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Introduction and main results

Let (X i ) i∈Z be a stationary sequence of real random variables defined on a probability space (Ω, F, P) with an unknown marginal density f . The kernel density estimator f n of f introduced by Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] and Parzen [START_REF] Parzen | On the estimation of a probability density and the mode[END_REF] is defined for all positive integer n and any real x by

f n (x) = 1 nb n n i=1 K x -X i b n
where K is a probability kernel and the bandwidth b n is a parameter which converges slowly to zero such that nb n goes to infinity. The literature dealing with the asymptotic properties of f n when the observations (X i ) i∈Z are independent is very extensive (see Silverman [START_REF] Silverman | Density Estimation for Statistics and Data Analysis[END_REF]). Parzen [START_REF] Parzen | On the estimation of a probability density and the mode[END_REF] proved that when (X i ) i∈Z are independent and identically distribut (i.i.d) and the bandwidth b n goes to zero such that nb n goes to infinity then (nb n ) 1/2 (f n (x 0 ) -Ef n (x 0 )) converges in distribution to the normal law with zero mean and variance f (x 0 ) R K 2 (t)dt. Under the same conditions on the bandwidth, this result was extended by Wu an Mielniczuk [START_REF] Wu | Kernel density estimation for linear processes[END_REF] for causal linear processes with i.i.d.

innovations and by Dedecker and Merlevède [START_REF] Dedecker | Necessary and sufficient conditions for the conditional central limit theorem[END_REF] for strongly mixing sequences.

In this paper, we are interested by the kernel density estimation problem in the setting of dependent random fields indexed by Z d where d is a positive integer. The question is not trivial since Z d does not have a natural ordering for d ≥ 2. In recent years, there is a growing interest in asymptotic properties of kernel density estimators for random fields. One can refer for example to Carbon et al. ( [START_REF] Carbon | Kernel density estimation for random fields: the l 1 theory[END_REF], [START_REF] Carbon | Kernel density estimation for random fields[END_REF]), Cheng et al. [START_REF] Cheng | A note on asymptotic normality of kernel estimation for linear random fields on Z 2[END_REF], El

Machkouri [START_REF] Machkouri | Asymptotic normality for the parzen-rosenblatt density estimator for strongly mixing random fields[END_REF], Hallin et al. [START_REF] Hallin | Density estimation for spatial linear processes[END_REF], Tran [START_REF] Tran | Kernel density estimation on random fields[END_REF] and Wang and Woodroofe [START_REF] Wang | On the asymptotic normality of kernel density estimators for causal linear random fields[END_REF]. In [START_REF] Tran | Kernel density estimation on random fields[END_REF], the asymptotic normality of the kernel density estimator for strongly mixing random fields was obtained using the Bernstein's blocking technique and coupling arguments. Using the same method, the case of linear random fields with i.i.d. innovations was handled in [START_REF] Hallin | Density estimation for spatial linear processes[END_REF]. In [START_REF] Machkouri | Asymptotic normality for the parzen-rosenblatt density estimator for strongly mixing random fields[END_REF], the central limit theorem for the Parzen-Rosenblatt estimator given in [START_REF] Tran | Kernel density estimation on random fields[END_REF] was improved using the Lindeberg's method (see [START_REF] Lindeberg | Eine neue Herleitung des Exponentialgezetzes in der Wahrscheinlichkeitsrechnung[END_REF]) which seems to be better than the Bernstein's blocking technique approach. In particular, a simple criterion on the strong mixing coefficients is provided and the only condition imposed on the bandwith is n d b n → ∞ which is similar to the usual condition imposed in the independent case (see Parzen [START_REF] Parzen | On the estimation of a probability density and the mode[END_REF]). In [START_REF] Machkouri | Asymptotic normality for the parzen-rosenblatt density estimator for strongly mixing random fields[END_REF], the regions where the random field is observed are reduced to squares but a carrefull reading of the proof allows us to state that the main result in [START_REF] Machkouri | Asymptotic normality for the parzen-rosenblatt density estimator for strongly mixing random fields[END_REF] still holds for very general regions Λ n , namely those which the cardinality |Λ n | goes to infinity such that |Λ n |b n goes to zero as n goes to infinity (see Assumption (A3) below). In [START_REF] Cheng | A note on asymptotic normality of kernel estimation for linear random fields on Z 2[END_REF], Cheng et al. investigated the asymptotic normality of the kernel density estimator for linear random fields with i.i.d. innovations using a martingale approximation method (initiated by Cheng and Ho [START_REF] Cheng | Central limit theorems for instantaneous filters of linear random fields on Z 2[END_REF]) but it seems that there is a mistake in their proof (see Remark 6 in [START_REF] Wang | On the asymptotic normality of kernel density estimators for causal linear random fields[END_REF]). Since the mixing property is often unverifiable and might be too restrictive, it is important to provide limit theorems for nonmixing and possibly nonlinear random fields. We consider in this work a field (X i ) i∈Z d of identically distributed real random variables with an unknown marginal density f such that

X i = g ε i-s ; s ∈ Z d , i ∈ Z d , (1) 
where (ε j ) j∈Z d are i.i.d. random variables and g is a measurable function defined on R Z d . In the one-dimensional case (d = 1), the class (1) includes linear as well as many widely used nonlinear time series models as special cases. More importantly, it provides a very general framework for asymptotic theory for statistics of stationary time series (see e.g. [START_REF] Wu | Nonlinear system theory: another look at dependence[END_REF] and the review paper [START_REF] Wu | Asymptotic theory for stationary processes[END_REF]).

