Kernel density estimation for stationary random fields
Résumé
In this paper, under natural and easily verifiable conditions, we prove the $\mathbb{L}^1$-convergence and the asymptotic normality of the Parzen-Rosenblatt density estimator for stationary random fields of the form $X_k = g\left(\varepsilon_{k-s}, s \in \Z^d \right)$, $k\in\Z^d$, where $(\varepsilon_i)_{i\in\Z^d}$ are i.i.d real random variables and $g$ is a measurable function defined on $\R^{\Z^d}$. Such kind of processes provides a general framework for stationary ergodic random fields. A Berry-Esseen's type central limit theorem is also given for the considered estimator.
Fichier principal
EL-MACHKOURI__Kernel_density_estimation_for_random_fields.pdf (281.48 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...