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Abstract— This paper extends a recently proposed sirthe end-effector. The wrench system resulting from all the
gularity analysis method to lower-mobility parallel manip actuation wrenches of the legs is calsuation wrench sys-
ulators having an articulated nacelle. Using screw theoryemof the PM. In a general configuration, by locking actua-
a twist graph is introduced in order to simplify the constrai tors, the end-effector of a PM becomes fully constrained. In
analysis of such manipulators. Then, a wrench graph is oberew theory, aero-pitch wrencltorresponds to the Plucker
tained in order to represent some points at infinity on theoordinate vector of a finite line in the 3-dimensional pceje
Plucker lines of the Jacobian matrix. Using Grassmanrtive spaceP® whereas arinfinite-pitch wrenchcorresponds
Cayley algebra, the rank deficiency of the Jacobian matrbo the Pliicker coordinate vector of a line at infinityf.
amounts to the vanishing condition of the superbracket. Ac- For a 6dof PM, J is a 6x 6 matrix that transforms the
cordingly, the parallel singularities are expressed inetr velocities of the actuators to the linear and angular véksi
different forms involving superbrackets, meet and joinropeof the end-effector. Zlatanov et al. [6] proposed an apgtpac
ators, and vector cross and dot products, respectively. Thging an input-output velocity relationship, to formulate
approach is explained through the singularity analysideft 6 x 6 Jacobian matrix for éof PMs and also for lower-
H4 robot. All the singularity conditions of this robot are enu-mobility PMs whose legs and end-effector have the saafe
merated and the motions associated with these singularitiRevertheless, their approach cannot provide@glacobian
are characterized. matrix for a more general lower-mobility PM and thus it does
Keywords: Grassmann-Cayley algebra, parallel singularityiot allow the examination of all singular configurations of
screw theory, articulated nacelle, projective space, rsupguch a PM.

bracket. Based on the theory of reciprocal screws [7—11], Joshi
and Tsai [12] developed a general methodology to derive
. a 6x 6 Jacobian matri¥ providing information about both
1 Introductl_on . . . . . ._constraint and actuation wrench systems of a lower-mgbilit
Parallel singularities are critical configurations in whic PM. Accordingly, the rows ofl for a (n < 6)-dof PM can

a Parallel Manipulator (PM) loses its inherent stiffnesd arye composed of linearly independent actuation wrenches
the motion of its end-effector becomes uncontrollable.GeBI s(6- n) linearly independent constraint wrenches. As a

erally, such configurations are related to the degeneracyrg ult, a lower-mobility PM can exhibit two different types

a wrench system e_xpressed_m a matrix form,_namel_y, o?parallel singularities:if constraint singularities [13], also
F?X 6 Jacobian matri. Accordlngl_y, t.he parall_e_l singulari- known as platform singularities [5] and)(actuation singu-
ties (?f aPM correspondto the Va”!Sh'”,g conditions O.f the dFéfrities, also called architecture singularities [12].nSaint
terminant ofJ that can .be found using either geometrical msingularities correspond to the degeneracy of the constrai
symbolic [2] or pgmencal metho_ds [3]. . rench system. In such configurations, the end-effecteslos
Lower-mobility PMs are suitable for a wide range Ogome constraints and gains some exted On the other

applications that require fewer 'Fhan six degrees of freﬂénd, actuation singularities occudifs rank deficient while
dom (dof). The legs of such manipulators apply SO0WA- o ¢qnstraint wrench does not degenerate.

raint wrench Iso known r ral constraints [4
straint wrenchesalso known as structural co S.t aints [4], The Grassmann-Cayley Algebra (GCA) was developed
on the end-effector. The wrench system resulting from eﬂl

the constraints of the legs is callednstraint wrench sys- y H. Grassmann as a calculus for linear varieties. Jine

. erbracketof GCA is a determinant of six 2-extensors that
temof the PM, also known as platform constraint system [5]. . L . :
; re associated with six Plucker lines. Accordingly, bysel
In turn, the actuators apply sonsetuation wrenchesn

ing two points on each Plucker line df a superbracket ex-
pression can be formulated and amounts to the determinant

*Address all correspondence to this author.



of J, up to scale. By exploring the foregoing superbrackébur homogeneous coordinates whereas a projective line has
thanks to the GCA operators, the singularity conditions ofsix Plucker coordinates represented by its Pliicker doatd
PM can be obtained. In turn, Grassmann geometry providesctor PL = (Ps1, Ps2, Pa3, P23, P31, P12)" satisfying the
a classification of linear varieties. Grassmann Plucker relatié 1P> 3+ P4 2P3 1+ Ps 3Py 2 = 0.