We introduce the physical dependence measure first introduced by Wu [START_REF] Wu | Nonlinear system theory: another look at dependence[END_REF]. Let (ε ′ j ) j∈Z d be an i.i.d. copy of (ε j ) j∈Z d and consider for all positive integer n the coupled version

X * i of X i defined by X * i = g ε * i-s ; s ∈ Z d where ε * j = ε j 1 1 {j =0} + ε ′ 0 1 1 {j=0} for all j in Z d .
In other words, we obtain X * i from X i by just replacing ε 0 by its copy ε ′ 0 . Let i in Z d and p > 0 be fixed. If X i belongs to L p (that is, E|X i | p is finite), we define the physical dependence measure δ i,p = X i -X * i p where . p is the usual L p -norm and we say that the random field

(X i ) i∈Z d is p-stable if i∈Z d δ i,p < ∞. For d ≥ 2
, the reader should keep in mind the following two examples already given in [START_REF] Machkouri | A central limit theorem for stationary random fields[END_REF] :

Linear random fields: Let (ε i ) i∈Z d be i.i.d random variables with ε i in L p , p ≥ 2.
The linear random field X defined for all i in Z d by

X i = s∈Z d a s ε i-s with (a s ) s∈Z d in R Z d such that i∈Z d a 2 i < ∞ is of the form (1) with a linear functional g. For all i in Z d , δ i,p = |a i | ε 0 -ε ′ 0 p . So, X is p-stable if i∈Z d |a i | < ∞. Clearly, if H is a Lipschitz continuous function, under the above condition, the subordinated process Y i = H(X i ) is also p-stable since δ i,p = O(|a i |).
Volterra field : Another class of nonlinear random field is the Volterra process which plays an important role in the nonlinear system theory (Casti [4], Rugh [START_REF] Rugh | Nonlinear system theory[END_REF]): consider the second order Volterra process

X i = s 1 ,s 2 ∈Z d a s 1 ,s 2 ε i-s 1 ε i-s 2 ,
where a s 1 ,s 2 are real coefficients with a s 1 ,s 2 = 0 if s 1 = s 2 and

(ε i ) i∈Z d are i.i.d. random variables with ε i in L p , p ≥ 2. Let A i = s 1 ,s 2 ∈Z d (a 2 s 1 ,i + a 2 i,s 2 ) and B i = s 1 ,s 2 ∈Z d (|a s 1 ,i | p + |a i,s 2 | p ).
By the Rosenthal inequality, there exists a constant C p > 0 such that

δ i,p = X i -X * i p ≤ C p A 1/2 i ε 0 2 ε 0 p + C p B 1/p i ε 0 2 p .
From now on, for all finite subset Λ of Z d , we denote |Λ| the number of elements in Λ and we observe (X i ) i∈Z d on a sequence (Λ n ) n≥1 of finite subsets of Z d which only satisfies |Λ n | goes to infinity as n goes to infinity. It is important to note that we do not impose any condition on the boundary of the regions Λ n . The density estimator f n of f is defined for all positive integer n and any real x by

f n (x) = 1 |Λ n |b n i∈Λn K x -X i b n
where b n is the bandwidth parameter and K is a probability kernel. Our aim is to provide sufficient conditions for the L 1 -distance between f n and f to converge to zero (Theorem 1) and for (|Λ

n |b n ) 1/2 (f n (x i ) -Ef n (x i )) 1≤i≤k , (x i ) 1≤i≤k ∈ R k , k ∈ N\{0},
to converge in law to a multivariate normal distribution (Theorem 2) under minimal conditions on the bandwidth parameter. We give also a Berry-Esseen's type central limit theorem for the considered estimator (Theorem 3). In the sequel, we denote |i| = max 1≤k≤d |i k | for all i = (i 1 , ..., i d ) ∈ Z d and we denote also δ i for δ i,2 . The following assumptions are required.

(A1) The marginal density function f of each X k is Lipschitz.

(A2) K is Lipschitz, R K(u) du = 1, R u 2 |K(u)| du < ∞ and R K 2 (u) du < ∞. (A3) b n → 0 and |Λ n | → ∞ such that |Λ n |b n → ∞. (A4) i∈Z d |i| 5d 2 δ i < ∞.
Theorem 1 If (A1), (A2), (A3) and (A4) hold, then there exists κ > 0 such that for all integer n ≥ 1,

E R |f n (x) -f (x)| dx ≤ κ b n + 1 |Λ n |b n 2 3
.

(

) 2 
Remark 1. One can optimize the inequality (2) by taking

b n = |Λ n | -1 3 . Then, we obtain E R |f n (x) -f (x)| dx = O |Λ n | -2 9 .
Remark 2. The convergence in probability of R |f n (x)f (x)| dx to 0 was obtained (without rate) by Hallin et al. ([15], Theorem 2.1) for rectangular region Λ n . The authors defined the so-called stability coefficients

(v(m)) m≥1 by v(m) = X 0 -X 0 2 2
where X 0 = E (X 0 |H m ) and H m = σ (ε s , |s| ≤ m). Under minimal conditions on the bandwidth b n , with our notations, their result holds as soon as v(m) = o(m -4d ). Arguing as in the proof of Lemma 5 below, one can relate the stability coefficients with the physical dependence measure ones by the inequality v(m)

≤ C |i|>m δ 2 i , m ≥ 1, C > 0.
In the sequel, we consider the sequence (m n ) n≥1 defined by

m n = max      v n ,      1 b 3 n |i|>vn |i| 5d 2 δ i   1 3d    + 1      (3) 
where v n = b 

m n → ∞, m d n b n → 0 and 1 (m d n b n ) 3/2 |i|>mn |i| 5d 2 δ i → 0.
For all z in R and all i in Z d , we denote

K i (z) = K z -X i b n and K i (z) = E (K i (z)|F n,i ) (4) 
where

F n,i = σ (ε i-s ; |s| ≤ m n ). So, denoting M n = 2m n + 1, (K i (z)) i∈Z d is an M n - dependent random field (i.e. K i (z) and K j (z) are independent as soon as |i -j| ≥ M n ).
Lemma 2 For all p > 1, all x in R, all positive integer n and all

(a i ) i∈Z d in R Z d , i∈Λn a i K i (x) -K i (x) p ≤ 8m d n b n p i∈Λn a 2 i 1/2 |i|>mn δ i,p .
In order to establish the asymptotic normality of f n , we need additional assumptions:

(B1) The marginal density function of each X k is positive, continuous and bounded.

