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A geometrical proof of the persistence of

normally hyperbolic submanifolds

Pierre Berger ∗ and Abed Bounemoura †

September 15, 2011

Abstract

We present a simple, computation free and geometrical proof of the
following classical result: for a diffeomorphism of a manifold, any com-
pact submanifold which is invariant and normally hyperbolic persists
under small perturbations of the diffeomorphism. The persistence of
a Lipschitz invariant submanifold follows from an application of the
Schauder fixed point theorem to a graph transform, while smoothness
and uniqueness of the invariant submanifold are obtained through ge-
ometrical arguments. Moreover, our proof provides a new result on
persistence and regularity of “topologically” normally hyperbolic sub-
manifolds, but without any uniqueness statement.

1 Introduction

1. Let M be smooth manifold, f : M → M a C1-diffeomorphism and
N ⊆ M a C1-submanifold invariant by f . Roughly speaking, f is normally
hyperbolic at N if the tangent map Tf , restricted to the normal direction to
N , is hyperbolic (it expands and contracts complementary directions) and
if it dominates the restriction of Tf to the tangent direction TN (that is,
expansion and contraction in the tangent direction, if any, are weaker than
those in the normal direction). A precise definition will be given below.

The importance of invariant normally hyperbolic submanifolds, both in
theoretical and practical aspects of dynamical systems, is well-known and it
does not need to be emphasised. Let us just point out that quite recently,
they have acquired a major role in establishing instability properties for
Hamiltonian systems which are close to integrable, a problem which goes
back to the question of the stability of the solar system.
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2. It has been known for a long time that compact invariant normally
hyperbolic submanifolds are persistent, in the following sense: any diffeo-
morphism g : M → M , sufficiently close to f in the C1-topology, leaves
invariant and is normally hyperbolic at a submanifold Ng C1-close to N .
Classical references for this result are [HPS77] and [Fen71].

In fact, normally hyperbolic submanifolds are persistent and uniformly
locally maximal : there exist neighbourhoods U of N in M and U of f in
the space Diff1(M) of C1-diffeomorphisms of M , such that for any g ∈ U ,
Ng =

⋂

k∈Z g
k(U) is a C1-submanifold close to N , with Nf = N . The latter

property implies uniqueness of the invariant submanifold.
The converse statement holds true: assuming N is persistent and uni-

formly locally maximal, it was shown in [Mañ78] that N has to be normally
hyperbolic.

In the case where N is a point, then it is a hyperbolic fixed point and
the persistence follows trivially from the implicit function theorem. In the
general case, however, such a direct approach is not possible and it is custom-
ary to deduce the persistence of compact normally hyperbolic submanifolds
from the existence and persistence of the associated local stable (respec-
tively unstable) manifolds, which are located in a neighbourhood of N and
are tangent to the sum of the contracting (respectively expanding) and tan-
gent direction to N . The existence and persistence of stable and unstable
manifolds have a long history, that we shall go through only very briefly. In
the case of a fixed point, this was first proved by Hadamard ([Had01]) who
introduced the so-called “graph transform” method, which relies on the con-
traction principle. Another proof, based on the implicit function theorem,
was later given by Perron ([Per28]), which was subsequently greatly sim-
plified by Irwin ([Irw70]). For normally hyperbolic submanifolds which are
not reduced to a point, the result was proved independently in [HPS77] and
[Fen71], using the graph transform method. Moreover, in [HPS77], results
on persistence were obtained not only for normally hyperbolic submanifolds
but also in the more general context of normally hyperbolic laminations.
This result was then clarified and further generalised in [Ber10] and [Ber11],
where not only laminations but also certain stratifications of normally hy-
perbolic laminations were shown to be persistent. As a final remark, let us
point out that the graph transform method has been successfully applied for
semi-flows in infinite dimension ([BLZ98]), with a view towards applications
to partial differential equations.

3. The aim of this work is to give yet another proof of the persistence of
compact normally hyperbolic submanifolds, a proof which we believe to be
simpler. We will also use a graph transform, but at variance with all other
proofs, we will not rely on the contraction principle. As a consequence, we
will avoid any technical estimates that are usually required to show that
the graph transform is indeed a contraction (on an appropriate Banach
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space). Also, we will be dispensed with giving the explicit, and usually
rather cumbersome, expression of the graph transform acting on a suitable
space of sections of a vector bundle. Instead, we will simply use the Schauder
fixed point theorem to obtain the existence (but not the uniqueness) of the
invariant submanifold. Such an invariant submanifold will be shown, at
first, to be not more than Lipschitz regular. Then, to regain smoothness,
we will use very simple geometrical properties of cone fields implied by the
domination hypothesis. Compared to other proofs, and especially [HPS77]
where complicated techniques of “Lipschitz jets” are used, our approach here
is remarkably simple.

Moreover, our proof yields a new result since the existence and regu-
larity works for a wider class of submanifolds which we call “topologically”
normally hyperbolic, where basically we will retain a suitable domination
property but the normal contraction and expansion will be replaced by topo-
logical analogues (see below for a precise definition). Under this weaker
assumption no result of uniqueness has to be expected. In the classical
normally hyperbolic case, using some other simple geometrical arguments
(where the contraction property of the graph transform is hidden behind),
the uniqueness will be established.

The plan of the paper is the following. We state and explain the theo-
rems for normally hyperbolic submanifolds in section 2, and for topologically
normally submanifolds in section 3. The proofs of the results are given in
section 4.

