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LAN property for some fractional type Brownian

motion

Serge Cohen ∗, Fabrice Gamboa†, Céline Lacaux‡, Jean-Michel Loubes§

November 3, 2011

Abstract

We study asymptotic expansion of the likelihood of a certain class of Gaussian
processes characterized by their spectral density fθ. We consider the case where
fθ(x) ∼x→0 |x|−α(θ)

Lθ(x) with Lθ a slowly varying function and α(θ) ∈ (−∞, 1).
We prove LAN property for these models which include in particular fractional
Brownian motion or ARFIMA processes.

Keywords: Asymptotic Statistics, Maximum Likelihood expansion, Fractional Brownian
motion.
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1 Introduction

Local asymptotic normality (LAN) property is a fundamental concept in asymptotic
statistics. Originated by Wald in [23] and developed by Le Cam in [14], it relies on the
idea of approximating a sequence of statistical models by a family of Gaussian distribu-
tions. Its consequence is that the initial model is approximately normal and thus inherits,
in an asymptotic sense, the simple structure of normal models. Among the many appli-
cations in mathematical statistics, local asymptotic normality is essential in asymptotic
optimality theory and also explains the asymptotic normality of certain estimators such
as the maximum likelihood estimator for instance. We refer for instance to [20] or in [22]
for applications of LAN property. When dealing with inference on the parameter, LAN
property will enable to assess optimality of any estimation procedure for this parameter
which governs the behaviour of the random process. Hence LAN property is a powerful
framework to understand probabilistic properties of a stochastic model.

Many work has been done to prove LAN property for a large number of observation
models such as i.i.d sequences of random variables parametrized by a parameter or Gaus-
sian processes in [22] or more complicated random processes such as multifractal processes
in [18], AR or ARMA based models in [8, 13] or extreme models in [6] for instance.

We focus in this paper on statistical inference for empirical estimation of the parame-
ters of spectral density of a certain class of Gaussian processes. We consider a stationary
centered Gaussian process Xn whose spectral density is indexed by a parameter θ and
satisfies the condition

fθ(x) ∼x→0 |x|−α(θ)Lθ(x)

with Lθ a slowly varying function and α(θ) ∈ (−∞, 1). More precisely, we aim at proving
Local Asymptotic Normality (LAN) for the model where we observe a sample of n ob-
servations Xn = (X1, . . . , Xn) by studying an asymptotic expansion of the log likelihood.
For this, a precise control over the asymptotic behaviour of the some Toeplitz matrices
linked with fθ will be required. It relies on the results in [16].

In very particular, our assumptions (see section 3) are fulfilled by fractional Gaussian
noises, which are defined as increments of fractional Brownian motions (see [12, 19]).
From the LAN property fulfilled by fractional Gaussian noises, we deduce the LAN prop-
erty when the observation model is a time-discretized fractional Brownian motion, which
is not any more a stationary model. Moreover observation models of autoregressive frac-
tionally integrated moving average processes (ARFIMA(p,d,q)), defined as a fractionally
differenced ARMA processes in [9, 11], satisfy also our assumptions and are covered by
our results. Note that, when d ≤ −1, ARFIMA(p,d,q) are non-invertible processes (see
[3]).

The paper falls into the following parts. Section 2 is devoted to recall some basic
properties of Toepliz matrices. Then Section 3 states the general LAN property for the
considered processes. Section 4 is devoted to two examples that undergo the required
assumptions (fractional Brownian noises and ARFIMA processes) and the LAN property
for the non stationary model provided by the fractional Brownian motion. Most of the
proofs are postponed to Section A.
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2 Notations and some preliminary results on Toeplitz matrices

For any integrable symmetric function f : [−π, π] → R and any integer n ∈ N\{0},
let us consider the real Toeplitz matrix

Tn(f) =

(
∫ π

−π

ei(k−j)xf(x)dx

)

16k,j6n

. (1)

Observe that if f is nonnegative, Tn(f) is a nonnegative matrix. Observe also that if
f 6= 0 on a non neglectible set, Tn(f) is positive and then invertible.

Before stating some results on Toeplitz matrices, let us introduce some notations and
recall some basic facts. First, if the n×nmatrix A is nonnegative and Hermitian, hence the
matrix A1/2 defined as the solution of A = (A1/2)2, exists and is a nonnegative Hermitian
matrix. In addition, the spectral norm of the n× n matrix A is

‖A‖2,n = sup
x∈Cn

(

x∗A∗Ax

x∗x

)1/2

,

where A∗ is the conjugate transpose of A. We recall that ‖·‖2,n is a multiplicative norm,
that is for any n× n matrices A,B,

‖AB‖2,n ≤ ‖A‖2,n‖B‖2,n. (2)

Let us also recall that for any matrix A and any x ∈ C
n,

x∗Ax ≤ x∗x‖A‖2,n = ‖A‖2,n‖x‖
2, (3)

with ‖y‖ the Euclidean norm of y ∈ R
n (see [10] for example).

One of the main tools we use in this paper is the following lemma, which gives a
bound for the spectral norm of some products of the form Tn(f)

−1/2Tn(g)
1/2 under some

assumptions for the functions f and g. This lemma, given in [16] (full version of [15]) ,
generalizes Lemma 5.3 in [4].