(B2) K is Lipschitz, R K(u) du = 1, R |K(u)| du < ∞ and R K 2 (u) du < ∞. (B3) There exists κ > 0 such that sup (x,y)∈R 2 i∈Z d \{0} f 0,i (x, y) ≤ κ where f 0,i is the joint density of (X 0 , X i ).
Theorem 2 Assume that (A3), (A4), (B1), (B2) and (B3) hold. For all positive integer k and any distinct points x 1 , ..., x k in R,

(|Λ n |b n ) 1/2    f n (x 1 ) -Ef n (x 1 ) . . . f n (x k ) -Ef n (x k )    Law -----→ n→∞ N (0, Γ) (5) 
where Γ is a diagonal matrix with diagonal elements 5) is a classical problem in density estimation theory. Let s ≥ 2 be a positive integer and κ > 0. If the sth

γ ii = f (x i ) R K 2 (u)du. Remark 3. A replacement of Ef n (x i ) by f (x i ) for all 1 ≤ i ≤ k in (
derivative f (s) of f exists such that |f (s) | ≤ κ and the kernel K satisfies R u r K(u)du = 0 for r = 1, 2, ..., s -1 and 0 < R |u| s |K(u)|du < ∞ then |Ef n (x i ) -f (x i )| = O(b s n
) and thus the centering Ef n (x i ) may be changed to f (x i ) without affecting the above result provided that

|Λ n |b 2s+1 n converges to zero. Remark 4. If (X i ) i∈Z d is a linear random field of the form X i = j∈Z d a j ε i-j where (a j ) j∈Z d are real numbers such that j∈Z d a 2 j < ∞ and (ε j ) j∈Z d are i.i.d.

real random variables with zero mean and finite variance then

δ i = |a i | ε 0 -ε ′ 0 2 and Theorem 2 holds provided that i∈Z d |i| 5d 2 |a i | < ∞. For Λ n rectangular, Hallin et al. [14] obtained the same result when |a j | = O (|j| -γ ) with γ > max{d + 3, 2d + 0.5} and |Λ n |b (2γ-1+6d)/(2γ-1-4d) n
goes to infinity. So, in the particular case of linear random fields, our assumption (A4) is more restrictive than the condition obtained by Hallin et al. [START_REF] Hallin | Density estimation for spatial linear processes[END_REF] but our result is valid for a larger class of random fields and under only minimal conditions on the bandwidth (see Assumption (A3)). Finally, for causal linear random fields, Wang and Woodroofe [START_REF] Wang | On the asymptotic normality of kernel density estimators for causal linear random fields[END_REF] obtained also a sufficient condition on the coefficients (a j ) j∈N d for the kernel density estimator to be asymptotically normal. Their condition is less restrictive than the condition

i∈Z d |i| 5d 2 |a i | < ∞ but they assumed also E(|ε 0 | p ) < ∞ for some p > 2.
Now, we are going to investigate the rate of convergence in [START_REF] Chen | Normal approximation under local dependence[END_REF]. For all positive integer n and all x in R, we denote D n (x) = sup t∈R |P (U n (x) ≤ t) -Φ(t)| where Φ is the distribution function of the standard normal law and

U n (x) = |Λ n |b n (f n (x) -Ef n (x)) f (x) R K 2 (t)dt . Theorem 3 Let n in N\{0} and x in R be fixed. Assume that R |K(t)| τ dt < ∞ for some 2 < τ ≤ 3. If there exist α > 1 and p ≥ 2 such that i∈Z d |i| dα δ i,p < ∞ then there exists a constant κ > 0 such that D n (x) ≤ κ|Λ n | -θ where θ = θ(α, τ, p) = 1 2 - 1 τ 3p(1 -τ ) + 2p(α -1) (τ -1)(p + 1) + p(α -1)
.

Remark 5. If τ = 3, p = 2 and i∈Z d |i| dα δ i < ∞ for some α > 4 then

D n (x) ≤ κ|Λ n | -θ(α) where θ(α) = 2α -8 3(4 + 2α) -----→ α→∞ 1 3 .

Numerical illustration

In this section, we give some simulations with a view to illustrate the results given in this paper. We assume d = 2 and we consider the autoregressive random field

(X i,j ) (i,j)∈Z 2 defined by X i,j = αX i-1,j + βX i,j-1 + ε i,j (6) 
where α = 0.2, β = 0.7 and (ε i,j ) (i,j)∈Z 2 are iid random variables uniformly distributed over the intervalle [-5, 5]. Since |α|+|β| < 1, the equation (6) has a stationary solution X i,j (see [START_REF] Kulkarni | Estimation of parameters of a two-dimensional spatial autoregressive model with regression[END_REF]) defined by

X i,j = k 1 ≥0 k 2 ≥0 k 1 + k 2 k 1 α k 1 β k 2 ε i-k 1 ,j-k 2 (7) 
and each X i,j is uniformly distributed over the intervalle [-5γ, 5γ] with

γ = k 1 ≥0 k 2 ≥0 k 1 + k 2 k 1 α k 1 β k 2 = 1 1 -(α + β) = 10.
We simulate the ε i,j 's over the rectangular grid [0, 2t] 2 ∩ Z 2 where t is a positive integer and the data X i,j over the grid Λ t = [t + 1, 2t] 2 ∩ Z 2 following (7). We take the data X i,j for (i, j) in the region Λ t as our data set and we calculate from this data set the kernel density estimator

ft (x) = 1 t 2 × b t (i,j)∈Λt K x -X i,j b t ( 8 
)
where x is fixed in R, b t is the bandwith parameter and K is the Epanachnikov kernel defined by K(s) and we obtain the following histogram (see figure 1) which seems to fit well to the target distribution, that is the standard normal law N (0, 1). In the simulation given in Figure 1, we fixed the bandwith b 20 = 0.7 arbitrarily since we do not investigate in this work any procedure for a data-driven choice of the bandwith parameter. Such a study is an important task and will be done in a forthcoming paper.

= 3 4 (1 -s 2 ) if s ∈] -1, 1[ and K(s) = 0 if s / ∈] -

Proofs

The proof of all lemmas of this section are postponed to the appendix. In the sequel, the letter κ denotes a positive constant which the value is not important.

Proof of Theorem 1

For all positive integer n, denote

J n = R |f n (x) -f (x)| dx. For all real A ≥ 1, we have J n = J n,1 (A) + J n,2 (A) where J n,1 (A) = |x|>A |f n (x) -f (x)| dx and J n,2 (A) = |x|≤A |f n (x) -f (x)| dx. Moreover EJ n,1 (A) ≤ |x|>A E|f n (x)|dx + 1 A 2 R x 2 f (x)dx and |x|>A E|f n (x)|dx ≤ |x|>A R |K(t)|f (x -b n t)dtdx = |t|> A 2 |K(t)| |x|>A f (x -b n t)dxdt + |t|≤ A 2 |K(t)| |x|>A f (x -b n t)dxdt ≤ |t|> A 2 |K(t)| |y+bnt|>A f (y)dydt + |t|≤ A 2 |K(t)| |y|>A(1-bn 2 )
f (y)dydt

