual separable kernels

(e.g. power exponential and Matérn) for high-dimensional modeling. The second

part deals with additive Gaussian Processes, their associated kernels and the proper-

ties of associated Additive Kriging Models (AKM). Finally, AKM is compared with

standard Kriging models on a well known test function: the Sobol’s g-function [15].

It is shown within the latter example that AKM outperforms standard Kriging and

produce similar performances as GAM. Due to its approximation performance and

its built-in probabilistic framework, the proposed AKM appears as a serious and

promising challenger for high-dimensional modeling.
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2. Towards additive Kriging

2.1. Additive random processes. — Lets first introduce the mathematical con-

struction of an additive GP. A function f : D ⊂ Rd → R is additive when it can be

written f(x) =
∑d

i=1 fi(xi), where xi is the i-th component of the d-dimensional input

vector x and the fi’s are arbitrary univariate functions. Let us first consider two inde-

pendent real-valued Gaussian processes Z1 and Z2 defined over the same probability

space (Ω,F , P ) and indexed by R, so that their trajectories Zi(·;ω) : t ∈ R→ Zi(t;ω)

are univariate real-valued functions. Let Ki : R×R → R be their respective covari-

ance kernels and µ1, µ2 ∈ R their means. Then, the process Z defined over (Ω,F , P )

and indexed by R2, characterized by

(2) ∀ω ∈ Ω ∀x ∈ R2 Z(x;ω) = Z1(x1;ω) + Z2(x2;ω),

clearly has additive paths and has mean µ = µ1+µ2 and kernelK(x, y) = K1(x1, y1)+

K2(x2, y2). In this document, we call additive any kernel of the form K : (x, y) ∈ Rd×
R

d → K(x, y) =
∑d

i=1 Ki(xi, yi) where the Ki’s are symmetric positive-semidefinite

(s.p.) kernels over R×R. Although not commonly encountered in practice, it is well

known that such a combination of s.p. kernels is also a s.p. kernel [13, 6]. Moreover,

one can show that the paths of any random process with additive kernel are additive

in a certain sens:

Proposition 1. — Any (square integrable) random process Zx possessing an additive

kernel is additive up to a modification. In essence, it means that there exists a process

Ax which paths are all additive, and such that ∀x ∈ D, P(Zx = Ax) = 1.

The proof of this property is given in appendix for d = 2. For d = n the proof

follows the same pattern but the notations are more cumbersome. Note that the class

of additive processes is not actually limited to processes with additive kernels. For

example, let us consider Z1 and Z2 two correlated Gaussian processes on (Ω,F , P )

such that the couple (Z1, Z2) is Gaussian. Then Z1(x1) + Z2(x2) is also a Gaussian

process with additive paths but its kernel is not additive. However, the term additive

process will always refer to GP with additive kernels in this article.

2.2. Invertibility of covariance matrices. — As mentioned in [2] the covariance

matrix K of the observations of an additive process Z at a design of experiments

X = (x(1) . . . x(n))T may not be invertible even if there is no redundant point in

X . Indeed, the additivity of Z may introduce linear relationships (that hold almost

surely) between the observed values of Z and lead to the non invertibility of K.

Figure 1 shows two examples of designs leading to a linear relationship between the

observation. For the left panel, the additivity of Z implies that Z(x(4)) = Z(x(2)) +

Z(x(3)) − Z(x(1)) a.s. so there is a linear relationship between the columns of K :

K(x(i), x(2))+K(x(i), x(3))−K(x(i), x(1))−K(x(i), x(4)) = 0 and therefore the matrix

is not invertible.
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Figure 1. 2-dimensional examples of DoE which lead to non-invertible

covariance matrix when using additive kernels. In both cases, one point

can be removed from the DoE without any loss of information.

An approach which is in accordance with the aim of parsimonious evaluations

of the simulator is to remove some points of the DoE in order to avoid any linear

combination. Algebraic methods may be used for determining the subset of points

leading to a the linear relationship. Indeed, the linear combination is given by the

eigenvectors associated with the null eigenvalues, so the subset of points leading to

the non invertibility of the covariance matrix can be obtained easily. However, the

study of a procedure allowing to put aside unnecessary training points is out of the

scope of this paper.