Lemma 2.1. Let f and g be nonnegative symmetric functions defined on [−π, π]. Assume
that there exist some constants c1, c2 ∈ (0,+∞) and β1, β2 ∈ (−∞, 1) such that for any
x ∈ [−π, π]\{0},

f(x) ≥ c1|x|−β1 and g(x) ≤ c2|x|−β2 . (4)

Then, there exists a constant K which only depends on (c1, c2, β1, β2) such that for any
integer n ≥ 1,

∥

∥

∥
Tn(f)

−1/2Tn(g)
1/2
∥

∥

∥

2,n
=
∥

∥

∥
Tn(g)

1/2Tn(f)
−1/2

∥

∥

∥

2,n
≤ Knmax ((β2−β1)/2,0).

Remark 2.2. In the previous lemma, observe that the assumption on f ensures that
Tn(f)

−1/2 exists. Moreover, one can choose the constant K independently of (β1, β2) and
such that the conclusion holds for any β1, β2 ∈ [a, b].

In our framework, f depends on an unknown parameter θ and is the spectral density
of a centered Gaussian stationary sequence (Xn)n. This spectral density will be denoted
fθ and is assumed to be such that

fθ(x) ∼x→0 |x|−α(θ)Lθ(x)
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with Lθ a slowly varying function and α(θ) ∈ (−∞, 1). Then next theorem deals with the
uniform behavior in θ as n→ +∞ of

tr

[

p
∏

ℓ=1

(Tn(fθ))
−1Tn(gθ,ℓ)

]

,

where gθ,ℓ denotes a spectral density or one of its derivatives which undergoes some tech-
nical assumptions. If the true value θ0 of the parameter is such that α(θ0) ∈ (−1, 1),
this theorem is one of the main tools we use to obtain the LAN property. It allows
us to consider a process (Xn)n which admits antipersistence (α(θ0) < 0), short memory
(α(θ0) = 0) or long memory (α(θ0) ∈ (0, 1)). This theorem is stated as Theorem 5 in [16]
(full version of [15]). It generalizes Theorem 2 in [17], which is already a uniform version
of Theorem 1.a [7] and Theorem 5.1 in [4].

Theorem 2.3. Let Θ∗ ⊂ R
m be a compact set and p ∈ N\{0}. For any 1 ≤ ℓ ≤ p,

consider fℓ : Θ∗ × [−π, π] → [0,∞] and gℓ : Θ∗ × [−π, π] → R two symmetric functions
with respect to their second variable. In the following,

fθ,ℓ = fℓ(θ, ·) and gθ,ℓ = gℓ(θ, ·).

Assume that the following conditions hold.

1. For any 1 ≤ ℓ ≤ p, for any θ ∈ Θ∗, fθ,ℓ and gθ,ℓ are differentiable on [−π, π]\{0}.
Moreover, for any 1 ≤ ℓ ≤ p, fℓ,

∂
∂x
fℓ, gℓ and ∂

∂x
gℓ are continuous on Θ∗ ×

[−π, π]\{0}.

2. There exist two continuous functions α : Θ∗ → (−1, 1) and β : Θ∗ → (−∞, 1) such
that for any δ > 0, for every (θ, x) ∈ Θ∗ × [−π, π]\{0} and any 1 ≤ ℓ ≤ p

(a) c
1,δ,Θ∗

|x|−α(θ)+δ ≤ fℓ(θ, x) ≤ c
2,δ,Θ∗

|x|−α(θ)−δ

(b)
∣

∣

∂
∂x
fℓ(θ, x)

∣

∣ ≤ c
2,δ,Θ∗

|x|−α(θ)−1−δ

(c) and |gℓ(θ, x)| ≤ c
2,δ,Θ∗

|x|−β(θ)−δ,

with c
i,δ,Θ∗

, i ∈ {1, 2} some finite positive constants which only depend on δ and Θ∗.

3. For any θ ∈ Θ∗, p(β(θ)− α(θ)) < 1.

Then,

lim
n→+∞

sup
θ∈Θ∗

∣

∣

∣

∣

∣

1

n
tr

[

p
∏

ℓ=1

(Tn(fθ,ℓ))
−1Tn(gθ,ℓ)

]

− 1

2π

∫ π

−π

p
∏

j=1

(fθ,ℓ(x))
−1gθ,ℓ(x)dx

∣

∣

∣

∣

∣

= 0.

Remark 2.4. Observe that under Conditions 1. and 2., f−1
ℓ = 1/fℓ is continuous on

Θ∗ × [−π, π]\{0}, as assumed in Theorem 5 of [16].

If the true value θ0 of the parameter is such that α(θ0) ≤ −1, the previous theorem
can not be applied. However, the following theorem, which is a simple consequence
of Lemma 8 in [16], provides a sufficient property to establish the LAN property. In
particular, it allows us to study the LAN property for ARFIMA models whose order of
differentiability are lower than 1/2, which includes some non invertible models.
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Theorem 2.5. Let Θ∗ = B(θ0, r) ⊂ R
m be the closed Euclidean ball centered at θ0 with

radius r and let p ∈ N\{0}. Consider f : Θ∗ × [−π, π] → [0,∞] and for 1 ≤ ℓ ≤ p,
gℓ : Θ∗×[−π, π] → R some symmetric functions in their second variable. In the following,

fθ = f(θ, ·) and gθ,ℓ = gℓ(θ, ·).

Assume that the following conditions hold.