2 Normally hyperbolic submanifolds

1. Let us now detail the setting that we shall use in the formulation of the
theorem below. The Riemannian manifold M is m-dimensional and smooth
(i.e. C∞). The diffeomorphism f : M → M is (at least) of class C1. The
submanifold N ⊆ M is of class C1, n-dimensional and closed, that is without
boundary, compact and connected. We suppose that f leaves N invariant :
f(N) = N .

Definition 1. The diffeomorphism f is normally hyperbolic at N if there
exist a splitting of the tangent bundle of M over N into three Tf -invariant
subbundles:

TM|N = Es ⊕ Eu ⊕ TN

and a constant 0 < λ < 1 such that for all x ∈ N , with ||.|| the operator
norm induced by the Riemannian metric:

||Txf|Es
x
|| < λ, ||Txf

−1
|Eu

x
|| < λ, (1)
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and






||Txf|Es
x
|| · ||Tf(x)f

−1
|Tf(x)N

|| < λ

||Txf
−1
|Eu

x
|| · ||Tf−1(x)f|T

f−1(x)N
|| < λ.

(2)

One can check that the continuity of the splitting is then automatic.
Condition (1) means that the normal behaviour of Tf is hyperbolic while
condition (2) expresses the domination property with respect to the tangent
behaviour of Tf (in fact, condition (2) can be expressed in many equivalent
ways). If Eu = {0} (respectively Es = {0}), then N is normally contracted
(respectively normally expanded). Note that if the above conditions are
satisfied not for f but only for some iterate of f , then there exists another
Riemannian metric (called adapted) for which these two conditions hold true
for f (see [Gou07] for the case of a general dominated splitting).

2. We endow the space of C1-maps between C1-manifolds with the compact-
open topology (see [Hir76]). This naturally defines a topology on the subset
Diff1(M) of C1-diffeomorphisms of M . Moreover, two C1-diffeomorphic
submanifolds N and N ′ of M are C1-close if there exists an embedding i′

of N onto N ′ which is C1-close to the canonical inclusion i : N →֒ M . We
are now ready to state the classical theorem.

Theorem 2.1. Let f be a C1-diffeomorphism which leaves invariant and
is normally hyperbolic at a closed C1-submanifold N . Then there exists a
neighbourhood U of f in Diff1(M) such that any g ∈ U leaves invariant and
is normally hyperbolic at a C1-submanifold Ng, diffeomorphic and C1-close
to N . Moreover, Ng is unique and uniformly locally maximal.

Let us point out that we will actually show the stable and unstable
manifolds theorem: for any g ∈ U , we will construct a local stable manifold
N s

g (respectively a local unstable manifold Nu
g ), C

1-close to N s
f (respectively

Nu
f ), the latter being the set of points whose forward (respectively backward)

orbit lies in a small neighbourhood of N . Then the normally hyperbolic
submanifold Ng will be obtained as the (transverse) intersection between
N s

g and Nu
g .

3. Given any r ≥ 1, we can replace condition (2) by the stronger condition







||Txf|Es
x
|| · ||Tf(x)f

−1
|Tf(x)N

||k < λ

||Txf
−1
|Eu

x
|| · ||Tf−1(x)f|Tf−1(x)N

||k < λ
1 ≤ k ≤ r. (3)

If f satisfies (1) and (3), then it is r-normally hyperbolic at N (hence nor-
mally hyperbolic is just 1-normally hyperbolic). Note that if condition (1)
is satisfied, then it is sufficient to require condition (3) only for k = r.

In this case, if N and f are Cr, using a trick from [HPS77], for g in a Cr-
neighbourhood of f , the invariant submanifold Ng enjoys more regularity.
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Indeed, let Gn(TM) → M be the Grassmannian bundle with fibre at x ∈
M the Grassmannian of n-planes of TxM . The tangent map Tf induces
a canonical Cr−1-diffeomorphism Gf of Gn(TM). Moreover, the tangent
bundle TN can be considered as a closed Cr−1-submanifold of Gn(TM)
(although TN is not compact as a submanifold of TM). As f is r-normally
hyperbolic at N , Gf is (r − 1)-normally hyperbolic at TN . By induction
on r ≥ 1, the existence and the uniqueness given by Theorem 2.1 yields the
following corollary.

Corollary 2.2. For any integer r ≥ 1, let f be a Cr-diffeomorphism which
leaves invariant and is r-normally hyperbolic at a closed Cr-submanifold
N . Then there exists a neighbourhood U of f in Diffr(M) such that any
g ∈ U leaves invariant and is r-normally hyperbolic at a Cr-submanifold
Ng, diffeomorphic and Cr-close to N . Moreover, Ng is unique and uniformly
locally maximal.

Actually the assumption that N is of class Cr is automatic. In [HPS77],
it is proved that if a Cr-diffeomorphism leaves invariant and is r-normally
hyperbolic at a closed C1-submanifold N , then N is actually of class Cr.

3 Topologically normally hyperbolic submanifolds

To prove the persistence of normally hyperbolic submanifolds, we will use a
geometric model which can be satisfied without being normally hyperbolic.
Therefore this enables us to weaken the assumptions on normal hyperbolicity
to obtain a new result of persistence. The submanifolds satisfying such a
geometric model will be called topologically normally hyperbolic.