≤ 4 A 2 R t 2 |K(t)|dt + 4 A 2 R |K(t)|dt R y 2 f (y)dy.
Consequently, we obtain

EJ n,1 (A) ≤ κ A 2 . (9) 
Now, J n,2 (A) ≤ J

n,2 (A) + J

n,2 (A) where

J (1) n,2 (A) = |x|≤A |f n (x) -Ef n (x)| dx and J (2) n,2 (A) = |x|≤A |Ef n (x) -f (x)| dx. Since |Ef n (x) -f (x)| = R K(t) (f (x -b n t) -f (x)) dt ≤ R |K(t)| |f (x -b n t) -f (x)| dt ≤ κb n R |t||K(t)|dt, we obtain J (2) n,2 (A) ≤ κAb n . ( 10 
)
Keeping in mind the notation (4) and denoting

f n (x) = 1 |Λn|bn i∈Λn K i (x), we have J (1) n,2 (A) ≤ I n,1 (A) + I n,2 (A) where I n,1 (A) = |x|≤A |f n (x) -f n (x)| dx and I n,2 (A) = |x|≤A |f n (x) -Ef n (x)| dx.
By Lemma 2, we have

f n (x) -f n (x) 2 ≤ κ |i|>mn |i| 5d 2 δ i |Λ n |b n (m d n b n ) 3/2 .
Applying Lemma 1, we obtain

EI n,1 (A) ≤ κA |Λ n |b n . (11) 
Now,

f n (x) -Ef n (x) 2 2 equals to 1 |Λ n | 2 b n     |Λ n |E Z 2 0 (x) + j∈Z d \{0} |j|<Mn |Λ n ∩ (Λ n -j)|E Z 0 (x)Z j (x)     (12)
where we recall that

Z i (x) = 1 √ bn K i (x) -EK i (x) and M n = 2m n + 1. Lemma 3 Let x, s and t be fixed in R. Then E Z 2 0 (x) converges to f (x) R K 2 (u)du and sup i∈Z d \{0} E|Z 0 (s)Z i (t)| = o(M -d n ).
Combining [START_REF] Machkouri | A central limit theorem for stationary random fields[END_REF] and Lemma 3, we derive

f n (x) -Ef n (x) 2 2 = O (|Λ n |b n ) -1 . Hence, EI n,2 (A) ≤ κA |Λ n |b n . (13) 
Combining ( 9), ( 10), ( 11) and ( 13), we obtain

EJ n ≤ κ 1 A 2 + A b n + 1 |Λ n |b n .
Optimizing in A, we derive [START_REF] Carbon | Kernel density estimation for random fields: the l 1 theory[END_REF]. The proof of Theorem 1 is complete.

Proof of Theorem 2

Without loss of generality, we consider only the case k = 2 and we refer to x 1 and x 2 as x and y (x = y). Let λ 1 and λ 2 be two constants such that λ 2 1 + λ 2 2 = 1 and note that

λ 1 (|Λ n |b n ) 1/2 (f n (x) -Ef n (x)) + λ 2 (|Λ n |b n ) 1/2 (f n (y) -Ef n (y)) = i∈Λn ∆ i |Λ n | 1/2 , λ 1 (|Λ n |b n ) 1/2 (f n (x) -Ef n (x)) + λ 2 (|Λ n |b n ) 1/2 (f n (y) -Ef n (y)) = i∈Λn ∆ i |Λ n | 1/2 ,
where

∆ i = λ 1 Z i (x) + λ 2 Z i (y) and ∆ i = λ 1 Z i (x) + λ 2 Z i (y) and for all z in R, Z i (z) = 1 √ b n (K i (z) -EK i (z)) and Z i (z) = 1 √ b n K i (z) -EK i (z)
where K i (z) and K i (z) are defined by (4). Applying Lemma 1 and Lemma 2, we know

that 1 |Λ n | 1/2 i∈Λn ∆ i -∆ i 2 ≤ κ(|λ 1 | + |λ 2 |) (m d n b n ) 3/2 |i|>mn |i| 5d 2 δ i = o(1). (14) 
So, it suffices to prove the asymptotic normality of the sequence |Λ n | -1/2 i∈Λn ∆ i n≥1 . We are going to follow the Lindeberg's type proof of Theorem 1 in [START_REF] Dedecker | A central limit theorem for stationary random fields[END_REF]. We consider the notations

η = (λ 2 1 f (x) + λ 2 2 f (y))σ 2 and σ 2 = R K 2 (u)du. ( 15 
)
Lemma 4 E(∆ 2 0 ) converges to η and sup

i∈Z d \{0} E|∆ 0 ∆ i | = o(M -d n ).
On the lattice Z d we define the lexicographic order as follows: if i = (i 1 , ..., i d ) and j = (j 1 , ..., j d ) are distinct elements of Z d , the notation i < lex j means that either i 1 < j 1 or for some k in {2, 3, ..., d}, i k < j k and i l = j l for 1 ≤ l < k. We let ϕ denote the unique function from {1, ..., |Λ n |} to Λ n such that ϕ(k) < lex ϕ(l) for

1 ≤ k < l ≤ |Λ n |. For all real random field (ζ i ) i∈Z d and all integer k in {1, ..., |Λ n |}, we denote S ϕ(k) (ζ) = k i=1 ζ ϕ(i) and S c ϕ(k) (ζ) = |Λn| i=k ζ ϕ(i)
with the convention S ϕ(0

) (ζ) = S c ϕ(|Λn|+1) (ζ) = 0.
From now on, we consider a field (ξ i ) i∈Z d of i.i.d. standard normal random variables independent of (X i ) i∈Z d . We introduce the fields Y and γ defined for all i in Z d by

Y i = ∆ i |Λ n | 1/2 and γ i = √ ηξ i |Λ n | 1/2
where η is defined by [START_REF] Hallin | Density estimation for spatial processes: the l 1 theory[END_REF]. Note that Y is an M n -dependent random field where M n = 2m n + 1 and m n is defined by (3). Let h be any function from R to R. For

0 < k ≤ l ≤ |Λ n |, we introduce h k,l (Y ) = h(S ϕ(k) (Y ) + S c ϕ(l) (γ)).
With the above convention we have that h k,|Λn|+1 (Y ) = h(S ϕ(k) (Y )) and also h 0,l (Y ) = h(S c ϕ(l) (γ)). In the sequel, we will often write h k,l instead of h k,l (Y ). We denote by B 4 1 (R) the unit ball of C 4 b (R): h belongs to B 4 1 (R) if and only if it belongs to C 4 (R) and satisfies max 0≤i≤4 h (i) ∞ ≤ 1. It suffices to prove that for all h in B 4 1 (R),

E h S ϕ(|Λn|) (Y ) -----→ n→∞ E (h ( √ ηξ 0 )) .
We use Lindeberg's decomposition:

E h S ϕ(|Λn|) (Y ) -h ( √ ηξ 0 ) = |Λn| k=1 E (h k,k+1 -h k-1,k ) . Now, we have h k,k+1 -h k-1,k = h k,k+1 -h k-1,k+1 + h k-1,k+1 -h k-1
,k and by Taylor's formula we obtain

h k,k+1 -h k-1,k+1 = Y ϕ(k) h ′ k-1,k+1 + 1 2 Y 2 ϕ(k) h ′′ k-1,k+1 + R k h k-1,k+1 -h k-1,k = -γ ϕ(k) h ′ k-1,k+1 - 1 2 γ 2 ϕ(k) h ′′ k-1,k+1 + r k where |R k | ≤ Y 2 ϕ(k) (1 ∧ |Y ϕ(k) |) and |r k | ≤ γ 2 ϕ(k) (1 ∧ |γ ϕ(k) |). Since (Y, ξ i ) i =ϕ(k) is inde- pendent of ξ ϕ(k) , it follows that E γ ϕ(k) h ′ k-1,k+1 = 0 and E γ 2 ϕ(k) h ′′ k-1,k+1 = E η |Λ n | h ′′ k-1,k+1
Hence, we obtain

E h(S ϕ(|Λn|) (Y )) -h ( √ ηξ 0 ) = |Λn| k=1 E(Y ϕ(k) h ′ k-1,k+1 ) + |Λn| k=1 E Y 2 ϕ(k) - η |Λ n | h ′′ k-1,k+1 2 + |Λn| k=1 E (R k + r k ) . Let 1 ≤ k ≤ |Λ n | be fixed. Since E|∆ 0 | = O √ b n and ∆ 2 0 b n n≥1 is uniformly integrable, we derive |Λn| k=1 E|R k | ≤ E ∆ 2 0 1 ∧ |∆ 0 | |Λ n | 1/2 = o(1)
and

|Λn| k=1 E|r k | ≤ η 3/2 E|ξ 0 | 3 |Λ n | 1/2 = O |Λ n | -1/2 .
Consequently, we obtain

|Λn| k=1 E (|R k | + |r k |) = o(1)
.

Now, it is sufficient to show lim n→∞ |Λn| k=1 E(Y ϕ(k) h ′ k-1,k+1 ) + E Y 2 ϕ(k) - η |Λ n | h ′′ k-1,k+1 2 = 0. ( 16 
)
First, we focus on

|Λn| k=1 E Y ϕ(k) h ′ k-1,k+1 . Let the sets {V k i ; i ∈ Z d , k ∈ N\{0}} be defined as follows: V 1 i = {j ∈ Z d ; j < lex i} and for k ≥ 2, V k i = V 1 i ∩ {j ∈ Z d ; |i -j| ≥ k}. For all n in N\{0} and all k in {1, ..., |Λ n |}, we define E (n) k = ϕ({1, .., k}) ∩ V Mn ϕ(k) and S Mn ϕ(k) (Y ) = i∈E (n) k Y i .
For all function h from R to R, we define h Mn k-1,l = h S Mn ϕ(k) (Y ) + S c ϕ(l) (γ) . Our aim is to show that

lim n→∞ |Λn| k=1 E Y ϕ(k) h ′ k-1,k+1 -Y ϕ(k) S ϕ(k-1) (Y ) -S Mn ϕ(k) (Y ) h ′′ k-1,k+1 = 0. (17) 
First, we use the decomposition

Y ϕ(k) h ′ k-1,k+1 = Y ϕ(k) h ′ Mn k-1,k+1 + Y ϕ(k) h ′ k-1,k+1 -h ′ Mn k-1,k+1 .
Applying again Taylor's formula,

Y ϕ(k) (h ′ k-1,k+1 -h ′ Mn k-1,k+1 ) = Y ϕ(k) S ϕ(k-1) (Y ) -S Mn ϕ(k) (Y ) h ′′ k-1,k+1 + R ′ k ,
where 

|R ′ k | ≤ 2 Y ϕ(k) S ϕ(k-1) (Y ) -S Mn ϕ(k) (Y ) 1 ∧ |S ϕ(k-1) (Y ) -S Mn ϕ(k) (Y )| . Since (Y i ) i∈Z d is M n -dependent, we have E Y ϕ(k) h ′ Mn k-1,k+1
k | = 0. In fact, considering the sets W n = {-M n + 1, ..., M n -1} d and W * n = W n \{0}, it follows that |Λn| k=1 E|R ′ k | ≤ 2E   |∆ 0 |   i∈W * n |∆ i |     1 ∧ 1 |Λ n | 1/2 i∈W * n |∆ i |     ≤ 2M d n sup i∈Z d \{0} E(|∆ 0 ∆ i |) = o(1)
(by Lemma 4).

In order to obtain ( 16) it remains to control

F 1 = E   |Λn| k=1 h ′′ k-1,k+1 Y 2 ϕ(k) 2 + Y ϕ(k) S ϕ(k-1) (Y ) -S Mn ϕ(k) (Y ) - η 2|Λ n |   .
Applying again Lemma 4, we have

F 1 ≤ E   1 |Λ n | |Λn| k=1 h ′′ k-1,k+1 ∆ 2 ϕ(k) -E(∆ 2 0 )   + η -E ∆ 2 0 + 2 j∈V 1 0 ∩Wn E|∆ 0 ∆ j | ≤ E   1 |Λ n | |Λn| k=1 h ′′ k-1,k+1 ∆ 2 ϕ(k) -E(∆ 2 0 )   + o(1).
So, it suffices to prove that

F 2 = E   1 |Λ n | |Λn| k=1 h ′′ k-1,k+1 ∆ 2 ϕ(k) -E(∆ 2 0 ) 
  goes to zero as n goes to infinity. In fact, we have

F 2 ≤ 1 |Λn| |Λn| k=1 J (1) 
k (n) + J (2) k (n) where J 
(1)

k (n) = E h ′′ Mn k-1,k+1 ∆ 2 ϕ(k) -E ∆ 2 0 = 0 since h ′′ Mn k-1,k+1 and ∆ ϕ(k) are independent. Moreover, J (2) 
k (n) = E h ′′ k-1,k+1 -h ′′ Mn k-1,k+1 ∆ 2 ϕ(k) -E ∆ 2 0 ≤ E         2 ∧ |i|<Mn i =0 |∆ i | |Λ n | 1/2     ∆ 2 0     ≤ 1 |Λ n |b n E     |∆ 0 | b n × |i|<Mn i =0 |∆ 0 ∆ i |     = o(1) since (|∆ 0 | √ b n ) n≥1 is uniformly integrable and |i|<Mn i =0 E|∆ 0 ∆ i | = o(1) by Lemma 4.
The proof of Theorem 2 is complete.