1. The functions f and gℓ satisfy assumption 1 of Theorem 2.3.

2. There exists a continuous function α : Θ∗ → (−∞, 1/2) such that for any δ > 0,
for every (θ, x) ∈ Θ∗ × [−π, π]\{0} and any 1 ≤ ℓ ≤ p, assertion 3(a), 3(b) of
Theorem 2.3 are fulfilled (with fℓ = f), assertion 3(c) of Theorem 2.3 holds with
β = α and

∣

∣

∣

∣

∂

∂x
gθ,ℓ(x)

∣

∣

∣

∣

≤ c
2,δ,Θ∗

|x|−α(θ)−1−δ.

Then, for r small enough,

lim
n→+∞

sup
θ∈Θ∗

∣

∣

∣

∣

∣

1

n
tr

[

p
∏

ℓ=1

(Tn(fθ))
−1Tn(gθ,ℓ)

]

− 1

2π

∫ π

−π

f−p
θ (x)

p
∏

j=1

gθ,ℓ(x)dx

∣

∣

∣

∣

∣

= 0.

3 LAN property for a certain class of random processes

Let Xn, n ∈ N be a centered Gaussian stationary process with law Pθ parametrized
by θ = (θ1, . . . , θm)

′ ∈ Θ ⊂ R
m and associated with the 2π-periodic even spectral density

fθ. Then, under Pθ,

E(XnXn+k) =
1

2π

∫ π

−π

exp(ikx)fθ(x)dx = ck(fθ).

As usual, for θ 6= η, the set {x ∈ [−π, π], fθ(x) = fη(x)} is assumed to have positive
Lebesgue measure. This assumption is not needed to obtain the LAN property but is a
standard background assumption in statistics. Actually, if this condition is not fulfilled,
the model is not identifiable, preventing any estimation issues.

In practice, we observe the vector Xn = (X1, . . . , Xn), with n ∈ N\{0}, whose law is
denoted by P n

θ . Under P n
θ , the covariance matrix of Xn is then the symmetric Toeplitz

matrix
1

2π
Tn(fθ) = (ck−j(fθ))16k,j6n.

and the Fisher information of the model is the matrix

I(θ) =
1

4π

(
∫ π

−π

∂ log fθ(x)

∂θk

∂ log fθ(x)

∂θj
dx

)

16k,j6m

.

The LAN property of the model is proved under the following assumption.

Assumption 3.1.
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(A.1) For any x ∈ [−π, π]\{0}, the function θ 7→ fθ(x) is three times continuously differ-
entiable on Θ. In addition, for any 0 ≤ ℓ ≤ 3 and 1 ≤ k1, . . . , kℓ ≤ m, the partial
derivative

(θ, x) → ∂ℓ

∂θk1 . . . ∂θkℓ
fθ(x)

is continuous on Θ× [−π, π]\{0}, continuously differentiable with respect to x on
[−π, π]\{0} and its partial derivative

(θ, x) → ∂ℓ+1

∂x∂θk1 . . . ∂θkℓ
fθ(x)

is continuous on Θ× [−π, π]\{0}.

(A.2) There exists a continuous function α : Θ → (−∞, 1) such that for any δ > 0
and any compact set Θ∗ ⊂ Θ, the following conditions hold for every (θ, x) ∈
Θ∗ × [−π, π]\{0}.

(a) c
1,δ,Θ∗

|x|−α(θ)+δ ≤ fθ(x) ≤ c
2,δ,Θ∗

|x|−α(θ)−δ

(b)

∣

∣

∣

∣

∂

∂x
fθ(x)

∣

∣

∣

∣

≤ c
2,δ,Θ∗

|x|−α(θ)−1−δ

(c) for any ℓ ∈ {1, 2, 3}, and any k ∈ {1, . . . ,m}ℓ,
∣

∣

∣

∣

∂ℓ

∂θk1 . . . ∂θkℓ
fθ(x)

∣

∣

∣

∣

≤ c
2,δ,Θ∗

|x|−α(θ)−δ.

with c
i,δ,Θ∗

some finite positive constants which only depend on δ and Θ∗.

This assumption implies that 1/fθ is well-defined on [−π, π]\{0} and corresponds to
Assumptions (A1), (A2) and (A4) in [15], except that we impose some smoothness prop-
erty on the derivative of order three. This assumption, as noted in [15], is an extension
and a reformulation of Dahlhaus’s ones in [4, 5].

If for the true value θ0 of the parameter, α(θ0) ∈ (−1, 1), the LAN property (see
Theorem 3.4) holds. Nevertheless, if α(θ0) ≤ −1, the LAN property is established under
the following additional assumption (which allows to apply Theorem 2.5).

Assumption 3.2. Let Θ∗ = B(θ0, r) ⊂ Θ. For any δ > 0, for any ℓ ∈ {1, 2, 3} and
k ∈ {1, . . . ,m}ℓ,

∣

∣

∣

∣

∂ℓ+1

∂x∂θk1 . . . ∂θkℓ
fθ(x)

∣

∣

∣

∣

≤ c
2,δ,Θ∗

|x|−α(θ)−1−δ

with α and c
2,δ,Θ∗

given in Assumption 3.1.

Under Assumption 3.1, the covariance matrix Tn(
1
2π
fθ) is invertible (for each θ) and

then, we compare the distribution of the model under Pθ and Pη using the following
proposition.

