Représentations lisses modulo l de GL(m,D) - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Représentations lisses modulo l de GL(m,D)

Résumé

Let F be a non-Archimedean locally compact field of residue characteristic p, let D be a finite dimensional central division F-algebra and let R be an algebraically closed field of characteristic different from p. We classify all smooth irreducible representations of GL(m,D) with coefficients in R, in terms of multisegments, generalizing works by Zelevinski, Tadic and Vignéras. We prove that any irreducible R-representation of GL(m,D) has a unique supercuspidal support, and thus get two classifications: one by supercuspidal multisegments, classifying representations with a given supercuspidal support, and one by aperiodic multisegments, classifying representations with a given cuspidal support. These constructions are made in a purely local way, with a substantial use of type theory.
Fichier principal
Vignette du fichier
modulaires.pdf (1.03 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00630047 , version 1 (07-10-2011)
hal-00630047 , version 2 (02-04-2014)

Identifiants

Citer

Alberto Minguez, Vincent Sécherre. Représentations lisses modulo l de GL(m,D). 2011. ⟨hal-00630047v1⟩
229 Consultations
289 Téléchargements

Altmetric

Partager

More