Proof of Theorem 3

Let n be a fixed positive integer and let x be fixed in R. We have

U n (x) = U n (x)+R n (x)
where

U n (x) = |Λ n |b n f n (x) -Ef n (x) f (x) R K 2 (t)dt and R n (x) = |Λ n |b n f n (x) -f n (x) f (x) R K 2 (t)dt . Denote D n (x) = sup t∈R |P(U n (x) ≤ t) -Φ(t)
| and let p ≥ 2 be fixed. Arguing as in Theorem 2.2 in [START_REF] Machkouri | Berry-Esseen's central limit theorem for non-causal linear processes in Hilbert spaces[END_REF], we have

D n (x) ≤ D n (x) + R n p p+1 p . (18) 
Denoting

σ 2 = f (x) R K 2 (t)dt and σ 2 n = E U 2 n , we have D n (x) = sup t∈R |P(U n (x) ≤ t) -Φ(t)| ≤ sup t∈R |P(U n (x) ≤ t) -Φ (t/σ n ) | + sup t∈R |Φ (t/σ n ) -Φ (t) | = sup t∈R |P(U n (x) ≤ tσ n ) -Φ (t) | + sup t∈R |Φ (t/σ n ) -Φ (t) |.
Applying the Berry-Esseen's type theorem for m n -dependent random fields established by Chen and Shao ([5], Theorem 2.6), we obtain

sup t∈R |P(U n (x) ≤ tσ n ) -Φ (t) | ≤ κ R |K(t)| τ f (x -tb n )dt m (τ -1)d n σ τ (|Λ n |b n ) τ 2 -1 . (19) 
Arguing as in Yang et al. ( [START_REF] Yang | Berry-Esséen bound of sample quantiles for φ-mixing random variables[END_REF], p. 456), we have

sup t∈R |Φ (t/σ n ) -Φ (t) | ≤ (2πe) -1 2 (σ n -1) 1 1 σn≥1 + (2πe) -1 2 1 σ n -1 1 1 0<σn<1 ≤ (2πe) -1 2 max |σ n -1|, |σ n -1| σ n } ≤ κ max |σ n -1|, |σ n -1| σ n } × (σ n + 1) ≤ κ|σ 2 n -1|.
So, we derive

D n (x) ≤ κ R |K(t)| τ f (x -tb n )dt m (τ -1)d n σ τ (|Λ n |b n ) τ 2 -1 + κ|σ 2 n -1|. (20) 
Using [START_REF] Machkouri | A central limit theorem for stationary random fields[END_REF], we have also

|σ 2 n -1| ≤ 1 σ 2 E(Z 2 0 (x)) -σ 2 + j∈Z d \{0} |j|<Mn E Z 0 (x)Z j (x) . (21) 
Noting that K 0 (x

) 1 = O(b n ) and K 0 (x) 2 = O( √ b n
) and using the following lemma, Lemma 5 For all p > 1, any positive integer n and any x in R,

K 0 (x) -K 0 (x) p ≤ √ 2p b n |j|>mn δ j,p ,
we obtain

E(Z 2 0 (x)) -E(Z 2 0 (x)) = 1 b n E(K 2 0 (x)) -E(K 2 0 (x)) ≤ 1 b n K 0 (x) 2 K 0 (x) -K 0 (x) 2 ≤ κ b 3/2 n |j|>mn δ j and E(Z 2 0 (x)) -σ 2 = 1 b n E(K 2 0 (x)) -(E(K 0 (x)) 2 -f (x) R K 2 (t)dt ≤ 1 b n E(K 2 0 (x)) -f (x) R K 2 (t)dt + 1 b n (E(K 0 (x)) 2 ≤ R K 2 (v)|f (x -vb n ) -f (x)|dv + O(b n ) ≤ κ b n R |v|K 2 (v)dv + O(b n ) = O(b n ).
Hence,

E(Z 2 0 (x)) -σ 2 ≤ κ b 3/2 n |j|>mn δ j + O(b n ). (22) 
Now, let i = 0 be fixed. We have

E|Z 0 (x)Z i (x)| ≤ 1 b n E|K 0 (x)K i (x)| + 3 b n (E|K 0 (x)|) 2 . ( 23 
)
Moreover, keeping in mind that ||α| -|β|| ≤ |α -β| for all (α, β) in R 2 and applying the Cauchy-Schwarz inequality, we obtain

E|K 0 (x)K i (x)| -E|K 0 (x)K i (x)| ≤ 2 K 0 (x) 2 K 0 (x) -K 0 (x) 2
and applying Lemma 5, we derive

E|K 0 (x)K i (x)| -E|K 0 (x)K i (x)| ≤ κ √ b n |j|>mn δ j . (24) 
Combining ( 23) and ( 24), we have

E|Z 0 (x)Z i (x)| ≤ κ b 3/2 n |j|>mn δ j + 1 b n E|K 0 (x)K i (x)| + 3 b n (E|K 0 (x)|) 2 . ( 25 
)
Using Assumption (B3), we obtain

E K 0 (x)K i (x) = R 2 K x -u b n K x -v b n f 0,i (u, v)dudv ≤ κb 2 n R |K(w)|dw 2 .
Since E|K 0 (x)| = O(b n ), we derive from [START_REF] Wu | Asymptotic theory for stationary processes[END_REF] that

j∈Z d \{0} |j|<Mn E Z 0 (x)Z j (x) ≤ κM d n b 3/2 n |j|>mn δ j + O(M d n b n ). (26) 
Finally, combining [START_REF] Rugh | Nonlinear system theory[END_REF], ( 21), ( 22) and ( 26), for all α > 1, we obtain

D n (x) ≤ κm d(τ -1) n σ τ (|Λ n |b n ) τ 2 -1 + κ m d(α-1) n b 3/2 n |j|>mn |j| dα δ j + O(m d n b n ). (27) 
Since there exist α > 1 and p ≥ 2 such that i∈Z d |i| dα δ i,p < ∞, we derive from Lemma 2 that

R n (x) p ≤ κ √ p σm d(α-1) n b 3/2 n i∈Z d |i| dα δ i,p . (28) 
Combining ( 18), ( 27) and (28), we obtain

D n (x) ≤ κ m d(τ -1) n b n + 1 (|Λ n |b n ) τ 2 -1 + 1 m d(α-1) n b 3/2 n p p+1
(29) for all 2 < τ ≤ 3, all p ≥ 2 and all α > 1 such that i∈Z d |i| dα δ i,p < ∞. Optimizing in m n we derive

D n (x) ≤ κ b θ 1 n b n + 1 (|Λ n |b n ) τ 2 -1 θ 2
where

θ 1 = 3p(1 -τ ) 2(τ -1)(p + 1) + 2p(α -1)
and θ 2 = p(α -1) (τ -1)(p + 1) + p(α -1) .

