An improved lower bound for (1,<=2)-identifying codes in the king grid - Archive ouverte HAL
Article Dans Une Revue Advances in Mathematics of Communications Année : 2014

An improved lower bound for (1,<=2)-identifying codes in the king grid

Tero Laihonen
  • Fonction : Auteur
  • PersonId : 843771
Aline Parreau

Résumé

We call a subset $C$ of vertices of a graph $G$ a $(1,\leq \ell)$-identifying code if for all subsets $X$ of vertices with size at most $\ell$, the sets $\{c\in C |\exists u \in X, d(u,c)\leq 1\}$ are distinct. The concept of identifying codes was introduced in 1998 by Karpovsky, Chakrabarty and Levitin. Identifying codes have been studied in various grids. In particular, it has been shown that there exists a $(1,\leq 2)$-identifying code in the king grid with density $\frac{3}{7}$ and that there are no such identifying codes with density smaller than $\frac{5}{12}$. Using a suitable frame and a discharging procedure, we improve the lower bound by showing that any $(1,\leq 2)$-identifying code of the king grid has density at least $\frac{47}{111}$.
Fichier principal
Vignette du fichier
kinggrid.pdf (272.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00639998 , version 1 (10-11-2011)

Identifiants

Citer

Florent Foucaud, Tero Laihonen, Aline Parreau. An improved lower bound for (1,<=2)-identifying codes in the king grid. Advances in Mathematics of Communications, 2014, 8 (1), pp.35-52. ⟨10.3934/amc.2014.8.35⟩. ⟨hal-00639998⟩
178 Consultations
119 Téléchargements

Altmetric

Partager

More