LAN property for some fractional type Brownian motion
Résumé
We study asymptotic expansion of the likelihood of a certain class of Gaussian processes characterized by their spectral density $f_\theta$. We consider the case where $f_\theta\PAR{x} \sim_{x\to 0} \ABS{x}^{-\al(\theta)}L_\theta(x)$ with $L_\theta$ a slowly varying function and $\al\PAR{\theta}\in (-\infty,1)$. We prove LAN property for these models which include in particular fractional Brownian motion %$B^\alpha_t,\: \alpha \geq 1/2$ or ARFIMA processes.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...