For Gough-Stewart PMs, the rowsbére Plicker coor- The following properties highlight the relations betweeo-p
dinate vectors of six finite lines that are six actuation ésrc jective elements:
ap_p_lied by the actugtors on the end-effector. Pgrallelusing 1. Afinite point,A, is represented by its homogeneous co-
If'irmes of such mampulators occur \_/vhen tho_se lines become | 4i--ias vectos — (ay, @, a3, 1)7, the first three co-
Ilnearly dependent, i.e., when the linear variety spanped b ordinates being its Cartesian coordinateB#
these lines degenerates. Merlet [1] analyzed these singul Afinite line, 2, is represented by its Pliicker coordinates

'“TS ufsmg Sraﬁssrrﬂann geometryfbé/. using a S<et60(fjge0metr|c vector! F = (s;r x s); wheresiis the unit vector ofz,
rules for which a linear variety of dimensian< 6 degen- r is the position vector of any point on and § x )

erates. On the other hand, Ben-Horin et al. [14-16] used represents the moment ofwith respect to the origin:

the superbracket and the GCA operators to analyze the pag | ot nerlined points denote points at infinity. Any fi-

allel singularities of 6dof PMs whose legs transmit six pure nite line, F = (s, r x 5, has a unique point at infinity

forces (six finite lines) to the moving platform. In compari- (s O,). This F;oint or,1Iy depends on the line direction

son with Grassmann line geometry, GCA makes it possible to and is' determined up to scale. Accordinglyaiaindb

work in a coordinate free manner, and therefore, to produce . . o finite points offF, thenc — b — a;

nvariant algebraic expressions for_t_he parallel smg_um 4. Allfinite lines directed alongintersect at one common

Accordingly, all the singularity conditions of the maniptdr point at infinity, namelyg;

under study can be enumerated. ) 5. All finite planes of normal vectom, have a common
jed when . ine at infinty & among the o ines af e al nfny. This e is given by:M = (0s.y; m)

\?vhich is the case for Iower)-/mobility Pgl\/ls with one or éev- izggggrs]glstgf)ughthe pointatinfinity on any finite fine

e_ral limited rotationadof. Indeed, there are some infinite- 6. Two lines at infinity My = (Ogxy:my) and My

pitch wrenches (pure moments) among the rond affsuch (Osx1; My) intersect at a unique point at infinity

manipulators. Since an infinite-pitch wrench corresponds t (my >< ms2; 0). =

the Plicker coordinate vectors of a line at infinity, it cahn ’

be represented by finite points in the superbracket. To this

end, Kanaan et al. [17] presented a method to formulate2& Theory of Reciprocal Screws

superbracket with some points at infinity and enlarged the Screw theory is suitable for the type synthesis and the

application of GCA to lower-mobility PMs. study of the instantaneous motion of PMs. The principle of

The main purpose of this paper is to extend the methégciprocal screws was studied in [7-9] and then developed
proposed in [17] to robots with more complex kinematich [10,13,18]. A
such as lower-mobility PMs with an articulated nacelle. For A unit screw is given by = [s; (so x S+ As)] wheresis
such manipulators, the concepttafist graphis introduced @ unit vector along the screw ax,is the position vector of
in order to simplify their constraint analysis while tiveench & point on the screw axis with respect to a reference frame
graphis obtained in order to represent their wrenches in ti§1dA is thepitch of the screw. A screw of intensity could
projective space. This wrench graph illustrates all the-ge€ written as: $= p$. A zero-pitch screvp = (s;r x )
metric properties between the constraints of the manipuf@rresponds to the Plucker coordinate vector of a finite lin
tor and allows one to highlight the points at infinity of thén P*. An infinite-pitch screws., = (0sx1; S) corresponds to
superbracket. This approach can be applied to other low#ie Pliicker coordinate vector of line at infinity .
mobility PMs with an articulated nacelle. A screw systenof ordern (0 < n < 6), also called-

This paper is organized as follows: Section 2 recalgystem, comprises all screws that are linearly dependent on
some properties of projective space, screw theory and G@aiven linearly independent screws. The reciprocity condi-
that are useful for the understanding of the paper. Sectiofi@ns of finite- and/or infinite-pitch screws are:
presents the constraint analysis and the singularity afsaly(a) Two zero-pitch screws are reciprocal to each other if and
of theH4 robot. Finally, Section 4 enumerates all the singu- only if their axes are coplanar;
larity conditions of this robot and characterizes the ntio (b) A zero-pitch screwd is reciprocal to an infinite-pitch
associated with these singularities. screws., if their directions are orthogonal to each other;

(c) Two infinite-pitch screws are always reciprocal to each
other.