Proposition 3.3. For any symmetric positive definite matrix Γ on R
n (n ∈ N\{0}), PΓ

denotes the distribution of a centered Gaussian vector with covariance Γ. Then, for any
covariance matrices Γ1 and Γ2,

2 log
dPΓ1

dPΓ2

(x) = 〈x, (Γ−1
2 − Γ−1

1 )x〉+ log det(Γ−1
1 Γ2),

where 〈 · 〉 denotes the usual Hermitian product in C
n.
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The following theorem states LAN property for the observation model.

Theorem 3.4 (LAN property). Let θ0 be in the interior of Θ. Assume that Assumption 3.1
is fulfilled. If α(θ0) ≤ −1, assume also that Assumption 3.2 is fulfilled. Then under P n

θ0
,

for t ∈ R
m, we get

log
dP n

θ0+t/
√
n

dP n
θ0

= 〈t, Zn〉 −
1

2
t∗I(θ0)t+ ψθ0(t, n)

where Zn does not depend on t and converges in distribution, under P n
θ0
, to a centered

Gaussian vector with covariance matrix I(θ0), while ψθ0(·, n) converges uniformly on each
compact to 0 P n

θ0
-almost surely when n→ +∞.

Proof. Let K ⊂ R
m be a compact set and consider r > 0 such that

Θ∗ = B(θ0, r) ⊂ Θ

where B(u, r) is the Euclidean closed ball of Rm centered at u with radius r. Then, we
can choose n0, such that for any integer n ≥ n0 and any t ∈ K, θ0 + t/

√
n ∈ Θ∗.

Let us now consider n ≥ n0 and observe that for any t ∈ K, P n
θ0

and P n
θ0+t/

√
n
are

well-defined. Moreover, using Proposition 3.3, for any t ∈ K, we get

log
dP n

θ0+t/
√
n

dP n
θ0

(xn) = Fn

(

θ0 +
t√
n

)

where xn = (x1, . . . , xn) ∈ R
n and for θ ∈ B(θ0, r) = Θ∗,

Fn(θ) = π < xn, [Tn(fθ0)
−1 − Tn(fθ)

−1]xn > +
1

2
log det[Tn(fθ)

−1Tn(fθ0)].

By Assumption 3.1, Fn is three times continuously differentiable on B(θ0, r). Hence, for
any t ∈ K, since Fn(θ0) = 0,

∣

∣

∣

∣

Fn

(

θ0 +
t√
n

)

− 〈t,∇Fn(θ0)〉√
n

− t∗∇2Fn(θ0)t

2n

∣

∣

∣

∣

≤ M3
K

6n3/2
max

1≤j,k,l≤m
sup

θ∈B(θ0,r)

∣

∣

∣

∣

∂3Fn

∂θj∂θk∂θl
(θ)

∣

∣

∣

∣

where ∇Fn(θ0) is the gradient of Fn at θ0, ∇2Fn(θ0) its Hessian matrix at θ0 and MK =
maxs∈K ‖s‖.

Hence, setting Zn = ∇Fn(θ0)/
√
n (which does not depend on t ∈ K) and applying

Equation (3), we get

∀t ∈ K, Fn

(

θ0 +
t√
n

)

= 〈t, Zn〉 −
1

2
t∗I(θ0)t+ ψθ0(t, n)

with

sup
s∈K

|ψθ0(s, n)| ≤
M2

K

2

∥

∥

∥

∥

∇2Fn(θ0)

n
+ I(θ0)

∥

∥

∥

∥

2,m

+
M3

K

6n3/2
max

1≤j,k,l≤m
sup

θ∈B(θ0,r)

∣

∣

∣

∣

∂3Fn

∂θj∂θk∂θl
(θ)

∣

∣

∣

∣

.

The conclusion follows from the three following lemmas, whose proofs are postponed
to the Appendix for sake of clearness. The first lemma deals with the behavior of Zn.
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Lemma 3.5. Under P n
θ0
, Zn converges in distribution, as n → +∞, to a centered Gaus-

sian random vector whose covariance matrix is the Fisher information I(θ0).

Let us now state the asymptotic of ∇2Fn(θ0).

Lemma 3.6. Under P n
θ0
, ∇2Fn(θ0)/n converges almost surely to −I(θ0), as n → +∞.

Hence,
∥

∥

∥

∥

∇2Fn(θ0)

n
+ I(θ0)

∥

∥

∥

∥

2,m

converges almost surely to 0 as n→ +∞.

The next lemma deals with the behavior of the partial derivative of Fn of order three.

Lemma 3.7. For r small enough, for any 1 ≤ j, k, l ≤ m, under P n
θ0

1

n3/2
sup

B(θ0,r)

∣

∣

∣

∣

∂3Fn

∂θj∂θk∂θl

∣

∣

∣

∣

converges almost surely to 0.

Conbining Lemmas 3.6 and 3.7, we get

lim
n→+∞

sup
s∈K

|ψθ0(s, n)| = 0 P n
θ0
-almost surely,

which concludes the proof.

4 Application to Fractional Gaussian noises and ARFIMA pro-

cesses

Here we consider two particular cases where the LAN property can be proved.

Fractional Gaussian noises

Let (BH(t))t>0 be a fractional Brownian motion (see [12, 19]) with Hurst index H ∈ (0, 1).
In other words, BH is a centered Gaussian random process whose covariance function is
given by

E(BH(t)BH(s)) =
σ2

2

[

|t|2H − 2|t− s|2H + |s|2H
]

. (5)

The parameter σ2 corresponds to the variance of BH(1). Let us now consider the centered
stationary Gaussian sequence (Xn)n≥1, called the fractional Gaussian noise of index H,
defined by

for n ≥ 1, Xn = BH(n)− BH(n− 1).