2.3. Additive Kriging. — Let f : D → R be the function of interest (a numerical

simulator for example), where D ⊂ Rd. The responses of f at the DoE X are noted

F = (f(x(1)) ... f(x(n)))T . Simple Kriging relies on the hypothesis that f is one path

of a centered random process Z with kernel K. The expression of the best predictor

(also called Kriging mean) and of the prediction variance are:

m(x) = E [Z(x)|Z(X ) = F ] = k(x)TK−1F

v(x) = var [Z(x)|Z(X ) = F ] = K(x, x)− k(x)TK−1k(x)
(3)

where k(·) =
(

K(·, x(1)) . . . K(·, x(n))
)T

and K is the covariance matrix of general

term Ki,j = K(x(i), x(j)). Note that these equations respectively correspond to the

conditional expectation and variance in the case of a GP with known kernel. In

practice, the structure of K is supposed to be known (e.g. power-exponential or

Matérn families) but its parameters are unknown. A common way to estimate them

is to maximize the likelihood of Z(X ) = F [7, 13].

In some cases, the evaluation of f includes an observation noise ε. To take this into

account in the expression of m and v correspond to the conditional expectetion and

variance of Z knowing Z(X ) + ε(X ) = F . If we assume that ε is a Gaussian white
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noise process with variance τ2, we obtain:

m(x) = E [Z(x)|Z(X ) + ε(X ) = F ] = k(x)T (K + τ2Id)−1F

v(x) = var [Z(x)|Z(X ) + ε(X ) = F ] = K(x, x)− k(x)T (K + τ2Id)−1k(x).
(4)

As we can see, the covariance matrix of ε(X ) appears in the expression of m and v.

As we will use later, this remak is still valid when ε(X ) is a centered Gaussian vector.

Equations 3 and 4 are valid for any s.p. kernel, so they can be applied with additive

kernels. In this case, the additivity of the kernel implies the additivity of the Kriging

mean so m can be split in a sum of univariate submodels m1, . . . ,md. For example

in dimension 2 with additive kernel K(x, y) = K1(x1, y1) +K2(x2, y2) we have

m(x) = (k1(x1) + k2(x2))
T (K1 +K2)

−1F

= k1(x1)
T (K1 +K2)

−1F + k2(x2)
T (K1 +K2)

−1F

= m1(x1) +m2(x2).

(5)

Another interesting property concerns the variance: v can be null at points that do not

belong to the DoE. Let us consider a two dimensional example where the DoE is com-

posed of the 3 points represented on the left pannel of figure 1: X = {x(1) x(2) x(3)}.
Direct calculation (see Appendix B) shows that the prediction variance at the point

x(4) is equal to 0. This particularity follows from the fact that given the observations

at X the value of the additive process at the point x(4) is known almost surely. In

the next section, we illustrate the potential of AKM on an a toy example.

2.4. Illustration and further consideration on a 2D example. — We present

here a first basic example of an additive Kriging model. We consider D = [0, 1]2, and

a set of 5 points in D where the value of the observations F are arbitrarily chosen.

Figure 2 shows the obtained Kriging model. We can see on this figure the properties

we mentioned above: the Kriging mean is an additive function and the prediction

variance can be null for points that do no belong to the DoE.

As we have seen in eq. 5, the expression of the first univariate model is

(6) m1(x1) = k1(x1)
T (K1 +K2)

−1F.

It appears that the effect of the direction 2 can be seen as an observation noise. We

thus get the following expression for the prediction variance

(7) v1(x1) = K1(x1, x1)− k1(x1)
T (K1 +K2)

−1k1(x1).