2 Fundamental Concepts
2.1 The 3-dimensional projective space
The 3-dimensional projective spaB@ is characterize
by the affine spac®? in addition to the plane at infin-
ity Q.. It is noteworthy that the coordinates of a projective
element are determined up to scale. A projective point haslm the scope of this pape(s, r x s) denotes a Plucker coordinate vector

given by[ris}'

All screws that are reciprocal torasystem of screws(< 6)
d form a (6— n)-system.



A twistis a screw representing the instantaneous motion
of a rigid body, awrenchis a screw representing a system
of forces and moments acting on a rigid body. A zero-pitc
twist & is associated with a pure rotation while an infinite-
pitch twist €. is associated with a pure translation. A zero-
pitch wrenchF = (s; r x S) represents a pure force whereas
an infinite-pitch wrenciM = (Osx1; n) represents a pure mo-
ment.

In this paper, screw theory is used to determine the Jaco-
bian matrixJ of the manipulator under study. Accordingly,
the reciprocity condition is applied in order to characeyi
for each leg-chain of the manipulator, the constraint whenc
system reciprocal to its twist system as well as the actoatio
wrench system obtained by locking actuators.

Fig. 1. H4 robot.

projective spacé?3. For instance, the following geometric
incidence developed in Appendixis used in Sec. 3.2.
2.3 Grassmann-Cayley Algebra

The GCA was developed by H. Grassmann (1809-1877)
as a calculus for linear varieties operatingextensorswith . R
thejoin “Vv” and meet“ A” operators. The latter are associ- = [gabc][hdef] 2
ated with thespanandintersectiorof vector spaces of exten-
sors characterized with thestep In the(d = 4)-dimensional
vector space/ associated witfP3, extensors of step 1, 2
and 3 represent points, lines and planes, respectivelyy T
are also associated with subspace¥ aéf dimension 1, 2
and 3, respectively. The GCA makes it possible to work
at the symbt_JIic level, r_:md therefore, to pro_duge coor.d'marg Singularity Analysis of The H4 Robot
free algebraic expressions for the geometric singulaoty-c The H4 robot belongs to a recent family ofdbf par-

ditions of spatial PMs. In this sec_tion, some properties ?fllel robots designed for high-speed pick and place opera-
GCA are recalled. For further details on GCA, the reader ffons. There exists two varieties of architectures of e

referred to [15,19-21]. family with either revolute or prismatic actuators [23, 24]
The H4 robot shown in Fig. 1 is composed of four identi-
2.3.1 The superbracket decomposition cal legg i = R'<(4S)' (i =1,...,4) attached to a common
Generally, the rows of of a PM are Pliicker coordinate baseB and linked to the end-effect& by means of an artic-
vectors of six lines ifP3. The superjoin of these six vec-ulated nacelle. The actuated joints areRigoints of legsl;,
tors inP° corresponds to the determinantbfip to a scalar i=1,...,4. The axes oR! andR?3 (respectivelyR? andR*)
multiple, which is the superbracket in GCA(V(?)) [21]. are directed along (respectivelyx). The nacelle is com-
Thus, a singularity occurs when these six projective lirees bposed of three bodies: (i) linky connectingl; andl; in
come linearly dependent, which amounts to a superbracketrallel and making a resulting chdliry; (i) link by con-
equal to zero. The superbracket is an expression involvectingls andl, in parallel and making a resulting chdia;
ing 12 points selected on these lines and can be develofi)l the end-effector ) linked to by andb;; with two rev-

gh A (abc Adef) = [gabc][hdef] — [habc][gdef]

where dotted letters stand for permuted elements as men-
tioned in [21]. Equation (2) is equal to zero if lifgh) in-
RErsects with the intersection line of plari@edc) and(def).

into a linear combination of 24 bracket monomigi¢i = olute jointsR, and Ry having two parallel vertical axes.
1,...,24) [15,22], each one being the product of three braclkinally, theH4 robot has two compound legkj = l12-R;
ets of four projective points: andL;; =I34-Ry.
A 4S joint is composed of four linksnn mp, nq and
24 pg connected with four spherical joints centeredran, p
[ab, cd, ef, gh, ij, k1] = Zlyi (1) andq, respectively. According to [23, 25], tHe4 robot is
=

designed in such a way that poimsn, p andq of a (4S)’

joint, represented in Fig 2, form a parallelogram in any tobo
These 24 bracket monomials are given in AppendlixA  configuration. In a letj shown in Fig. 2, leh; denote the unit
bracket[abcd] is null if and only if the projective points yector normal to this parallelogram anddgandl; denote the
a,b,c andd are coplanar. The bracket of four projectivgnit vectors along lineminandmp, respectively. Note that

columns are the homogeneous coordinates of these pointsherefores; | s3]y ands; || 4 || .