1. We first explain the geometric model in a simple case. We consider a
closed manifold N , that we identify to the submanifold N × {0} of

V = N × R
s × R

u,

with s, u ≥ 0. Given two compact, convex neighbourhoods Bs and Bu of 0
in respectively R

s and R
u, we define the following compact neighbourhood

of N in V :
B = N ×Bs ×Bu,

and the subsets

∂sB = N × ∂Bs ×Bu, ∂uB = N ×Bs × ∂Bu,

where ∂Bs (respectively ∂Bu) is the boundary of Bs (respectively Bu).
We assume that f is a C1-embedding ofB into V , that is a C1-diffeomorphism

of B onto its image in V , which leaves N invariant. Then we also define the
following cones for z ∈ V :

Cu
z = {v = v1 + v2 ∈ TzV | v1 ∈ TzN × R

s, v2 ∈ R
u, ‖v2‖z ≤ ‖v1‖z},
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Figure 1: A topologically normally hyperbolic submanifold

Cs
z = {v = v1 + v2 ∈ TzV | v1 ∈ TzN × R

u, v2 ∈ R
s, ‖v2‖z ≤ ‖v1‖z},

with respect to a Riemannian metric on V .

Definition 2. Under the above assumptions, f is topologically normally hy-
perbolic at N if it satisfies the following conditions:

f(B) ∩ ∂sB = ∅, B ∩ f(∂uB) = ∅, (1′)

Tzf(C
s
z) ⊂ C̊s

f(z) ∪ {0}, Cu
f(z) ⊂ Tzf(C̊

u
z ) ∪ {0}, (2′)

for every z ∈ B.

Condition (1′) is equivalent to the requirement that f(B) intersects the
boundary of B at most at ∂uB, and that f−1(B) intersects the boundary
of B at most at ∂sB. Moreover, by condition (2′), we have the following
transversality properties: for all ξs ∈ R

s and ξu ∈ R
u, the image of the

“horizontal” N ×{ξs}×R
u by f intersects transversely each “vertical” N ×

R
s × {ξu}, and similarly, the image of N × R

s × {ξu} by f−1 intersects
transversely N × {ξs} × R

u. The situation is depicted in figure 1.
When u = 0, then N is topologically normally contracted, and the char-

acterisation is simpler: ∂B = ∂sB, the second half of condition (1′) is empty,
the first half reads f(B) ∩ ∂B = ∅ which can be seen to be equivalent to
f(B) ⊆ B̊. A similar characterisation holds if N is topologically normally
expanded, that is when s = 0.

Given a normally hyperbolic submanifold for which the stable and unsta-
ble bundles are trivial, we will construct a C1-conjugacy of a neighbourhood
of N with such a geometric model. Basically, condition (1) will give condi-
tion (1′) and conditions (1) and (2) will give condition (2′).
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2. Now we shall generalise the concept of topological normal hyperbolic-
ity, to include in particular normally hyperbolic submanifolds for which the
stable and unstable bundle are not necessarily trivial.

Let V s and V u be two vector bundles over a closed manifold N , whose
fibres are of dimension s and u, with s, u ≥ 0. We denote by

π : V = V s ⊕ V u → N

the vector bundle whose fibre at x ∈ N is the direct sum Vx = V s
x ⊕ V u

x of
the fibres of V s and V u at x ∈ N . A horizontal distribution for π : V → N is
a smooth family of n-planes (Hz)z∈V such that TzV = Hz ⊕ ker Tzπ. Recall
that a local trivialisation of the vector bundle π : V s ⊕ V u → N is an open
set W of N and a diffeomorphism φ : π−1(W ) → W × R

s × R
u such that

its restriction to any fibre π−1(x) = V s
x ⊕ V u

x is a linear automorphism onto
{x}×R

s×R
u. A horizontal distribution H is linear if for any z ∈ V s

x ⊕V u
x ,

there exists a local trivialisation φ over a neighbourhood W of x such that
Tzφ(Hz) = TxW × {0}. Linear horizontal distribution exists on any vector
bundle (the construction follows from the existence of a linear connection
and parallel transport, see [GHV73]).

Let Bs → N and Bu → N be two bundles whose fibres Bs
x and Bu

x at
x ∈ N are convex, compact neighbourhoods of 0 in V s

x and V u
x respectively.

Then we can define other bundles over N , namely B = Bs ⊕ Bu, ∂sB =
∂Bs⊕Bu and ∂uB = Bs⊕∂Bu, where the fibre of ∂Bs at x ∈ N (respectively
∂Bu) is the boundary of Bs

x (respectively Bu
x). Note that B, ∂sB, and ∂uB

are subbundles of V , and that B is a compact neighbourhood of the graph
of the zero section of π : V → N .

Let f be a C1-embedding of B into V . Identifying N to the graph of
the zero section of π : V → N , we assume that f leaves N invariant.

Given a linear horizontal distribution H for π : V → N and a Rieman-
nian metric on V , we define the following cones for z ∈ V :

Cu
z = {v = v1 + v2 ∈ TzV | v1 ∈ Hz ⊕ V s

π(z), v2 ∈ V u
π(z), ‖v2‖z ≤ ‖v1‖z},

Cs
z = {v = v1 + v2 ∈ TzV | v1 ∈ Hz ⊕ V u

π(z), v2 ∈ V s
π(z), ‖v2‖z ≤ ‖v1‖z},

where we have identified the fibres V s
π(z) and V u

π(z) with their tangent spaces.
Let us note that these cone fields are smooth in the sense that Hz, V

s
π(z) and

V u
π(z) depend smoothly on z ∈ B.

Definition 3. Under the above assumptions, f is topologically normally hy-
perbolic at N if it satisfies conditions (1′) and (2′).