The left panel of figure 3 shows the submodelm1 and the associated 95% confidence

intervals. However, it appears that the confidence intervals are wide. This is because

the submodels are define up to a constant. If we assume that
∫

Zi(si)dsi exist a.s. [5],
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Figure 2. Approximation of the function f based on five observations

(black dots). The left panel represents the best predictor and the right

panel the prediction variance. The kernel here is the additive squared-

exponential kernel with parameters σ = (1 1) and θ = (0.6 0.6).
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Figure 3. Univariate models of the 2-dimensional example. The left panel

plots m1 and the 95% confidence intervals c1(x1) = m1(x1) ± 2
√

v1(x1).

The right panel shows the submodel of the centrated univariate effects m̃1

and c̃1(x1) = m̃1(x1)± 2
√

ṽ1(x1)

we can get rid of the effect of such a translation by emulating Zi(xi) −
∫

Zi(si)dsi
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conditionally to the observations:

m̃i(xi) = E

[

Zi(xi)−
∫

Zi(si)dsi

∣

∣

∣

∣

Z(X ) = F

]

m̃i(xi) = var

[

Zi(xi)−
∫

Zi(si)dsi

∣

∣

∣

∣

Z(X ) = F

](8)

The expression of m̃i(xi) is straightforward whereas ṽi(xi) requires more calculations

given in Appendix C.

m̃i(xi) = mi(xi)−
∫

mi(si)dsi

ṽi(xi) = vi(xi)− 2

∫

Ki(xi, si)dsi + 2

∫

ki(xi)
TK−1ki(si)dsi

+

∫∫

Ki(si, ti)dsidti −
∫∫

ki(ti)
TK−1ki(si)dsidti

(9)

The benefits of using m̃i and ṽi and then to define the submodels up to a constant

can be seen on the right panel of figure 3. Furthermore, as the submodels m̃i are

univariate and centered, they may give a good approximation of the main effects of f

with relevant confidence intervals. At the end, the probabilistic framework gives an

insight on the error for the metamodel but also for each submodel.

3. Kriging, high-dimensional input space and linear budget

We will see in this section that additive Kriging models can outperform usual

Kriging models when the dimension of the input space becomes large. The notion of

high-dimensional input space can be interpreted differently depending on the context.

In our case, we will consider that an input space is high-dimensional when its dimen-

sion is larger than 10 and we will consider examples up to dimension 50. This exclude

simulators for which one of the input is a picture or a map (for example groundwater

flow simulators depending on permeability and porosity maps) where it is not unusual

to deal with 50000-dimensional input spaces.

Most of the time, kernels used in computer experiment are power exponential

or Matérn kernels [13]. For those kernels and for all other stationary kernels such

that lim||x−y||→+∞K(x, y) = 0, an observation at a point x1 of the DoE has only

a local influence on the emulator. This implies that the number of points required

for modeling accurately a function increases exponentially with the dimension d of

the input space. However, large training sets are rather inconsistent with the context

of emulating a costly-to-evaluate function and in contrast, a total budget of 10 × d

evaluations is sometimes advocated [10]. We now illustrate with an example that

usual separable kernels are not appropriate for emulating high-dimensional functions

for this budget of evaluation whereas additive kernels can advantageously be used to

extract an additive trend.
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Let Z be a centered Gaussian process over [0, 1]d with unit variance and an isotropic

squared-exponential kernel

(10) K(x, y) =

d
∏

i=1

exp

(

− (xi − yi)
2

θ2

)

.

Let X be a LH design of size 10×d. Our aim is to investigate the reduction of variance

obtained by conditioning Z with respect to the observations X when d increases. In

order to quantify the proportion of variance explained by the emulator, we consider a

test set Xt =
(

x
(1)
t , . . . , x

(nt)
t

)

drawn from uniform distribution and we compute the

following criterion

(11) P = 1−
∑nt

i=1 var
(

E
(

Z(x
(i)
t )|Z(X )

))

∑nt

i=1 var
(

Z(x
(i)
t )

) .

