Power Watersheds: A Unifying Graph Based Optimization Framework - Archive ouverte HAL Access content directly
Journal Articles IEEE Transactions on Pattern Analysis and Machine Intelligence Year : 2011

Power Watersheds: A Unifying Graph Based Optimization Framework

Abstract

In this work, we extend a common framework for graph-based image segmentation that includes the graph cuts, random walker, and shortest path optimization algorithms. Viewing an image as a weighted graph, these algorithms can be expressed by means of a common energy function with differing choices of a parameter q acting as an exponent on the differences between neighboring nodes. Introducing a new parameter p that fixes a power for the edge weights allows us to also include the optimal spanning forest algorithm for watershed in this same framework. We then propose a new family of segmentation algorithms that fixes p to produce an optimal spanning forest but varies the power q beyond the usual watershed algorithm, which we term power watershed. In particular when q = 2, the power watershed leads to a multilabel, scale and contrast invariant, unique global optimum obtained in practice in quasi-linear time. Placing the watershed algorithm in this energy minimization framework also opens new possibilities for using unary terms in traditional watershed segmentation and using watershed to optimize more general models of use in applications beyond image segmentation.
Fichier principal
Vignette du fichier
couprie2011power.pdf (936.37 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00622510 , version 1 (06-09-2012)

Identifiers

Cite

Camille Couprie, Leo Grady, Laurent Najman, Hugues Talbot. Power Watersheds: A Unifying Graph Based Optimization Framework. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (7), pp.1384-1399. ⟨10.1109/TPAMI.2010.200⟩. ⟨hal-00622510⟩
395 View
1141 Download

Altmetric

Share

Gmail Facebook X LinkedIn More