This is clearly a generalisation of the simple geometric model, since the
latter correspond to V s = N × R

s, V u = N × R
s and there is a canonical

linear horizontal distribution for the trivial vector bundle π : V = N ×R
s×

R
u → N , given by Hz = Tπ(z)N × {0} for z ∈ V .
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3. Let us denote by Emb1(B,V ) the space of C1-embeddings of B into V ,
endowed with the C1-topology. Here is the new result on persistence:

Theorem 3.1. Let f ∈ Emb1(B,V ) which leaves invariant and is topolog-
ically normally hyperbolic at a closed C1-submanifold N . Then there exists
a neighbourhood B of f in Emb1(B,V ) such that any g ∈ B leaves invariant
and is topologically normally hyperbolic at a C1-submanifold Ng, diffeomor-
phic to N .

Under the assumptions of this theorem, for g ∈ B, we will see that
Ng satisfies the same geometric model. In particular, Ng is included in B
and its tangent space is in Cs ∩ Cu. Thus, if N is topologically normally
hyperbolic for a certain geometric model such that B and Cs ∩ Cu can be
taken “arbitrarily small” (when viewed as neighbourhoods of respectively N
and TN), then Ng is C1-close to N when g is C1-close to f . In general, this
stronger assumption is not any more satisfied by Ng.

The above result is analogous to Theorem 2.1, except that we do not
obtain any uniqueness statement. One can only say that for all g ∈ B, g has
at least one invariant submanifold Ng contained in the maximal invariant
subset of B. We will give below examples for which uniqueness fails, and as
we already explained, the uniqueness property of Theorem 2.1 is known to
be characteristic of normal hyperbolicity.

4. Let us show that this generalisation is not free by giving some examples
where Theorem 2.1 fails, whereas Theorem 3.1 applies.

The most simple example is when the submanifold has dimension zero,
that is when it is a fixed point. Consider the map f : R2 → R

2 defined by

f(x, y) = (x− x3, 2y), (x, y) ∈ R
2

which is a diffeomorphism from a neighbourhood of the origin. The origin is
a fixed point, which is not hyperbolic since the differential at this point has
one eigenvalue equal to one. Hence we cannot apply Theorem 2.1. However,
the fixed point is topologically hyperbolic: for V = R

2, if Bs = [−δ, δ]×{0}
and Bu = {0} × [−δ, δ] for δ > 0, then:

B = [−δ, δ]2, f(B) = [−δ + δ3, δ − δ3]× [−2δ, 2δ].

Hence condition (1′) is easily seen to be satisfied for any 0 < δ < 1. More-
over, the coordinates axes are invariant subspaces and, with respect to the
Euclidean scalar product, the cone condition (2′) is plainly satisfied. Then
Theorem 3.1 gives the existence of at least one topologically hyperbolic fixed
point in B, for any small C1-perturbation of f . It is very easy to see on
examples that the fixed point is in general non-unique, and moreover it can
be non-isolated. Let us also add that our result not only give the existence of
a topologically hyperbolic fixed point, but also the existence of local stable
and unstable manifolds.
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Now a slightly less trivial example, when the submanifold is not reduced
to a point, can be constructed as follows. Consider the circle diffeomorphism
b : T → T, T = R/2πZ, defined by

b(θ) = θ − α sin θ, 0 < α < 1.

It has exactly two fixed points, θ = 0 and θ = π which are respectively
attracting (b′(0) = 1− α) and repelling (b′(π) = 1 + α). All other points in
T are asymptotic to 0 (respectively π) under positive (respectively negative)
iterations. Consider a map f which is a skew-product on R

2 over b, of the
form

f : T× R
2 → T×R

2, f(θ, x, y) = (b(θ), f s
θ (x), f

u
θ (y)).

We assume that for some β with α < β < 1,

(f s
0 , f

u
0 )(x, y) = ((1− β)x, y + y3), (f s

π, f
u
π )(x, y) = (x− x3, (1 + β)y),

and we extend f s
θ and fu

θ for θ ∈ T as follows: for every 0 < δ < 1 and
θ ∈ T, f s

θ and (fu
θ )

−1 fix 0 and send [−δ, δ] into (−δ, δ) (in particular, f
leaves invariant the circle T ≃ T × {(0, 0)}), and we also ask the invariant
splitting T(θ,0,0)(T×R

2) = TθT⊕Rx⊕Ry to be dominated. Put V = T×R
2,

Bs = T × [−δ, δ] × {0}, Bu = T × {0} × [−δ, δ] and so B = T × [−δ, δ]2,
for some δ > 0. Then condition (1′) is clearly satisfied. Moreover, by the
domination hypothesis, condition (2′) is also satisfied with respect to the
canonical Riemannian metric. Thus T is topologically normally hyperbolic
but not normally hyperbolic. Therefore the invariant circle persists under
small C1-perturbations of f .

The examples we described above seem rather artificial. However, more
complicated examples with a similar flavour do appear naturally in celestial
mechanics (see for instance [McG73] or [Mos01]). We hope that our method
will be useful in such situations.

5. To conclude, let us point out that one can easily give examples of
persistent submanifolds which are not topologically normally hyperbolic. A
simple example is given by the map

f(x, y) = (x− x3, y + y3), (x, y) ∈ R
2,

which fixes the origin. Cone condition (2′) is not satisfied, so our theorem
cannot be applied. However, the origin is an isolated fixed point which has
a non-zero index, hence by index theory (see [KH97], section 8.4), this fixed
point persists under C0-perturbations.

In general, we ask the following question:

Question 1. For r ≥ 1, under which assumptions does an invariant closed
Cr-submanifold persist under small Cr-perturbations ?

