Funclust: a curves clustering method using functional random variables density approximation - Archive ouverte HAL Access content directly
Journal Articles Neurocomputing Year : 2013

Funclust: a curves clustering method using functional random variables density approximation

Julien Jacques
Cristian Preda
  • Function : Author
  • PersonId : 911328

Abstract

A new method for clustering functional data is proposed under the name Funclust. This method relies on the approximation of the notion of probability density for functional random variables, which generally does not exists. Using the Karhunen-Loeve expansion of a stochastic process, this approximation leads to define an approximation for the density of functional variables. Based on this density approximation, a parametric mixture model is proposed. The parameter estimation is carried out by an EM-like algorithm, and the maximum a posteriori rule provides the clusters. The efficiency of Funclust is illustrated on several real datasets, as well as for the characterization of the Mars surface.
Fichier principal
Vignette du fichier
Paper-Funclust-V2-versionHAL.pdf (440.59 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-00628247 , version 1 (30-09-2011)
hal-00628247 , version 2 (13-10-2012)

Identifiers

Cite

Julien Jacques, Cristian Preda. Funclust: a curves clustering method using functional random variables density approximation. Neurocomputing, 2013, 112, pp.164-171. ⟨10.1016/j.neucom.2012.11.042⟩. ⟨hal-00628247v2⟩
826 View
715 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More