2.3.2 Geometricincidencesin P2 _—
_ The join and meeF oper_ators were used in [16,17] tQ de- 2R, s and (4S) denote a revolute joint, a spherical joint and a spatial
scribe many geometric incidences between elements in fagallelogram joint, respectively.



Fig. 3. Twist graph of the H4 robot.

The wrench syster;» and the twist syster;» of chainlq,

are":

Fig. 2. Legli-R of the H4 robot. W12 = W1+ W2 = sparfMy, M2) (7)
T1o = sz = Spanisoox, Eooy, Ecoz, €012) (8)

where€wy = (03x1; X), €y = (03x1; Y) and€wz = (03x1; 2)

3.1 Constraint analysis and the axis ofo12 s directed alon@12 = n; x ny. Thus, this

Based on the results obtained in [11, 26], the twigthain can be assimilated to a parallel manipulator withethre
system of a(4S) joint is equivalent to the twist systemtranslationsand one rotation aboutan axis directed aleng
of a virtual serial chain composed of two virtual revolutésimilarly for chainlss,
joints R} andR), a virtual prismatic joint?' and a virtual
M'-joint® whose associated twists aréy, = (s;rh x s), T34 = W34 = SPaNEex, Exy, £z, £034) (9)
€3 = (Ii; r'p x i), €1 = (Oax1; N;) andgy, = (0sx1; li x nj),
respectively. Accordingly, the twist graph of thi} robotis  \yhere the axis ofgssis directed alongss = ns x na.
shown in Fig. 3. It represents the independent joint twits 0 The twist system of led = 1R, is T) = Ti2+ TR .
the legs. In this graph, lines and circles represent joints aR, s a revolute joint of axig, (Fig. 4), represented with the
links, respectively whereas dashed lines and dashed €irglgist &0z, = (z; rc x ). Thus,
represent virtual joints and virtual links, respectivelyet
é}n be the twist associated witR'. The constraint wrench
systemw; of leg li = R'—<(4S)" (i = 1,...,4) is reciprocal
to twists &y, €ny, Ep3, €y @NdE,. Thus, it is a 1-system
spanned by such that:

T = spani?:oox, éooy, éooz, §012, éozl) (10)
Therefore,

Wi =T{ =spafM;) ; Mj = (0Ogx1;n12x2)  (11)

M1 = (O3x1; ¥ X I1) = (03x1; N1) 3 Likewise

|\Z|2 = (03x1; X x I2) = (03x1; N2) (4) '

Mz = (Osx1;y x I3) = (Osx1; N3) () Wy = spariMy) ; My = (03.1; N34 x 2) (12)
Mg = (03515 X x l1) = (0315 Na) (6)

Finally, the constraint wrench system of tHd robot is a 2-
system spanned by two infinite-pitch wrenches of directions

3A Mi-joint couples two links while allowing a relative transtat along
a circular trajectory [27]. 4The notation “_” denotes the reciprocity of two screw systems.



Z)

Fig. 5. Wrench graph of the H4 robot in IP3.

