LAN property for some fractional type Brownian motion - Archive ouverte HAL
Article Dans Une Revue ALEA : Latin American Journal of Probability and Mathematical Statistics Année : 2013

LAN property for some fractional type Brownian motion

Résumé

We study asymptotic expansion of the likelihood of a certain class of Gaussian processes characterized by their spectral density $f_\theta$. We consider the case where $f_\theta\PAR{x} \sim_{x\to 0} \ABS{x}^{-\al(\theta)}L_\theta(x)$ with $L_\theta$ a slowly varying function and $\al\PAR{\theta}\in (-\infty,1)$. We prove LAN property for these models which include in particular fractional Brownian motion %$B^\alpha_t,\: \alpha \geq 1/2$ or ARFIMA processes.
Fichier principal
Vignette du fichier
LAN_Final_2011.pdf (244.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00638121 , version 1 (03-11-2011)

Identifiants

Citer

Serge Cohen, Fabrice Gamboa, Céline Lacaux, Jean-Michel Loubes. LAN property for some fractional type Brownian motion. ALEA : Latin American Journal of Probability and Mathematical Statistics, 2013, 10 (1), pp.91-106. ⟨10.48550/arXiv.1111.1077⟩. ⟨hal-00638121⟩
294 Consultations
162 Téléchargements

Altmetric

Partager

More