The law of (Xn)n≥1 is parametrized by θ = (σ2, H) ∈ (0,+∞)× (0, 1). According to [21],
its spectral density fσ2,H is given by

fσ2,H(x) =
σ2|eix − 1|2
C2

2(H)

∑

k∈Z

1

|x+ 2kπ|2H+1
, x ∈ [−π, π]\{0}, (6)

where
C2

2(α) =
π

αΓ(2α) sin(απ)
.
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Then, the model satisfies Assumption 3.1 with α(θ) = 2H − 1. Since the range of α is
(−1, 1), the Assumption 3.2 is not needed in this example.

Next proposition establishes the LAN property when the observation are modeled by

Bn = {BH(1), . . . , BH(n)}

with BH the fractional Brownian motion whose covariance function is given by (5). This
model is not a stationary one but its log-likelihood can be linked to those of the fractional
Gaussian noise

Xn = {BH(1), BH(2)− BH(1), . . . , BH(n)− BH(n− 1)},

which fulfills Assumption 3.1. The law of Bn is parametrized by (σ2, H) ∈ (0,+∞) ×
(0, 1) = Θ and denoted by Qn

σ2,H .

Proposition 4.1. Let I be the Fisher information of the fractional Gaussian noise Xn,
that is the Fisher information associated with the spectral density fσ2,H defined by (6).
Then, under Qn

σ2
0 ,H0

, for t ∈ R
2 and n large enough

log
dQn

(σ2
0 ,H0)+t/

√
n

dQn
(σ2

0 ,H0)

= 〈t, Zn〉 −
1

2
t∗I(σ2

0, H0)t+ ψσ2
0 ,H0

(t, n)

where Zn does not depend on t and converges in distribution, under Qn
(σ2

0 ,H0)
, to a centered

Gaussian vector with covariance matrix I(σ2
0, H0), while ψσ2

0 ,H0
(·, n) converges uniformly

on each compact to 0 Qn
(σ2

0 ,H0)
-almost surely when n→ +∞.

Proof. Let θ0 = (σ2
0, H0). As previously, P

n
θ denotes the law of Xn. Observe that

log
dQn

θ0+t/
√
n

dQn
θ0

(bn) = log
dP n

θ0+t/
√
n

dP n
θ0

(xn)

where bn = (b1, . . . , bn)
′

and xn = (b1, b2− b1, . . . , bn− bn−1)
′

. Since under Qn
σ2
0 ,H0

, the law

of xn is P n
θ0
, the conclusion follows from Theorem 3.4.

ARFIMA processes

ARFIMA processes have been introduced in [9, 11]. We also refer to [1] for general
properties of ARFIMA(p, d, q).

Let p, q ∈ N. Then, a stationary ARFIMA process (Xn)n is parametrized by θ =
(σ2, d,Φ1, . . . ,Φp,Ψ1, . . . ,Ψq) where d ∈ (−∞, 1) is the order of differentiability and the
polynoms

Φ(X) = 1 +

p
∑

j=1

ΦjX
j and Ψ(X) = 1 +

q
∑

j=1

ΨjX
j

have no zeros in the unit circle and no zeros in common. Then, its spectral density is
given by

fθ(x) = σ2
∣

∣eix − 1
∣

∣

−2d

∣

∣

∣

∣

Ψ(eix)

Φ(eix)

∣

∣

∣

∣

2

.

Then Assumptions 3.1 and 3.2 are fulfilled with α(θ) = 2d. Theorem 3.4 also implies
LAN property for this model.
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A Appendix

A.1 Proof of Lemma 3.5

In this appendix, for ℓ ∈ {1, 2, 3} and k ∈ {1, . . . ,m}ℓ, ∂ℓkfθ denotes the partial
derivative of (θ, x) 7→ fθ(x) with respect to (θk1 , . . . , θkℓ), that is

∂ℓkfθ(x) =
∂ℓfθ

∂θk1 · · · ∂θkℓ
(x). (7)

By definition of Fn, for any θ ∈ B(θ0, r), and any integer 1 ≤ k ≤ m,

∂Fn

∂θk
(θ) = π〈xn, Tn(fθ)

−1Tn(∂kfθ)Tn(fθ)
−1xn〉 −

1

2
tr
(

Tn(∂kfθ)Tn(fθ)
−1
)

. (8)

Let us fix u ∈ R
m and study the asymptotic behavior, under P n

θ0
, of 〈u,∇Fn(θ0)〉, that

is by (8) of

〈u,∇Fn(θ0)〉 = π〈xn, Tn(fθ0)
−1Tn(g

u
θ0
)Tn(fθ0)

−1xn〉 −
1

2
tr
(

Tn(g
u
θ0
)Tn(fθ0)

−1
)

with

guθ =
m
∑

k=1

uk ∂kfθ.

To achieve this goal we use the following result on Gaussian random field.