in P3, respectively. To obtain the twelve points of the super-
bracket of the robot, we must select two points on each of
these six lines. The choice of the latter points must lead to
the simplest expression of the superbracket decomposition
i.e., to a reduced number of non-zero monomials. A mono-
mial in Eq. (1) is null if one of its three brackets vanishes. |
turn, a bracketis nullif its four projective points are caipér.
For example, a bracket taking the following forfabca] is
null.
In order to represent the lines at infinity in the super-
Fig. 4. Constraint and actuation wrenches of the H4 robot. bracket, it is necessary to use points at infinity. A finitelin
has one unique point at infinity. Since the set of all points
at infinity is a planeQ., the bracket of four points at infin-
ity is null. Accordingly, in case some lines at infinity are
. among the six Pluicker lines of the roBpit is convenient to
Wig = Wi + Wy = spariM;, M) (13) include as many points at infinity as possible in the super-
bracket. Therefore, a finite line is represented with onéfini
Accordingly, the end effectdE of the robot provides three point and its unique point at infinity.
independent translations and one rotation about an axis of Since points at infinity cannot be shown in Fig. 4, a rep-
fixed direction along, namely, a Schonflies motion [28].  resentation i3 of the wrenches of thel4 robot is given in
Fig. 5. This representation is based on the properties of the
Legsli and |, (respectivelylz andl4) are connected Projective space that are givenin Sec. 2. A
with R, (respectivelyRy ). The actuated joints of the  Leta (respectively) denote the intersection point bf
H4 robot are theR' joints of legsl; (i = 1,...,4). The ac- (respectively) andZ, and lete (respectivelys) denote the
tuation wrenchs of legl;, i = 1, 2 (respectively = 3, 4), is  intersection point oF; (respectively) andz; (Fig. 4). Be-
a zero-pitch wrench of axis parallel kg intersecting axig, sidesZ andZ; are directed along, i.e.,ac andeg are par-
(respectivelyz; ) and lying in the plan€; of the (4S)' joint.  allel finite lines and they intersect @ at j = (z; 0), the
Consequentlyr; = (I; rL x1i) (i=1,...,4) and the actua- latter being the point at infinity correspondingzo
tion wrench system of thel4 robot is: Letb = (I1;0), d = (I2;0), £ = (I3;0) andh = (I4; 0)
be the points at infinity corresponding tg I, 13 andlg,
respectively. Therefore,

orthogonal taz, as follows:

w3, = spariFy, R, Fs, Fs) (14)
Fi=ab ; Bb=cd ; Fs=ef ;: Fa=gh (15)
3.2 Superbracket of the H4 robot
The rows of the Jacobian matrix of thet robot can be
expressed as the six unit Screm’_M” LR R and F‘.‘ 5In general, this is the case of lower mobility PMs with at tease
that correspond to two lines at infinity and four finite lin€$mited rotationaldof



The finite lineMy = (03,.1; y x 1) passes through the pointsFrom thesyzygiesor Grassmann-Pliicker relations [15, 21],

at infinity y = (y; 0) andb = (I1; 0);

M1 = (Osx1; ¥ x I1) = (Ogx1; N1) = yb (16)

Likewise,

My = (03x1; X x I2) = (0341; N2) = xd (17)

FurthermorelM; andM intersect at the point at infinity =
(n12; 0), whereniz = ng x ny.
In the same vein,

(18)
(19)

Mz = (0O3x1;y x I3) = (Ozx1; N3) = y£

Mg = (03x1; X X |4) = (03x1; Ng) = xh

LinesM3 andMj intersect at poirnk = (nz4; 0) whereng, =
N3z x ng. Finally,
M = (Ogy1;N12x2) = ij (20)

My = (O3x1; N34 X 2) = kj (21)

From Egs. (15), (20) and (21), the superbracket of the

H4 robot takes the following expression:

3.3 Superbracket decomposition

From AppendidA, $44 is decomposed into a linear com

it follows that:

[abce]dzhj] = [a

==

+
lo* o

[abc

We know that:{dfh j] =0, [dehj] = [dghj] and[dfe j] =
—[Qeii]- Furthermore, points, c and j being on the same
projective line [abc j| = 0. Thus,

Therefore,
Sia=[gikj] ([abdtllcghy] - [abdbllcets)) (27)
We know thatj =g —e, i.e.,e =g — j. As aresult,
[cefj]=[c(g—J)fj] =[cgt]] (28)

Finally,

where dotted letters stand for the permuted elements, as men

tioned in [21].

bination of 24 bracket monomials. Since the bracket of four
coplanar projective points is null, the superbracket dgumm 3.4 Geometric singularity conditions of the H4 robot

sition leads to 5 non-zero monomials as follows:

SHa= — [abcd|[efhj][gik]j] — [abcf][dgh j]leikj]
+ [abdf][cghj]leikj]+ [abchl[def j][gik]]
— [abdhl[cefj][gik]] (23)
We know that
O1i1 ke j1 i ke i
. Q22 k2 j2 - : o
kil=|2 222 ik jo|=[eik 24
B = iz ke o | | 210 ’ leikj]  (24)
1000 3rsls

Hence,[gik j] is a common factor of the five monomials of

Eq. (23) as follows:

From Eq. (29), a parallel singularity occurs when:

1. [gikj] =0« [ikj] =0 < i, j andk belong to the
same projective line. According to Eq. (24) and since
i=(n12;0), k = (n34; 0) andj = (z; 0), this condition
is expressed in a vector form as follows:

(Nn12XnN3g)-z=0 (30)

whereni2 = Ny X N2 andnzs = N3 X 4. In turn,ny =
yxl1, ng=xxlp, N3 =y xlzgandng = x x I4. Thus,
Eq. (30) is equivalent to:

(((y x 1) % (xx 1)) x ((y x I3) x (X |4))) 2=0
(31)
Equation (30) expresses the dependency of the two con-
straint moment$/; = (03,1; N12 x z) = 1j andM;; =
(Osx1; N34 x Z) = kj. Therefore, it corresponds to the
constraint singularities in which the robot loses one or
two constraints and gains one or two exdat



2. [abdf][cghj] = 0 & (abd A cgj) A £h =0 & the
projective Iin_e(i h) intersects with the intersection line
of planes(abd) and(cg j) (see Eg. (2)). This condition
is expressed in a vector form as follows:

((|l x12) x ((rg—Tre) x z)) (axly)=0 (32

Equation (32) corresponds to the actuation singularities,
namely, configurations in which the actuators cannot
control the end-effector’'s motion.

4 Motionsassociated with Parallel Singularities

In a constraint singularity, the motion pattern of a PM
may change and its end-effector might gain some limited
motion(s). On the other hand, in an actuation singulatity, t
actuators of a PM cannot control its end effector’s motion,
namely, the end-effector might generate some infinitesimal
motion(s) even when the actuators are locked. In this sgctio

Fig. 6. A constraint singularity: (N1 X N2) |

(N3 X Ny).

the different cases of both constraint and actuation sargul Table 1. Constraint singularities of the H4 robot.
ties are enumerated and the gained and/or the uncontellabl Case | Vector condition | Result dim(ie,)
motions are interpreted. -
€) ny || n2 M; is null

4.1 Congraint singularitiesand gained motions d | m2lz

Constraint singularities correspond to the degeneracy of () | ng|/ny My is null 1
the constraint wrench system, which produces a change in
the limited motion of the end-effector. By solving Eq. (30), © | ns4lz _
the conditions for constraint singularities turn out to be: (© N2 || N34 M =My
(@) N1 x Ny =03x1 < Ny || Ny, i.e., plane; andQ, are (9) (N12xN34)-2=0

parallel and, as a consequenog; = Oz.1. Sinceny = ) Nz || Naa || 2 M, andM;, 0

y x |1 andnyz = X x |2, this condition can occur if and

only if 17 andl, are parallel to planexQy), i.e., if ny || are null

ny || z. It means that points andd belong to the line
at infinity (xy), which coincides with lines1; andM,.
Accordingly, pointi cannot be defined. In that case, the
constraint momenM, is null and the robot gains one
extradof. Indeed, the only limitedlof is the rotation
about an axis directed alorzg< nsg;

b=j=d. Inthatcasep =d =i = j. Under this con-
dition, the constraint momem, is null and the robot
gains one extrdof;

(b) N3 x N4 = Os,1: this condition can be explored similarly (€) N34 || z: this condition can be analyzed similarly to the

to the previous condition;

previous condition;

(C) N12X N3g= 03,1 <> N1z || N34 this happens when the in- () N12 [ N34l z< 1=k = j: in that caseM, andM,, are

tersection line of planeQ; andQ, becomes parallel to

null and the robot gains two rotationdof;

the intersection line of plane®; andQy4. This implies (9) Ni2, N34 andz are orthogonal to a same direction but not

thati = k. Under this condition, the robot has only one
constraint momenk;, = M,, and the end-effector has
only one constraint, namely, the rotation about an a
directed alonf z x n1» = z x n3s. For example, when
n1 || nz andngy || ns. Such a configuration is illustrated
in Fig. 6;

(d) ni2 || z2 this can occur ifni2 = ng x ny is parallel

parallel to each other. In that caskl, = M;, and the
robot gains one rotationdbf.

XFable 1 illustrates the constraint singularity conditiofithe
H4 robot as well as the dimension of the corresponding con-
straint wrench systemt,,.

to z ie., if np=yxly andny = x x |2 are parallel 4.2 Actuation singularitiesand uncontrolled motions

to plane kOy). This implies to have; || z || I2, i.e., Actuation singularities correspond to the rank deficiency
of J while the constraint wrench system does not degenerate.
In that case, the wrenchés, R, Fs, F4, My and M, form
6Note that all vectors are considered as unit vectors,fig.| na; im-  anN < 6-system and the twists reciprocal to this system for

plies thatny, = nza. a given actuation singularity determine the uncontrolled m



T |Hh

Fig. 8. Wrench graph associated with the actuation singularity con-
ditions (C), (d), (€) and (Q).