According to the law of total variance, we have for all i

(12) var
(

Z(x
(i)
t )

)

= var
(

E
(

Z(x
(i)
t )|Z(X )

))

+ E
(

var
(

Z(x
(i)
t )|Z(X )

))

so the values of P are in [0, 1]. As for a Q2 criterion (see eq. 18), a value P = 1

implies that Z
(

x
(i)
t

)

is known a.s. for all test points whereas P = 0 indicates that

E (Z(·)|Y (X )) is no more predictive than E (Z(·)). As P do not take into account the

distance between m and the function to fit and as it priviledges overconfident models,

this criteria is not ment to assess the quality of a GP emulator. However, it is well

suited for studying the prediction ability of a GP emulator.

As shown on figure 4, the proportion of explained variance collapses when the di-

mension increases, and this fall is all the more important as the range parameter θ

is small. When the value of the range parameter θ is lower than half of the range

of the data, simple or ordinary Kriging models with usual separable covariance are

inappropriate to emulate high-dimensional functions for a budget of 10 × d observa-

tions. However, further tests showed that such budget allows to build very predictive

GP emulator up to d = 100 when θ =
√
d.

We will now consider a second example where the GP to be approximated has

an additive component and compare the results of additive and non additive Kriging

emulators. Let YA and YS be independant centered GPs indexed by [0, 1]d with

respectively an additive and a separable kernel:

KA(x, y) =
1

d

d
∑

i=1

exp

(

− (xi − yi)
2

0.52

)

KS(x, y) =

d
∏

i=1

exp

(

− (xi − yi)
2

0.52

)

.

(13)
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Figure 4. Proportion of variance explained by Z|Z(X ) versus dimension.

The P criteria is computed for nt = 10000 test points uniformly distributed

on [0, 1]d. The 3 curves correspond to different values of the range param-

eter θ.

We define Y as Y = YA+YS so that the first half of the variance of Y is explained by

its additive part ZA and the second one by its separable part ZS . We now compare

the predictivity of 2 emulators:

mA(x) = E(YA(x)|YA(X ) + YS(X )) = kA(x)
t(KA +KS)

−1(YA(X ) + YS(X ))

mS(x) = E(YS(x)|YA(X ) + YS(X )) = kS(x)
t(KA +KS)

−1(YA(X ) + YS(X )).
(14)

As we have seen previously, mA corresponds to the best predictor of an additive Krig-

ing model with an observation noise given by KS . This emulator cannot explain the

non additive part of Y . Reciprocally, mS is based on the separable kernel KS with

an observation noise KA. This term may be able to cover both the additive and non

additive part of Y for a large number of observations. The prediction variance associ-

ated to those emulators is known analytically, so their predictivity can be compared

as in the previous example. We observe on figure 5 that the explained variance falls

quickly to 0 when using a separable kernel whereas an emulator based on an additive

kernel can capture efficiently the additive trend of the phenomena. On this example,

and for a budget of 10×d evaluations, it appears that Kriging additive models clearly

outperforms Kriging based on standard kernels.
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Figure 5. Comparison of the predictivity of the approximation of Y by

mA and mS.

4. Application to the g-function of Sobol

In order to illustrate the methodology and to compare it to existing algorithms,

an analytical test case is considered. The function to approximate is the g-function

of Sobol defined over [0, 1]d by

(15) g(x) =
d
∏

k=1

|4xk − 2|+ ak
1 + ak

with ak > 0

This popular function in the literature [15] is obviously not additive. However, de-

pending on the coefficients ak, g can be very close to an additive function. As a rule,

the g-function is all the more additive as the ak are large. One main advantage for

our study is that the Sobol sensitivity indices can be obtained analytically so we can

quantify the degree of additivity of the test function. For i = 1, . . . , d the indice Si

associated to the variables xi is

(16) Si =

1
3(1+ai)2

[

∏d
k=1 1 +

1
3(1+ak)2

]

− 1
.

Here, we impose that the value of the parameters ak is the same for all directions (ie

∀k, ak = a1). As the additivity of the g-function is tunable, we choose a1 such that
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the variance of the additive part of g correspond to 75% of the variance of g:

(17)

d
∑

i=1

Si = 0.75 ⇔ d
u

(1 + u)d − 1
= 0.75 with u =

1

3(1 + a1)2
.