For an isolated fixed point, index theory provides a good answer, but in
general this seems quite difficult. We hope our work could be useful towards
such a general answer.
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4 Proof of Theorem 2.1 and Theorem 3.1

This section is devoted to the proof of both Theorem 2.1 and Theorem 3.1,
but first we recall some useful facts.

1. To our knowledge, all the previous proofs of invariant manifolds theorems
use the contraction principle (or the implicit function theorem) in a suitable
Banach space. Here we shall only rely on Schauder’s fixed point theorem
(see [GD03] for a proof).

Theorem 4.1 (Schauder). Let Γ be a Banach space, K ⊆ Γ a compact
convex subset and F : K → K a continuous map. Then F has a fixed point.

In fact, the hypotheses can be weakened as follows: Γ can be replaced by
a locally convex topological vector space, and K needs not to be compact as
long as its image by F is relatively compact in K. However, such a greater
generality will not be needed here.

2. Schauder’s fixed point theorem will be used to prove the existence of
an invariant submanifold, but a priori the submanifold is not continuously
differentiable. For these reasons, let us say that a subset of a smooth mani-
fold is a Lipschitz submanifold of dimension n if it is locally diffeomorphic
to the graph of a Lipschitz map defined on an open set of Rn.

Then, to decide whether a Lipschitz submanifold is differentiable, we will
use the following notion of tangent cone. Given an arbitrary closed subset
Z ⊆ R

m and z ∈ Z, the tangent cone TCzZ of Z at z is the set of vectors
v ∈ TzR

m which can be written as

v = α lim
n→+∞

z − zn
||z − zn||

, α ∈ R,

for some sequence zn ∈ Z \ {z} converging to z. This definition is clearly
independent of the choice of a norm. Also, it readily extends when R

m

is replaced by the m-dimensional manifold M , choosing a local chart and
then checking the definition is indeed independent of the local chart used.
Note that for z ∈ M , TCzZ is always a subset of TzM . Of course, if Z
is a differentiable n-dimensional submanifold, then for all z ∈ Z, TCzZ is
a vector subspace as it coincides with the tangent space TzZ. In the case
where Z is a Lipschitz submanifold, then some converse statement holds
true.

Indeed, let s : Rn → R
d be a continuous function, Z = Gr(s) ⊆ R

n ×R
d

and z = (x, s(x)) with x ∈ R
n. Under those assumptions, if TCzZ is

contained in a n-dimensional subspace Dz of Rn × R
d which is transverse

to {0} × R
d, then Dz is the graph of a linear map Lz,s : Rn → R

d and we
can easily prove (see [Fle80] for instance) that s is in fact differentiable at
x, with Txs = Lz,s. Moreover, if s is Lipschitz, then the assumption that
Dz is transverse to {0} × R

d is automatic, and this immediately gives the
following:
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Lemma 4.2. Let Z be a Lipschitz submanifold of dimension n. If for every
z ∈ Z, the tangent cone TCzZ is contained in an n-dimensional space Dz,
then Z is a differentiable submanifold with TzZ = Dz. If moreover z 7→ Dz

is continuous, then Z is of class C1.

3.

Proof of Theorem 3.1. For a clearer exposition, we will first prove the theo-
rem when N satisfies a simple geometric model and is topologically normally
contracted, that is V = N ×R

s. The main ideas are already present in this
simple situation. In the general case, where N satisfies a general geomet-
ric model and is topologically normally hyperbolic, similar arguments will
enable us to construct local stable and unstable manifolds and show their
persistence. Then the invariant submanifold will be their transverse inter-
section. The proof is divided into three steps. The first two steps show
the existence and the smoothness of the invariant submanifold in the simple
case. The last step is devoted to the general case.

Step 1: existence.

Recall that Bs denotes a compact convex neighbourhood of 0 in R
s and

f is a diffeomorphism from B = N × Bs onto its image in V = N × R
s.

A Riemannian metric on V is given such that conditions (1′) and (2′) are
satisfied. As ∂uB is empty, condition (1′) is equivalent to

f(B) ⊆ B̊. (4)

Indeed, an easy connectedness argument implies property (4): since f(B)∩
∂B = ∅, the set f(B) ∩ B = f(B) ∩ B̊ is both open and closed for the
topology induced on f(B), moreover it is non-empty (it contains N which
is invariant by f). As f(B) is connected, it follows that f(B) ∩ B̊ = f(B)
and therefore f(B) ⊆ B̊.

Let us note that properties (4) and (2′) remain true if we replace f by a
C1-embedding g which is C1-close to f . In other words, there exists a small
neighbourhood B of f in Emb1(B,V ) such that for any g ∈ B,

g(B) ⊆ B̊, Tzg(C
s
z ) ⊆ C̊s

g(z) ∪ {0}, z ∈ B. (5)

It sounds natural to consider the set of closed n-dimensional C1-submanifolds
Ñ , contained in B and with a tangent bundle TÑ contained in Cs. Indeed,
by (5), any C1-diffeomorphism g ∈ B sends this set into itself and the ex-
istence of a fixed point for this action of g would give the desired invariant
submanifold. Nevertheless, this set lacks compactness.

Therefore, we consider the set S of Lipschitz closed n-dimensional sub-
manifolds Ñ , contained in B and with a tangent cone TCÑ contained in
Cs. The action of g ∈ B on this set is

G : S → S, G(Ñ ) = g(Ñ).

11



If Ñ is a Lipschitz, closed submanifold of dimension n, then so is g(Ñ ). By
the property (5), the map G is well-defined.

To apply Schauder’s fixed point theorem, we need to exhibit a linear
structure and to do so we will restrict the map G to a proper G-invariant sub-
set of S which, roughly speaking, consists of Lipschitz submanifolds which
are graphs over N .