(b)

Table 2. Actuation singularities of the H4 robot.

Case(s) Uncontrolled motions
(@), (b), (h) | A combined lelof motion
(© A translation alond; x |»

(d), (e), ()

A rotation about an axis directed alomg

(9

A translation alond; x | plus

a rotation about an axis directed alang

motion of the end-effector is a finite-pitch twist, i.e., a
combination of a translation and a rotation;
I3xla=0<«13] ls< £ =h: line (f£h) degenerates into

a point. This case can be analyzed similarly to the pre-
vious one;

(©) (I1x12) || (I3 x l4): lines (d) and (h) coincide and

(d)

pointsb, 4, £ andh are aligned as shown in Fig. 8(c).
In that case, the line at infinitybd) = (£h) crosses
all the wrenches of. In other words, one can find an
infinite pitch twist Ozx1; 11 x I2) reciprocal to all the
wrenches ofl. Consequently, the actuators cannot con-
trol the translationadof of the end-effector alonig x I;
(rg—r¢) x z=0: in that case, linécg) is parallel toz.

It means that axed andZ);, coincide. Thus, axig =

Z, crosses all the wrenches dfas shown in Fig. 8(d).
As aresult, in such a configuration, the actuators cannot
control the rotationatlof of the end-effector about an
axis directed along;

(e) (1 x 1) is parallel to(rq —r¢) x z. In that case, points

b, d, j andu = (u; 0) are aligned ant, I, zandu =

(rg —r¢) are orthogonal to a given direction. Figure 8(e)
illustrates the wrench graph of th&4 robot for such a
singularity. Thus, the actuation forcés andF lie in
plane ¢ g j). Consequently, in such a configuration, one
can find one finite line, namelyz;(r 4 x z) that crosses all
the wrenches aof. Accordingly, the uncontrolled motion
of end-effector is a pure rotation about an axis directed
alongz;

(f) (I3 xla)is parallel to(rg—rc) x z. This case is similar to

the previous one;

(9) The three vectorfl1 x 1I2), (I3 x14) and(rg—rc) x zare

tions of the end-effector [29]. From Eg. (32), an actuation

singularity occurs in the following cases:

(@ lixla=0«&11] 12 b=4d: plane &bd) deAgeneraAtes
into a line. In that case, the actuation forégsandF,

are parallel as illustrated in Fig. 7. By applying a lin-

ear transformation [26] the wrench system gjpanF,)

is equivalent to sipe(llfl, M ). Consequently, the wrench

parallel to each other. In that case, points, £, h, j and
u=(u; 0) are aligned anti, I, I3, l4,zandu = (rg—r¢)

are orthogonal to a given direction. Thus, the actuation
forcesFy, F», F3 andFy lie in plane(cgj) as shown

in Fig. 8(g). Consequently, in such a configuration, one
can find two projective lines(rg x z) and Oax1; l1 x 12)

that cross all the wrenches af Accordingly, the end-
effector has two uncontrolledof: a translation along

I1 x |2 and a rotation about an axis directed alang

system spafii, P2, M) degenerates. However, in thath) The three vectorfl; x I2), (I3 x14) and(rg—r¢) x zare
case, one can find neither a zero-pitch twist nor an

infinite-pitch twist reciprocal to the six wrenches &f

As a result, in such a configuration, the uncontrolled

orthogonal to a same direction but not parallel to each
other. In such a configuration, the uncontrolled motion
of the end-effector corresponds to a finite-pitch twist.



Table 2 illustrates the uncontrolled motions of tié robot of the manipulator. These three steps can be followed to per-

associated with the different actuation singularities. form an exhaustive determination of the singularity condi-
tions of lower-mobility PMs, mainly those having an articu-
lated nacelle like the Paf4obot [33].