Eventually, the value of a1 can be obtained by finding the zeros of a polynomial in u.

Note that different values for d leads to different values of a1.

For d ∈ {5, 10, 20, 30} and a Latin hypercube design based on 10 × d points, we

compare an Usual Kriging Model (UKM) with AKM and GAM. The two Kriging

models are ordinary Kriging models since they include a constant term as a trend.

As GAM is based on smoothing cubic splines, we choose a Matérn 5/2 kernel with

observation noise for the Kriging models so as the different models have a similar

regularity. The results for UKM and GAM are obtained with the DiceKriging [14]

and the GAM [8] R packages available on the CRAN [18]. For AKM and UKM

the three parameters of the kernels (σ2, θ, τ2) are obtained using maximum likelihood

estimation [13, 16]. To asses the quality of the obtained metamodels, the predictivity

coefficient Q2 is computed on a test sample of nt = 1000 points uniformly distributed

over [0, 1]d:

(18) Q2(y, ŷ) = 1−
∑nt

i=1(yi − ŷi)
2

∑n

i=1(yi − ȳ)2

where y is the vector of the values at the test points, ŷ is the vector of predicted

values and ȳ is the mean of y.

As the parameter estimation accuracy and the overall quality of an emulator are likely

to fluctuate with the DoE, we repeated 50 times each emulator’s building and testing

for various DoE. The results are presented in figure 6. Conversely to what we observed

in section 3, the predictivity of the Kriging model based on a separable kernel does

not fall to zero when the dimension increases. As we impose the additive part of g

to explain 75% of its variance, the value of the coefficient a1 is increasing with d and

the g-function becomes smoother. As a result, the range parameter θ increases with

d (we have θ ≈ 0.5 for d = 5 and θ ≈ 2 for d = 30) so the predictivity of the models

based on separable kernels do not fall to zero as previously.

In order to illustrate the increasing smoothness of g, we represent the univariate

submodels m̃1 for various values of d (fig. 7). Even if the observation points do not

show any obvious trend, the submodels are close to the analytical main effects.

5. Concluding remarks

The proposed methodology seems to be a good challenger for additive modeling.

On the first example, additive models appears to be well suited for high-dimensional

modeling with a DoE budget of 10×d whereas Kriging models based on standard ker-

nels fail to recover the function to approximate. One important result is that additive
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Figure 6. Boxplots of the predictivity coefficients Q2 for three emulators:

Usual Kriging Model (UKM), Additive Kriging Model (AKM) and GAM.

For a given boxplot, the variability is due to the choice of the DoE which

is repeated 50 times.

kriging models succeed to extract the additive trend of the function to approximate

even if this function is not purely additive.

The proposed additive models take advantage of additivity, while taking advantage

from GP features. For the first point we can cite the complexity reduction and the

interpretability of additive models. For the second, the main asset is that GP models

include a prediction variance for the model but also for each submodel. This justifies

the fact of modeling an additive function on Rd instead of building d metamodels over

R since the prediction variance is not additive. At the end, the proposed methodology

is fully compatible with Kriging-based methods and its versatile applications. For
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Figure 7. Representation of the univariate submodels m̃1(x1) (solid lines)

for three additive Kriging models. As a comparison, the analytical main

effects are given by the dashed lines. The bullets denote the centered

observation points.

example, one can choose a well suited kernel for the function to approximate or use

additive Kriging for high-dimensional optimization strategies relying on the expecting

improvement criteria.