Let Γ be the space of continuous sections of the trivial vector bundle
N ×R

s → N . Any continuous section σ ∈ Γ is of the form σ(x) = (x, s(x)),
for a continuous function s : N → R

s. Equipped with the C0-norm, Γ is a
Banach space. Let us define the Lipschitz constant of a section σ ∈ Γ at
x ∈ N by

Lipx(σ) = lim sup
y→x, y∈N\{x}

||s(y)− s(x)||x
d(y, x)

.

It is not hard to check that for σ ∈ Γ, σ(N) belongs to S if and only if σ(x)
belongs to Bs and Lipx(σ) ≤ 1 for every x ∈ N . So we consider the subset

K = {σ ∈ Γ | ∀x ∈ N, σ(x) ∈ Bs, Lipx(σ) ≤ 1}.

This subset K is convex, and it is compact by the Arzelà-Ascoli theorem.
Let us show that for any σ ∈ K, G(σ(N)) = σ̃(N) for some other σ̃ ∈ K.

As we already know that σ(N) ∈ S for σ ∈ K, it remains to show that G
preserves this graph property, and to do so we will restrict B to a connected
neighbourhood of f . Indeed, by the cone condition, for every x ∈ N , the
plane Fx = {x} × R

s is a manifold which intersects transversally any C1-
manifold of S. Thus it intersects transversally G(σ′(N)), for every g ∈ B and
σ′ ∈ K of class C1. By connectedness and transversality, the intersection
G(σ′(N)) ∩ Fx is a unique point, since it is the case for g = f and σ′ = 0.
Now for any σ ∈ K, we can approximate σ by a C1-section σ′ ∈ K in the
C0-topology. This implies that, for any g ∈ B, G(σ(N)) is close to G(σ′(N))
for the Hausdorff topology, and by the cone condition, one can check that
G(σ(N))∩Fx remains close to G(σ′(N))∩Fx, for every x ∈ N . Since we know
that the latter set is reduced to a point, G(σ(N))∩Fx has to be reduced to a
point too. This shows that G(σ(N)) is still a graph, that is G(σ(N)) = σ̃(N)
for some other σ̃ ∈ K.

Therefore G induces a map on K, which is obviously continuous, and as
K is compact and convex, by Theorem 4.1 this induced map has a fixed point
σg. Then Ng = σg(N) is a n-dimensional Lipschitz submanifold, contained
in S and invariant by g.

Step 2: smoothness.

So far we have shown the existence of a Lipschitz invariant submanifold
Ng. Let us prove its differentiability. The cone condition implies that for
any z in the maximal invariant subset of B,

Dz =
⋂

k≥0

Tg−k(z)g
k(Cs

g−k(z)) ⊆ Cs
z

12



is a n-dimensional subspace of TzM (see [New04] for instance). The invari-
ance of Ng implies the invariance of its tangent cone under the tangent map
Tg and therefore

TCzNg =
⋂

k≥0

Tg−k(z)g
k(TCg−k(z)Ng).

By construction, TCNg ⊆ Cs, and this implies TCNg ⊆ D. By Lemma 4.2,
the submanifold Ng is differentiable, with TzNg = Dz for z ∈ Ng.

Let us prove that Ng is continuously differentiable. Given a convergent
sequence zn → z in Ng, we need to show that Dzn = TznNg converges
to Dz = TzNg. By compactness of the Grassmannian, it is equivalent to
prove that Dz is the only accumulation point of Dzn . So let D′

z be an
accumulation point of Dzn . By continuity of Cs

z , D
′
z is included in Cs

z . For
every k ≥ 0, by continuity of Tg−k, Tzg

−k(D′
z) is also an accumulation point

of Tzng
−k(Dzn) = Tg−k(zn)Ng which is then included in Cs

g−k(z)
for the same

reasons. Thus D′
z is included in

⋂

k≥0 Tg−k(z)g
k(Cs

g−k(z)
) = Dz, and since

they have the same dimension, we conclude that D′
z = Dz. Therefore Ng is

continuously differentiable.

Step 3: general case.

Now let us return to the general case where N is topologically normally
hyperbolic, and let us work with the general geometric model

B = Bu ⊕Bs ⊂ V = V u ⊕ V s → N.

A horizontal linear distribution H for π : V → N and a Riemannian metric
on V are fixed, and conditions (1′) and (2′) are satisfied.

We recall that topological normal hyperbolicity is an open condition on
the elements involved. Therefore, for every g in a neighbourhood B of f ,
condition (1′) gives

g(B) ∩ ∂sB = ∅, B ∩ g(∂uB) = ∅, (6)

and the cone condition (2′) gives

Tzg(C
s
z ) ⊆ C̊s

g(z) ∪ {0}, Cu
g(z) ⊆ Tzg(C̊

s
z ) ∪ {0}, (7)

for every z ∈ B.
As before, we will only use properties (6) and (7). Let Su be the set

of Lipschitz, compact (n + u)-dimensional submanifolds Ñu, contained in
B, with a topological boundary contained in ∂uB, and with a tangent cone
TCÑu contained in Cs. For convenience, we add the empty set to Su. Now
for g ∈ B, we put

Gu : Su → Su, Gu(Ñu) = g(Ñu) ∩B.