Finally, choosing b

n = |Λ n | 2 τ -1 , we obtain D n (x) ≤ κ|Λ n | -θ where θ = 1 2 - 1 τ 3p(1 -τ ) + 2p(α -1) (τ -1)(p + 1) + p(α -1)
.

The proof of Theorem 3 is complete.

Appendix

Proof of Lemma 1. We follow the proof by Bosq et al. ( [START_REF] Bosq | Asymptotic normality for density kernel estimators in discrete and continuous time[END_REF], pages 88-89). First, m n goes to infinity since v n = b 

m d n ≥ 1 bn (r (v n )) 1/3 ≥ 1 bn (r (m n )) 1/3 since v n ≤ m n . Finally, we obtain 1 (m d n b n ) 3/2 |i|>mn |i| 5d 2 δ i ≤ r(m n ) -----→ n→∞ 0.
The proof of Lemma 1 is complete.

Proof of Lemma 2. Let p > 1 be fixed. We follow the proof of Proposition 1 in [START_REF] Machkouri | A central limit theorem for stationary random fields[END_REF]. For all i in Z d and all x in R, we denote R i = K i (x) -K i (x). Since there exists a measurable function H such that R i = H(ε i-s ; s ∈ Z d ), we are able to define the physical dependence measure coefficients (δ

(n) i,p ) i∈Z d associated to the random field (R i ) i∈Z d . We recall that δ (n) i,p = R i -R * i p where R * i = H(ε * i-s ; s ∈ Z d ) and ε * j = ε j 1 1 {j =0} + ε ′ 0 1 1 {j=0} for all j in Z d .
In other words, we obtain R * i from R i by just replacing ε 0 by its copy ε ′ 0 (see [START_REF] Wu | Nonlinear system theory: another look at dependence[END_REF]). Let τ : Z → Z d be a bijection. For all l ∈ Z, for all i ∈ Z d , we denote

P l R i := E(R i |F l ) -E(R i |F l-1 ) where F l = σ ε τ (s) ; s ≤ l and R i = l∈Z P l R i .

Consequently,

i∈Λn a i R i p = l∈Z i∈Λn a i P l R i p and applying the Burkholder inequality (cf. [START_REF] Hall | Martingale limit theory and its application[END_REF], page 23) for the martingale difference sequence i∈Λn a i P l R i l∈Z , we obtain

i∈Λn a i R i p ≤   2p l∈Z i∈Λn a i P l R i 2 p   1 2 ≤   2p l∈Z i∈Λn |a i | P l R i p 2   1 2 
.

Moreover, by the Cauchy-Schwarz inequality, we have

i∈Λn |a i | P l R i p 2 ≤ i∈Λn a 2 i P l R i p × i∈Λn P l R i p . (31) 
Let l in Z and i in Z d be fixed.

P l R i p = E(R i |F l ) -E(R i |F l-1 ) p = E(R 0 |T i F l ) -E(R 0 |T i F l-1 ) p
where T i F l = σ ε τ (s)-i ; s ≤ l . Hence,

P l R i p = E H ((ε -s ) s∈Z d ) |T i F l -E H (ε -s ) s∈Z d \{i-τ (l)} ; ε ′ τ (l)-i |T i F l p ≤ H ((ε -s ) s∈Z d ) -H (ε -s ) s∈Z d \{i-τ (l)} ; ε ′ τ (l)-i p = H (ε i-τ (l)-s ) s∈Z d -H (ε i-τ (l)-s ) s∈Z d \{i-τ (l)} ; ε ′ 0 p = R i-τ (l) -R * i-τ (l) p = δ (n) i-τ (l),p . Consequently, i∈Z d P l R i p ≤ j∈Z d δ (n)
j,p and combining (30) and (31), we obtain

i∈Λn a i R i p ≤   2p j∈Z d δ (n) j,p i∈Λn a 2 i l∈Z P l R i p   1 2 
.

Similarly, for all i in Z d , we have l∈Z P l R i p ≤ j∈Z d δ

(n) j,p and we derive i∈Λn

a i R i p ≤ 2p i∈Λn a 2 i 1 2 i∈Z d δ (n) i,p . (32) 
Since K *

i = E K * i (x) F * n,i where F * n,i = σ ε * i-s ; |s| ≤ m n and K i (x) -K i (x) * = K * i (x) -K * i (x), we derive δ (n) i,p ≤ 2 K i (x) -K * i (x) p . Since K is Lipschitz, we obtain δ (n) i,p ≤ 2δ i,p b n (33) 
where δ i,p = X i -X * i p . Morever, we have also

δ (n) i,p ≤ 2 K 0 (x) -K 0 (x) p . (34) 
Combining (34) and Lemma 5, we derive

δ (n) i,p ≤ √ 8p b n |j|>mn δ j,p . (35) 
Combining (33) and (35), we obtain

i∈Z d δ (n) i,p ≤ m d n √ 8p b n |j|>mn δ j,p + 2 b n |j|>mn δ j,p ≤ 2 √ 8pm d n b n |j|>mn δ j,p .
The proof of Lemma 2 is complete.

