Hyperbolic traveling waves driven by growth - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Hyperbolic traveling waves driven by growth

Résumé

We perform the analysis of a hyperbolic model which is the analog of the Fisher-KPP equation. This model accounts for particles that move at maximal speed $\epsilon^{-1}$ ($\epsilon>0$), and proliferate according to a reaction term of monostable type. We study the existence and stability of traveling fronts. We exhibit a transition depending on the parameter $\epsilon$: for small $\epsilon$ the behaviour is essentially the same as for the diffusive Fisher-KPP equation. However, for large $\epsilon$ the traveling front with minimal speed is discontinuous and travels at the maximal speed $\epsilon^{-1}$. The traveling fronts with minimal speed are linearly stable in weighted $L^2$ spaces. We also prove local nonlinear stability of the traveling front with minimal speed when $\epsilon$ is smaller than the transition parameter.
Fichier principal
Vignette du fichier
telegraphe_121011.pdf (1.1 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00632597 , version 1 (14-10-2011)
hal-00632597 , version 2 (21-11-2016)

Identifiants

Citer

Emeric Bouin, Vincent Calvez, Grégoire Nadin. Hyperbolic traveling waves driven by growth. 2011. ⟨hal-00632597v1⟩
321 Consultations
159 Téléchargements

Altmetric

Partager

More