13



If Gu(Ñu) is empty, then the map is trivially well-defined at Ñu. Otherwise,
Gu(Ñu) is a Lipschitz and compact (n + u)-dimensional. By (7), if the
tangent cone of Ñu is contained in Cs, then the same holds true for Gu(Ñu).
So to show that Gu(Ñu) is well-defined we only need to check the boundary
condition, and this will be a consequence of (6). Note that the boundary
of Gu(Ñu) is the union of g(∂Ñu) ∩ B and g(Ñu) ∩ ∂B. Since ∂Ñu ⊆ ∂uB
and g(∂uB)∩B = ∅, then g(∂Ñu)∩B is empty so the boundary of Gu(Ñu)
actually reduces to g(Ñu)∩∂B. As g(B)∩∂sB = ∅, the boundary of Gu(Ñu)
is included in ∂uB. Therefore Gu is a well-defined map.

Consider the bundle πu : V s ⊕ Bu → Bu, whose fibre at ζ ∈ Bu is the
s-dimensional affine subspace Fζ = {v + ζ | v ∈ V s

π(ζ)} of V s
π(ζ) ⊕ V u

π(ζ).
Let us denote by Γu the associated space of continuous sections, which is a
Banach space, endowed with the C0-norm. Recall that the vector bundle
π : V s ⊕ V u → N is equipped with a linear horizontal distribution H, and
any x = π(z) ∈ N is contained in a local trivialisation W ⊆ N such that

φ : π−1(W ) → W × R
u × R

s

is a diffeomorphism satisfying Tzφ(Hz) = TxW × {0}. Any section σu ∈ Γu

satisfies, for ζ ∈ Bu with π(ζ) ∈ W , φ ◦ σu(ζ) = (ζ, s(ζ)) with s : Bu → R
s

a continuous function. Let us define the Lipschitz constant of an element
σu ∈ Γu at ζ ∈ Bu by

Lipζ(σ
u) = lim sup

ξ→ζ, ξ∈Bu\{ζ}

||s(ξ)− s(ζ)||ζ
d(ξ, ζ)

.

It is not hard to check that for σu ∈ Γu, σu(Bu) belongs to Su if and only
if σu(ζ) belongs to Bζ = {v + ζ | v ∈ Bs

π(ζ)} and Lipζ(σ
u) ≤ 1 for every

ζ ∈ Bu. So we consider the subset

Ku = {σu ∈ Γu | ∀ζ ∈ Bu, σu(ζ) ∈ Bζ , Lipζ(σ
u) ≤ 1}.

This subset is compact by the Arzelà-Ascoli theorem, and it is also convex
(the linearity of the horizontal distribution, that we used here through the
existence of a distinguished local trivialisation, is necessary to obtain the
convexity).

By the boundary condition and the transversality given by cone condi-
tion (7), the cardinality of f(Bu) ∩ Fζ does not depend on ζ ∈ B̊u. When

ζ lies in N ⊂ B̊u, this cardinality is at least one since f(Bu) contains
N = f(N). For every ζ ∈ V u, the intersection of Fζ with N is at most
one point, so by transversality, it is also the case for the intersection with a
small connected neighbourhood of N in f(Bu). By enlarging such a neigh-
bourhood, transversality implies that Fζ ∩ f(Bu) is at most one point, for
ζ ∈ V u. Therefore Fζ ∩ f(Bu) is exactly one point, for ζ ∈ Bu. This proves
that Gu(σu(Bu)) is still a graph over Bu, for g = f and σu = 0. Now a
similar argument as before shows that Gu induces a continuous map on Ku.
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Hence we can repeat the first two steps we described above, and we find
that Gu has a fixed point Nu

g , which is the graph of a C1-section σu
g : Bu →

Bu ⊕ Bs. The submanifold Nu
g is a local unstable manifold, and since it is

a fixed point of Gu, it is locally invariant in the sense that g(Nu
g )∩B = Nu

g .
Obviously, using Cu and replacing g by g−1, we can define another set

Ss and a map Gs : Ss → Ss which has a fixed point N s
g , given by the graph

of a C1-section σs
g : Bs → Bu ⊕ Bs. The submanifold N s

g is a local stable
manifold, and it is locally invariant in the sense that g−1(N s

g ) ∩B = N s
g .

The transverse intersection Ng = Nu
g ⋔ N s

g is an n-dimensional closed
submanifold, invariant by g and topologically normally hyperbolic with the
same geometric model. This accomplishes the proof.

4.

Proof of Theorem 2.1. The proof is divided into two steps. In the first step,
we will construct a geometric model for normally hyperbolic submanifolds to
show that they are topologically normally hyperbolic. Using Theorem 3.1,
this will immediately give us the existence and smoothness of the invariant
submanifold. We shall also notice that an arbitrarily small geometric model
can be constructed, so that in addition the invariant submanifold will be
C1-close to the unperturbed submanifold. Then, in the second step, we will
fully use the hypotheses of normal hyperbolicity to prove that the invariant
submanifold is uniformly locally maximal.

Step 1: existence and smoothness.

First it is enough to consider the case where N is a smooth submanifold
of M . Indeed, there exists a C1-diffeomorphism φ of M such that φ(N) is a
smooth submanifold of M (see [Hir76], Theorem 3.6). The resulting metric
on M is then only C1, but replacing it by a smooth approximation, the sub-
manifold φ(N), which is invariant by φfφ−1, remains normally hyperbolic
for this smooth metric (up to taking λ slightly larger).