Lemma A.1. Assume that Y = (Y1, . . . , Yn)
′ is a centered Gaussian random vector with

covariance matrix Γ and consider A a real symmetric matrix of order n. Then,

〈Y,AY 〉 (d)
=

n
∑

j=1

λj,nχj,n

where
(d)
= stands for equality in distribution, (λj,n)1≤j≤n are the eigenvalues of the real

symmetric matrix Γ1/2AΓ1/2 and (χj,n)j,n are i.i.d. random variables with distribution

χ2(1). Moreover,

E(〈Y,AY 〉) = tr(AΓ) = tr(ΓA) and Var(〈Y,AY 〉) = 2
n
∑

j=1

λ2j,n = 2tr
(

(AΓ)2
)

.

Observe that under P n
θ0
, xn is a centered Gaussian random variable with covariance

Γn = 1
2π
Tn(fθ0). Then, since Tn(fθ0)

−1Tn(g
u
θ0
)Tn(fθ0)

−1 is a real symmetric matrix, under
P n
θ0
,

〈u,∇Fn(θ0)〉
(d)
=

n
∑

j=1

λuj,n(χj,n − 1),

where (λuj,n)j=1,...,n are the eigenvalues of

Bu
θ0
=

1

2
Tn(fθ0)

−1/2Tn
(

guθ0
)

Tn(fθ0)
−1/2.

Therefore, under P n
θ0

〈u, Zn〉
(d)
=

n
∑

j=1

√
2λuj,n√
n

ξj,n

Compiled November 3, 2011 23:50 by pdfLATEX. Page 10.



where ξj,n = (χj,n − 1)/
√
2 (1 ≤ j ≤ n, n ≥ 1) are i.i.d. centered random variables having

unitary variance. To obtain the convergence of Zn, we use the following Lemma, which
is an obvious corollary of Lindenberg theorem (see [2] for instance).

Lemma A.2. Let (ξj,n)n>1,16j6n be a sequence of i.i.d centered random variables having
unitary variance and let (vj,n)n≥1,16j6n be a triangular array of real numbers. Assume
further that

1. limn→+∞ sup1≤j≤n |vj,n| = 0,

2. limn→+∞
∑n

j=1 v
2
j,n = τ 2 > 0.

Then, as n → +∞,
∑n

j=1 vj,nξj,n converges in distribution to a centered Gaussian distri-

bution with variance τ 2.

We first check Condition 1 for the sequence vj,n =
√
2n−1/2λuj,n. Since Bu

θ0
is an

Hermitian matrix whose eigenvalues are
(

λuj,n
)

1≤j≤n
, its spectral radius

ρn(u) := sup
1≤j≤n

|λuj,n|

is given by

ρn(u) = sup
x∈Cn\{0}

∣

∣x∗Bu
θ0
x
∣

∣

x∗x
=

1

2
sup

x∈Cn\{0}

∣

∣x∗Tn(fθ0)
−1/2Tn(g

u
θ0
)Tn(fθ0)

−1/2x
∣

∣

x∗x
.

Observe that for any y ∈ C
n, and any integrable symmetric function h,

y∗Tn(h)y =

∫ π

−π

∣

∣

∣

∣

∣

n
∑

k=1

eikxyk

∣

∣

∣

∣

∣

2

h(x)dx

and therefore that
|y∗Tn(h)y| ≤ y∗Tn(|h|)y. (9)

Then, we get

ρn(u) ≤
1

2
sup

x∈Cn\{0}

x∗Tn(fθ0)
−1/2Tn(

∣

∣guθ0
∣

∣)Tn(fθ0)
−1/2x

x∗x
,

which can be written as

ρn(u) ≤
1

2

∥

∥

∥
Tn
(∣

∣guθ0
∣

∣

)1/2
Tn(fθ0)

−1/2
∥

∥

∥

2

2,n
,

since
∣

∣guθ0
∣

∣ is a nonnegative symmetric function on [−π, π].
By Assumption 3.1, the functions f = fθ0 and g =

∣

∣guθ0
∣

∣ satisfy Equation (4) with
β1 = α(θ0) − δ and β2 = α(θ0) + δ (for any δ > 0). Then, applying Lemma 2.1, for any
δ > 0, we get

ρn(u) < Kδn
2δ

where the finite positive constant Kδ does not depend on n. This implies that

lim
n→+∞

sup
1≤j≤n

|vj,n| = lim
n→+∞

√
2ρn(u)√
n

= 0.
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This proves that Condition 1 of Lemma A.2 is fulfilled. Let us now study the asymptotic of

n
∑

j=1

v2j,n =
2

n

n
∑

j=1

(

λuj,n
)2
.

By definition of the λuj,n, we get

n
∑

j=1

v2j,n = 1
2n
tr
(

[

Tn(fθ0)
−1/2Tn(g

u
θ0
)Tn(fθ0)

−1/2
]2
)

= 1
2n
tr
(

[

Tn(fθ0)
−1Tn(g

u
θ0
)
]2
)

.

Observe that if α(θ0) > −1, fθ,1 = fθ,2 = fθ and gθ,1 = gθ,2 = guθ satisfy the assumptions
of Theorem 2.3 with β = α on Θ∗ = B(θ0, r) for r chosen small enough. Otherwise,
for r small enough, fθ and gθ,1 = gθ,2 = guθ satisfy the assumptions of Theorem 2.5 on
Θ∗ = B(θ0, r). Hence, applying one of these theorems, we get

lim
n→+∞

n
∑

j=1

v2j,n =
1

4π

∫ π

−π

guθ0(x)
2

fθ0(x)
2
dx.

that is by definition of guθ0 and I(θ0),

lim
n→+∞

n
∑

j=1

v2j,n = u∗I(θ0)u.