5 Discussion

The main contributions of this paper is to apply the GCA

for the singularity analysis of lower-mobility PMs with cem Appendices

plex kinematics as well as the determination of the motiorsppendix A

associated with the parallel singular configurations ohsuc ~ The 24 monomials of Eq. (1) are expressed below:

PMs. In comparison with other singularity analysis methods

the GCA provides, through the superbracket decompositiory, — —[abcd][efgi][hjkl] Y2 = [abcd][efhi][gjkl]

an enumeration of all the singularity conditions. The sin-y; — [abcd][efgj][hikl] y4 = —[abcd][efhj][gikl]
gularity analysis of thé14 robot was performed in [30,31] yg — [abce][dfgh][ijk1] Y6 = —[abde][cfgh][ijk1]
where the condition for constraint singularities expresse v, — —[abcf][degh][ijk1] Ys = [abdf]|[cegh][ijk1]

Eq. (30) was obtained. However, the condition for actuationy, — —[abce][dghil[fjk1]  y10= [abde][cghi][fjk1]

singularities had not been obtained i_n a cpmplete and geny; — [abct][dghi][ejk1] yi2 = [abce][dghj][fikl]
eral form before, such as the one given in Eq. (32). Thg;;— —[abdf][cghi][ejkl] Yyi4= —[abde][cghj][fikl]
results obtained with GCA for the singularity analysis of y,; — —[abcf][dghj][eikl] yie = [abdf][cghj][eikl]
the H4 robot are consequently more general than the rey,, — [abcg][defi][hjkl] y1g8 = —[abdg][cefi][hjk1]

sults obtained previously. Moreover, this paper shows thay, q — —[abch][defi][gjkl] Ya0= —|abcg][def j][hikl]
with GCA, the interpretation of singular configurations cany,, — [abdh][cefi][gjk1] y22 = [abdg][cef j][hik1]

be performed based on either a vector condition or an invariy,; — [abch][def j][gikl] Y24 = —|abdh][cef j][gikl]
ant algebraic expression between some projective points of

the wrench graph. Appendix B

On the other side, the constraint and singularity analy- Let (abc) and (def) be two extensors iV (d = 4) of

sis of theH4 robot in [11, 32] focused more on screw the-Stepsi andj, (i — j — 3) representing two distinct planes

ory. Here, more emphasis is given on GCA, the selecthlq P3 and let(gh) be an extensor of stép— 2 (a 2-extensor)

of the superbracket expression and the simplification of t? presenting a line i such thatgh) ¢ (abc) and(gh) ¢
superbracket decomposition. Indeed, the singularity;ana(def). Now let us calculate a bracket expression gf A

sis is completed and all the smgulanty condltlons_ are e_mgébc/\def). Since the meet operator is associative, one has:
merated. Furthermore, the motions associated with a given
singular configuration of thel4 robot are determined for the

first time in this paper. gh/\ (abc Adef) = (gh Aabc) Adef (33)

Sincek+i > d, the meet(gh A abc) is an extensor of step

6 Conclusions k-+i—d =1 representing the intersection point of lifgh)
This paper presented a systematic approach based amnl plangabc) expressed as:
Grassmann-Cayley Algebra (GCA) to analyze the singulari-
ties of Lower-MobiIity PMs with an articu_lated qacellg and gh A abc = [gabc]h — [habe]g (34)
to characterize the motion associated with a given singular
configuration. The proposed approach can be considered as _ )
an extension of the method proposed in [17] to manipulatof§'€N (gh A\ abc) A det is an extensor of step-4j —d =0,
with an articulated nacelle. It was explained through the sif@mely, a scalar that takes the form:
gularity analysis of théd4 robot. The results provided two
geometric conditions that make it possible to enumerate and gh Aabc Adef = [gabc|[hdef] — [habc|[gdef]  (35)
interpret all the singular configurations of tHel robot.

The proposed approach consists of three main steps.
First, the twist graph of the manipulator is obtained. ThiReferences
twist graph represents the independent twists between tHé] Merlet, J. P., 1989. “Singular Configurations of Paralle
base and the end-effector and is used in order to simplify ~Manipulators and Grassmann Geometijhe Interna-
the constraint analysis of the manipulator. Then, the wwienc  tional Journal of Robotics ResearcB(5), pp. 45-56.
graph of the manipulator is obtained. This wrench graph i$2] Angeles, J., Caro, S., and and A. Morozov, W. K., 2006.
very useful for the singularity analysis of robots with an ar ~ “The Design and Prototyping of an Innovative Schon-
ticulated nacelle. It represents the wrenches, obtaingd wi  flies Motion Generator”. IMechE Part C, Journal of
the constraint analysis, in the projective spgéeMoreover,
it allows one to select and express the points at infinity ef th————
superbracket. Finally, the superbracket is analyzed ierord 7the commercial name of the Par4 robot is Quattro
to determine and interpret the parallel singularity candg  (http://www.adept.com/
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