So from now N is assumed to be smooth. By definition, there is a
continuous, Tf -invariant splitting TN ⊕Es⊕Eu of TM over N . The plane
field TN is smooth, but Es and Eu are in general only continuous, so we
regard smooth approximations V s and V u of them. In particular the sum
TN ⊕V s⊕V u is direct and equal to the restriction of TM to N . Note that
V s and V u are no longer Tf -invariant. However, given γ > 0, by taking V s

and V u sufficiently close to Es and Eu, if we define

χu
x = {v = v1 + v2 ∈ TxM | v1 ∈ TxN ⊕ V s

x , v2 ∈ V u
x , ‖v2‖x ≤ γ‖v1‖x},

χs
x = {v = v1 + v2 ∈ TxM | v1 ∈ TxN ⊕ V u

x , v2 ∈ V s
x , ‖v2‖x ≤ γ‖v1‖x},

then the following cone property is satisfied for x ∈ N :

Txf(χ
s
x) ⊂ χ̊s

f(x) ∪ {0}, χu
f(x) ⊂ Txf(χ̊

u
x) ∪ {0}. (8)
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The plane fields V s and V u define a smooth vector bundle V = V s ⊕
V u → N of dimensionm such that the fibre at x ∈ N is the vector space V s

x⊕
V u
x . We identify the zero section of this bundle to N . Since N is compact,

by the tubular neighbourhood theorem, there exits a diffeomorphism Ψ of
V onto an open neighbourhood O of N in M which is the identity when
restricted to the zero section. Let Bs → N and Bu → N be two bundles
whose fibres Bs

x and Bu
x at x ∈ N , are convex, compact neighbourhoods

of 0 in V s
x and V u

x . Let B = Bs ⊕ Bu, and define Ψ(B) = U which is
a compact neighbourhood of N in M , included in O. We consider the
Riemannian metric on V obtained by pulling-back the restriction to O of
the Riemannian metric on M .

Let us fix a linear horizontal distribution (Hz)z∈V s⊕V u , and consider the
following cone fields over V :

Cu
z = {v = v1 + v2 ∈ TzV | v1 ∈ Hz ⊕ V s

x , v2 ∈ V u
x , ‖v2‖z ≤ γ‖v1‖z},

Cs
z = {v = v1 + v2 ∈ TzV | v1 ∈ Hz ⊕ V u

x , v2 ∈ V s
x , ‖v2‖z ≤ γ‖v1‖z},

for any z ∈ V and x = π(z) ∈ N . Restricting B if necessary, cone prop-
erty (8) implies that f ′ = Ψ−1fΨ satisfies condition (2′). Indeed, by rescal-
ing the metric, we can define exactly the same cone fields with γ = 1.
Furthermore, we can choose this metric such that every vector in the com-
plement of χs

x (respectively χu
x) is contracted by Txf (respectively by Txf

−1).
Then it is easy to see that for B small enough, condition (1′) is also satisfied.

Therefore a normally hyperbolic submanifold is topologically normally
hyperbolic, and Theorem 3.1 can be applied: there exists a neighbourhood B
of f ′ in Emb1(B,V ) such that any g′ ∈ B leaves invariant and is topologically
normally hyperbolic at a C1-submanifold Ng′ , diffeomorphic to N . This
gives us a neighbourhood U of f in Diff1(M) such that any g ∈ U leaves
invariant and is topologically normally hyperbolic at a C1-submanifold Ng,
diffeomorphic to N . Moreover, Ng ⊆ U and TNg ⊆ TΨ(Cs∩Cu), and since
here one has the freedom to choose U and Cs∩Cu arbitrarily small (that is,
U and γ > 0 can be taken arbitrarily small), Ng is C

1-close to N . Moreover,
it is easy to check that since N is normally hyperbolic, then Ng is not only
topologically normally hyperbolic but also normally hyperbolic.

Step 2: uniqueness.

Now it remains to show that Ng =
⋂

k∈Z g
k(U). Recall that Ng =

Nu
g ∩ N s

g , where Nu
g and N s

g are respectively the local unstable and stable

manifolds. It is enough to show that Nu
g =

⋂

k≥0 g
k(U), since an analogous

argument will show that N s
g =

⋂

k≤0 g
k(U) and so that Ng =

⋂

k∈Z g
k(U).

So let us prove that Nu
g =

⋂

k≥0 g
k(U) which is of course equivalent to

Nu
g′ =

⋂

k≥0 g
′k(B), with g′ = Ψ−1gΨ. The inclusion ⊆ is obvious. For the

other one, take z ∈
⋂

k≥0 g
′k(B). Then, for every k ≥ 0, g′−k(z) belongs to
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B. The point z belongs to Fζ = {v + ζ | v ∈ V s
π(ζ)}, for a ζ ∈ Bu. The disk

Fζ has its tangent space in the complement of C̊s. By stability of Cs under

Tg′, the disk g′−1(Fζ) has also its tangent space in the complement of C̊s.
By condition (1′), this disk does not intersect ∂uB, and by (2′), it comes that
F 1
ζ = B∩g′−1(Fζ) is connected. As N

u
g′ contains g

′−1(Nu
g′) and Fζ intersects

Nu
g′ , the submanifold F 1

ζ contains both g′−1(z) and a point of Nu
g′ . Applying

the same argument k times, it comes that the preimage F k
ζ of Fζ by (g′|B)

k

is a disk with tangent space in the complement of C̊s, intersecting Nu
g′ and

containing g′−k(z). Thus the diameter of F k
ζ is bounded by a constant c > 0

which depends only on γ and the diameter of Bs
x, x ∈ N .

As Ng′ is normally hyperbolic, the vectors in the complement of C̊s are
contracted by an iterate of Tg′. Therefore, for B and B sufficiently small,
F k
ζ is contracted by g′k. Letting k goes to infinity, the distance between z

and Ng′ goes to zero and hence z ∈ Ng′ . This ends the proof.
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