Hence, by Lemma A.2, under P n
θ0
, 〈u, Zn〉 converges in distribution, to a centered Gaussian

random variable whose variance is u∗I(θ0)u. In other words, under P n
θ0
, 〈u, Zn〉 converges

in distribution to 〈u,G〉 with G a centered Gaussian random vector whose covariance
matrix is I(θ0). Since this holds for any u ∈ R

m, under P n
θ0
, Zn converges in distribution

to G. The proof of Lemma 3.5 is then complete.

A.2 Proof of Lemma 3.6

Let us consider two integers 1 ≤ j, k ≤ m. We recall that ∂ℓkfθ is defined by (7) and
set

An,θ(g) = Tn(fθ)
−1Tn(g). (10)

Then, since ∂Fn

∂θk
is given by (8), for any θ ∈ B(θ0, r),

∂2Fn

∂θj∂θk
(θ) = Gn,1(θ) +Gn,2(θ) +Gn,3(θ)

where

Gn,1(θ) = π〈xn, An,θ(∂
2
j,kfθ)Tn(fθ)

−1xn〉 −
1

2
tr
(

An,θ(∂
2
j,kfθ)

)

,

Gn,2(θ) = −π〈xn, [An,θ(∂jfθ)An,θ(∂kfθ) + An,θ(∂kfθ)An,θ(∂jfθ)]Tn(fθ)
−1xn〉,

and

Gn,3(θ) =
1

2
tr
(

Tn(∂kfθ)Tn(fθ)
−1Tn(∂jfθ)Tn(fθ)

−1
)

.
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By Lemma A.1, under P n
θ0
, Gn,1(θ0) is a centered square integrable random variable and

EPn
θ0

(

G2
n,1(θ0)

)

= VarPn
θ0
Gn,1(θ0) =

1

2
tr
(

An,θ0

(

∂2j,kfθ0
)2
)

.

By Assumption 3.1, if α(θ0) > −1, fθ,1 = fθ,2 = fθ and gθ,1 = gθ,2 = ∂2j,kfθ satisfy
the assumptions of Theorem 2.3 (up to a proper choice of a smaller r) with β = α.
Moreover if α(θ0) ≤ −1, by Assumptions 3.1 and 3.2, fθ and gθ,1 = gθ,2 = ∂2j,kfθ satisfy
the assumptions of Theorem 2.5. Hence, by definition of An,θ0 ,

lim
n→+∞

1

n2
EPn

θ0

(

G2
n,1(θ0)

)

= 0,

which implies that Gn,1(θ0)/n converges P n
θ0
-almost surely to 0.

Moreover, again by Lemma A.1, under P n
θ0
, Gn,2(θ0)/n is a square integrable random

variable with mean

mn = 1
n
EPn

θ0
(Gn,2(θ0))

= − 1
2n
tr(An,θ0(∂jfθ0)An,θ0(∂kfθ0) + An,θ0(∂kfθ0)An,θ0(∂jfθ0))

= − 1
n
tr(An,θ0(∂jfθ0)An,θ0(∂kfθ0))

and variance

σ2
n =

1

n2
tr
(

[An,θ0(∂jfθ0)An,θ0(∂kfθ0)]
2)+

1

n2
tr
(

An,θ0(∂jfθ0)
2An,θ0(∂kfθ0)

2
)

.

As previously, if α(θ0) > −1 (respectively α(θ0) ≤ −1), we can apply Theorem 2.3
(respectively Theorem 2.5). These theorems prove that

lim
n→+∞

mn = − 1

2π

∫ π

−π

∂kfθ0(x)∂jfθ0(x)

fθ0(x)
2

dx = −2I(θ0)kj and lim
n→+∞

σ2
n = 0.

This implies that Gn,2(θ0)/n converges P n
θ0
-almost surely to −2I(θ0)kj. Since Gn,3(θ0)/n =

−mn/2,

lim
n→0

1

n

∂2Fn

∂θk∂θj
(θ0) = −I(θ0)kj.

Since this holds for any 1 ≤ j, k ≤ m, ∇2Fn(θ0)/n converges P n
θ0
-almost surely to −I(θ0),

which concludes the proof of Lemma 3.6.

A.3 Proof of Lemma 3.7

Let us focus on ∂3Fn

∂θ3
k

, where 1 ≤ k ≤ m. We recall that An,θ is defined in (10) and set

for the sake of simplicity,

∂2kfθ = ∂2k,kfθ and ∂3kfθ = ∂2k,k,kfθ

where ∂ℓ(k1,k2,k3)fθ is given by (7). Then, for any θ ∈ B(θ0, r), we get

∂3Fn

∂θ3k
(θ) = Hn,1(θ) +Hn,2(θ) +Hn,3(θ) +Hn,4(θ)
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where
Hn,1(θ) = π〈xn, An,θ(∂

3
kfθ)Tn(fθ)

−1xn〉,
Hn,2(θ) = −3π〈xn,

[

An,θ(∂
2
kfθ)An,θ(∂kfθ) + An,θ(∂kfθ)An,θ(∂

2
kfθ)

]

Tn(fθ)
−1xn〉,

Hn,3(θ) = 6π〈xn, An,θ(∂kfθ)
3Tn(fθ)

−1xn〉
and

Hn,4(θ) = −tr
(

An,θ(∂kfθ)
3)+ 3

2
tr(An,θ(∂kfθ)An,θ(∂

2
kfθ))− 1

2
tr(An,θ(∂

3
kfθ))

Control of Hn,1

Observe that since Tn(fθ0) is an Hermitian matrix,

Hn,1(θ) = π〈Tn(fθ0)−1/2xn, Tn(fθ0)
1/2An,θ(∂

3
kfθ)Tn(fθ)

−1xn〉.

