A geometrical proof of the persistence of normally hyperbolic submanifolds - Archive ouverte HAL
Article Dans Une Revue Dynamical Systems Année : 2013

A geometrical proof of the persistence of normally hyperbolic submanifolds

Résumé

We present a simple, computation free and geometrical proof of the following classical result: for a diffeomorphism of a manifold, any compact submanifold which is invariant and normally hyperbolic persists under small perturbations of the diffeomorphism. The persistence of a Lipschitz invariant submanifold follows from an application of the Schauder fixed point theorem to a graph transform, while smoothness and uniqueness of the invariant submanifold are obtained through geometrical arguments. Moreover, our proof provides a new result on persistence and regularity of ''topologically" normally hyperbolic submanifolds, but without any uniqueness statement.
Fichier principal
Vignette du fichier
hps3.pdf (170.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00623713 , version 1 (15-09-2011)

Identifiants

Citer

Pierre Berger, Abed Bounemoura. A geometrical proof of the persistence of normally hyperbolic submanifolds. Dynamical Systems, 2013, 28 (4), pp.567-581. ⟨hal-00623713⟩
106 Consultations
282 Téléchargements

Altmetric

Partager

More