In this article, we only considered isotropic kernels. As for separable kernel, the

use of additive kernels can easily be extended to anisotropic kernels (ie one range

parameter θi per direction) but additive kernels also allow to define one variance

parameter σ2
i per direction. This feature, which is not possible for separable kernels,

can enable additive models to approximate functions for which the variance depends

on the direction. However, the total number of parameters would be 2d+ 1 and the

practicability of their estimation deserves to be studied in detail.
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Appendix A: Proof of proposition 1 for d = 2

Let Z be a centered random process indexed byR2 with covariance kernelK(x, y) =

K1(x1, y1)+K2(x2, y2), and ZT the random process defined by ZT (x1, x2) = Z(x1, 0)+

Z(0, x2)− Z(0, 0). By construction, the paths of ZT are additive functions. In order

to show the additivity of the paths of Z, we will show that ∀x ∈ R
2, P(Z(x) =

ZT (x)) = 1. For the sake of simplicity, the three terms of var[Z(x) − ZT (x)] =

var[Z(x)] + var[ZT (x)]− 2cov[Z(x), ZT (x)] are studied separately:

var[Z(x)] = K(x, x)

var[ZT (x)] = var[Z(x1, 0) + Z(0, x2)− Z(0, 0)]

= var[Z(x1, 0)] + var[Z(0, x2)] + 2cov[Z(x1, 0), Z(0, x2)]

+ var[Z(0, 0)]− 2cov[Z(x1, 0), Z(0, 0)]− 2cov[Z(0, x2), Z(0, 0)]

= K1(x1, x1) +K2(0, 0) +K1(0, 0) +K2(x2, x2) +K(0, 0)

+ 2 (K1(x1, 0) +K2(0, x2))− 2 (K1(x1, 0) +K2(0, 0))

− 2 (K1(0, 0) +K2(x2, 0))

= K1(x1, x1) +K2(x2, x2) = K(x, x)

cov[Z(x), ZT (x)] = cov[Z(x1, x2), Z(x1, 0) + Z(0, x2)− Z(0, 0)]

= K1(x1, x1) +K2(x2, 0) +K1(x1, 0) +K2(x2, x2)

−K1(x1, 0)−K2(x2, 0)

= K1(x1, x1) +K2(x2, x2) = K(x, x)
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Those three equations implies that var[Z(x) − ZT (x)] = 0, ∀x ∈ R2. As E[Z(x) −
ZT (x)] = 0, we have P(Z(x) = ZT (x)) = 1 so there exists a modification of Z with

additive paths.

Appendix B: Calculation of the prediction variance

Let consider a DoE composed of the 3 points {x(1) x(2) x(3)} represented on the

left pannel of figure 1. We want here to show that although x(4) does not belongs to

the DoE we have v(x(4)) = 0.

v(x(4)) = K(x(4), x(4))− k(x(4))TK−1k(x(4))

= K(x(4), x(4))− (k(x(2)) + k(x(3))− k(x(1)))TK−1k(x(4))

= K1(x
(4)
1 , x

(4)
1 ) +K2(x

(4)
2 , x

(4)
2 )−

(−1 1 1)







K1(x
(1)
1 , x

(4)
1 ) +K2(x

(1)
2 , x

(4)
2 )

K1(x
(2)
1 , x

(4)
1 ) +K2(x

(2)
2 , x

(4)
2 )

K1(x
(3)
1 , x

(4)
1 ) +K2(x

(3)
2 , x

(4)
2 )







= K1(x
(2)
1 , x

(2)
1 ) +K2(x

(3)
2 , x

(3)
2 )−K1(x

(2)
1 , x

(2)
1 )−K2(x

(3)
2 , x

(3)
2 )

= 0

Appendix C: Calculation of ṽi

We want here to calculate the variance of Zi(xi)−
∫

Zi(si)dsi conditionally to the

observations Y .

ṽi(xi) = var

[

Zi(xi)−
∫

Zi(si)dsi

∣

∣

∣

∣

Z(X) = Y

]

= var [Zi(xi)|Z(X) = Y ]− 2cov

[

Zi(xi),

∫

Zi(si)dsi

∣

∣

∣

∣

Z(X) = Y

]

+ var

[∫

Zi(si)dsi

∣

∣

∣

∣

Z(X) = Y

]

= vi(xi)− 2

(∫

Ki(xi, si)dsi −
∫

ki(xi)
TK−1ki(si)dsi

)

+

∫∫

Ki(si, ti)dsidti −
∫∫

ki(ti)
TK−1ki(si)dsidti.
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