Therefore, by (3)

|Hn,1(θ)| ≤ π
∥

∥Tn(fθ0)
−1/2xn

∥

∥

2∥
∥Tn(fθ0)

1/2An,θ(∂
3
kfθ)Tn(fθ)

−1Tn(fθ0)
1/2
∥

∥

2,n

Hence by applying Equation (2), we get

|Hn,1(θ)| ≤ π
∥

∥Tn(fθ0)
−1/2xn

∥

∥

2∥
∥Tn(fθ)

−1/2Tn(fθ0)
1/2
∥

∥

2

2,n

∥

∥Tn(
∣

∣∂3kfθ
∣

∣)1/2Tn(fθ)
−1/2

∥

∥

2

2,n
.

Let us now consider ε > 0. Then, by continuity of α, we can choose r sufficiently small
so that

α(θ0)− ε ≤ α(θ) ≤ α(θ0) + ε

for any θ ∈ B(θ0, r) = Θ∗ ⊂ Θ. Then, Assumption 3.1 implies that f = fθ satisfies (4)
with β1 = α(θ0)− 2ε and a constant c1 which does not depend on θ ∈ B(θ0, r). Note also
that g = fθ0 satisfies (4) with β2 = α(θ0) + ε > β1. Then, by Lemma 2.1, we get

∀θ ∈ B(θ0, r),
∥

∥Tn(fθ)
−1/2Tn(fθ0)

1/2
∥

∥

2

2,n
≤ Kn3ε

where the finite constant K = Kθ0,r,ε does not depend on n and θ.
Moreover, g = |∂3kfθ| is a nonnegative symmetric function which satisfies (4) with

β2 = α(θ0)+2ε > β1 and a constant c2 which does not depend on θ ∈ B(θ0, r). Therefore
by Lemma 2.1,

∀θ ∈ B(θ0, r), |Hn,1(θ)| ≤ K ′n7ε
∥

∥Tn(fθ0)
−1/2xn

∥

∥

2

where the finite constant K ′ = K ′
θ0,r,ε

does not depend on n and θ. Therefore,

1

n3/2
sup

θ∈B(θ0,r)

|Hn,1(θ)| ≤ K ′n7ε−1/2

∥

∥Tn(fθ0)
−1/2xn

∥

∥

2

n
.

Under P n
θ0
, Tn(fθ0)

−1/2xn is a centered Gaussian random vector with 1
2π
Idn as covariance

matrix. Then, by the strong law of large numbers,

∥

∥Tn(fθ0)
−1/2xn

∥

∥

2

n

Pn
θ0

-a.s.

−−−−→
n→+∞

1

π
.
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Therefore, choosing ε and r small enough, we get

1

n3/2
sup

θ∈B(θ0,r)

|Hn,1(θ)|
Pn
θ0

-a.s.

−−−−→
n→+∞

0. (11)

Control of Hn,2 and Hn,3

Proceeding as for Hn,1, one check that for r small enough, for ℓ ∈ {2, 3},

1

n3/2
sup

θ∈B(θ0,r)

|Hn,ℓ(θ)|
Pn
θ0

-a.s.

−−−−→
n→+∞

0. (12)

Control of Hn,4

Assume first that α(θ0) > −1. For 1 ≤ ℓ ≤ 3, consider fθ,ℓ = fθ and gθ,ℓ = ∂3kfθ. Then,
by Assumptions 3.1, these functions satisfy assumptions of Theorem 2.3 on the compact
set Θ∗ = B(θ0, r) (choosing r small enough) with β = α. Then, applying this theorem,
we get that

sup
n

sup
θ∈B(θ0,r)

1

n

∣

∣

∣

∣

∣

tr

(

3
∏

ℓ=1

Tn(fθ)
−1Tn

(

∂3kfθ
)

)∣

∣

∣

∣

∣

< +∞,

that is

sup
n

sup
θ∈B(θ0,r)

1

n

∣

∣tr
(

An,θ

(

∂3kfθ
))∣

∣ < +∞

Assumption 3.1 also allows us to control the two other terms of Hn,4 by applying Theo-
rem 2.3. This leads to

sup
n

1

n
sup

θ∈B(θ0,r)

1

n
|Hn,4(θ)| < +∞. (13)

If α(θ0) ≤ −1, applying Theorem 2.5 instead of Theorem 2.3, we see that Equa-
tion (13) still holds.

Control of ∂3Fn

∂θ3

k

Equations (11), (12) and (13) leads to

1

n3/2
sup

θ∈B(θ0,r)

∣

∣

∣

∣

∂3Fn

∂θ3k

∣

∣

∣

∣

Pn
θ0

-a.s

−−−−→
n→+∞

0

for r small enough.

Computing ∂3Fn

∂θj∂θk∂θl
and then using the same arguments as for j = k = l, one obtains

that
1

n3/2
sup

θ∈B(θ0,r)

∣

∣

∣

∣

∂3Fn

∂θj∂θk∂θl

∣

∣

∣

∣

Pn
θ0

-a.s

−−−−→
n→+∞

0,

which concludes the proof.
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