Singularity Analysis of the H4 Robot using Grassmann-Cayley Algebra - Archive ouverte HAL
Article Dans Une Revue Robotica Année : 2011

Singularity Analysis of the H4 Robot using Grassmann-Cayley Algebra

Semaan Amine
  • Fonction : Auteur
  • PersonId : 914128
Stéphane Caro
Connectez-vous pour contacter l'auteur
Philippe Wenger

Résumé

This paper extends a recently proposed singularity analysis method to lower-mobility parallel manipulators having an articulated nacelle. Using screw theory, a twist graph is introduced in order to simplify the constraint analysis of such manipulators. Then, a wrench graph is obtained in order to represent some points at infinity on the Plücker lines of the Jacobian matrix. Using Grassmann-Cayley algebra, the rank deficiency of the Jacobian matrix amounts to the vanishing condition of the superbracket. Accordingly, the parallel singularities are expressed in three different forms involving superbrackets, meet and join operators, and vector cross and dot products, respectively. The approach is explained through the singularity analysis of the H4 robot. All the singularity conditions of this robot are enumerated and the motions associated with these singularities are characterized.
Fichier principal
Vignette du fichier
Robotica_Final_111109.pdf (921.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00642230 , version 1 (17-11-2011)

Identifiants

Citer

Semaan Amine, Stéphane Caro, Philippe Wenger, Daniel Kanaan. Singularity Analysis of the H4 Robot using Grassmann-Cayley Algebra. Robotica, 2011, pp.1-10. ⟨10.1017/S0263574711001330⟩. ⟨hal-00642230⟩
203 Consultations
353 Téléchargements

Altmetric

Partager

More