Proof of Lemma 3. Let s and t be fixed in R. Since E K 0 (s)K 0 (t) = E K 0 (s)K 0 (t) , we have

E K 0 (s)K 0 (t) -E (K 0 (s)K 0 (t)) ≤ K 0 (s) 2 K 0 (t) -K 0 (t) 2 .
Keeping in mind that K 0 (s) 2 = O( √ b n ) and using Lemma 5, we have 

E K 0 (s)K 0 (t) -E (K 0 (s)K 0 (t)) ≤ κ √ b n |j|>mn δ j .
Moreover, keeping in mind Assumptions (A1), (A2) and (A4), we have

lim n 1 b n E (K 0 (s)K 0 (t)) = lim n R K (v) K v + t -s b n f (s-vb n )dv = u(s, t) f (s) R K 2 (u)du (37) 
where u(s, t) = 1 if s = t and u(s, t) = 0 if s = t. We have also Let x be fixed in R. Choosing s = t = x and combining (36), (37), (38) and Lemma 1, we obtain E(Z 2 0 (x)) goes to f (x) R K 2 (u)du as n goes to infinity. In the other part, let i = 0 be fixed in Z d and let s and t be fixed in R. We have

E|Z 0 (s)Z i (t)| ≤ 1 b n E K 0 (s)K i (t) + 3 b n E K 0 (s) E K 0 (t) . (39) 
Keeping in mind that ||α| -|β|| ≤ |α -β| for all (α, β) in R 2 and applying the Cauchy-Schwarz inequality, we obtain E|K 0 (s)K i (t)|-E|K 0 (s)K i (t)| ≤ K 0 (s) 2 K 0 (t)-K 0 (t) 2 + K 0 (t) 2 K 0 (s)-K 0 (s) 2 (42)

Moreover, using Assumption (B3), we have 

E K 0 (s)K i (t) = R 2 K s -u b n K t -v b n f 0,i (u, v)dudv ≤ κb 2 n R |K(w)|dw
The proof of Lemma 3 is complete. For all integer n, let a n = n j=0 |Γ j | and let τ : N\{0} → Z d be the bijection defined by τ (1) = (0, ..., 0) and
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 1 ] denotes the integer part function. The following technical lemma is a spatial version of a result by Bosq et al. ([1], pages 88-89). If (A4) holds then

  and we observe the L 1 -convergence of ft to the true density function f of X 0,0 . In order to illustrate the asymptotic normality of the estimator (8), we put x = -1, t = 20 and b 20 = 0.7 and we calculate the expectation E ft (-1) of ft (-1) by taking again the arithmetic mean value of 100 replications of ft (-1). Finally, noting that R K 2 (x)dx = 4/5 and f (-1) = 1/100, we consider 1500 replications of √ 400 × 0.7 f20 (-1) -E f20 (-1)1/100 × 4/5
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 1 Figure 1: Asymptotic normality of the kernel density estimator.

  and m n ≥ v n . For all positive integer m, we consider r(m) = |i|>m |i| 5d 2 δ i . Since (A4) holds, r(m) converges to zero as m goes to infinity. Moreover, m d n b n ≤ max √ b n , κ r(v n ) 1/3 + b n -----→ n→∞ 0 and

  Since b n |E(Z 0 (s)Z 0 (t)) -E(Z 0 (s)Z 0 (t)| = |E (K 0 (s)K 0 (t)) -E K 0 (s)K 0 (t) |, we have M d n |E(Z 0 (s)Z 0 (t)) -E(Z 0 (s)Z 0 (t)| ≤ κ (m d n b n )

  )f (svb n )dv R K(w)f (twb n )dw = 0. (38)

  E|K 0 (s)K i (t)| -E|K 0 (s)K i (t)| ≤ κ (m d n b n ) 3/2 |j|>mn |j| 5d 2 δ j .(41)Since Assumptions (A1) and (A4) hold andM d n b n = o(1), we have M d n b n E K 0 (s) E K 0 (t) = M d n b n R |K(u)|f (sub n )du R |K(v)|f (tvb n )dv = o(1).

2 .

 2 So, using again Assumption (A4) andM d n b n = o(1), we derive M d n b n E K 0 (s)K i (t) = o(1).(43)Combining (39), (41), (42), (43) and Lemma 1, we obtainM d n sup i∈Z d \{0} E|Z 0 (s)Z i (t)| = o(1).

Proof of Lemma 4 . 2 0 2 0

 422 Let x and y be two distinct real numbers. Noting that)) + 2λ 1 λ 2 E(Z 0 (x)Z 0 (y)) (y)) + 2λ 1 λ 2 E(Z 0 (x)Z 0 (y))and using (36) and Lemma 1, we obtain lim n→∞ and (45), we derive thatE(∆ ) converges to η = (λ 2 1 f (x) + λ 2 2 f (y)) R K 2 (u)du. Let i = 0 be fixed in Z d . Combining (44) and E|∆ 0 ∆ i | ≤ λ 2 1 E|Z 0 (x)Z i (x)|+λ 2 2 E|Z 0 (y)Z i (y)|+λ 1 λ 2 E|Z 0 (x)Z i (y)|+λ 1 λ 2 E|Z 0 (y)Z i (x)|, (46) we obtain M d n sup i∈Z d \{0} E|∆ 0 ∆ i | = o(1). The proof of Lemma 4 is complete.Proof of Lemma 5. Let p > 1 be fixed. We consider the sequence (Γ n ) n≥0 of finite subsets of Z d defined by Γ 0 = {(0, ..., 0)} and for all n in N\{0}, Γ n = {i ∈ Z d ; |i| = n}.

  is the true density function of X 0,0 and the bandwith b t is being set to |Λ t | -1/3 with |Λ t | denoting the number of elements in Λ t . Hence, we derive its expectation E

	value of 100 replications of of t in the following table	100 -100 | ft (x) -f (x)|dx by taking the arithmetic mean -100 | ft (x)-f (x)|dx. The results are given for several values 100
	t 10	|Λ t | = t 2 b t = |Λ t | -1/3 E 100 0.215	100 -100 | ft (x) -f (x)|dx 0.0171
	20	400		0.136	0.0163
	50	2500	0.074	0.0157
	100	10000	0.046	0.0153

1, 1[. In order to illustrate the result obtained in Theorem 1, we calculate (Monte Carlo method) 100 -100 | ft (x)f (x)|dx where f

• for all n in N\{0}, if l ∈ ]a n-1 , a n ] then τ (l) ∈ Γ n ,

• for all n in N\{0}, if (i, j) ∈ ]a n-1 , a n ] 2 and i < j then τ (i) < lex τ (j) Let (m n ) n≥1 be the sequence of positive integers defined by [START_REF] Carbon | Kernel density estimation for random fields[END_REF]. For all n in N\{0}, we recall that F n,0 = σ (ε -s ; |s| ≤ m n ) (see ( 4)) and we consider also the σ-algebra G n := σ ε τ (j) ; 1 ≤ j ≤ n . By the definition of the bijection τ , we have

) for all l in Z. Let p > 1 be fixed. Since (D l ) l∈Z is a martingale-difference sequence, applying Burkholder's inequality (cf. [START_REF] Hall | Martingale limit theory and its application[END_REF], page 23), we derive

, we obtain

The proof of Lemma 5 is complete.
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