Least squares estimator for the parameter of the fractional Ornstein-Uhlenbeck sheet
Abstract
We will study the least square estimator $\widehat{\theta }_{T,S}$ for the drift parameter $\theta$ of the fractional Ornstein-Uhlenbeck sheet which is defined as the solution of the Langevin equation \begin{equation*} X_{t,s}= -\theta \int^{t}_{0} \int^{s}_{0} X_{v,u}dvdu + B^{\alpha, \beta}_{t,s}, \qquad (t,s) \in [0,T]\times [0,S]. \end{equation*} driven by the fractional Brownian sheet $B^{\alpha ,\beta}$ with Hurst parameters $\alpha, \beta$ in $(\frac{1}{2}, \frac{5}{8})$. Using the properties of multiple Wiener-Itô integrals we prove that the estimator is strongly consistent for the parameter $\theta$. In contrast to the one-dimensional case, the estimator $\widehat{\theta}_{T,S}$ is not asymptotically normal.
Origin | Files produced by the author(s) |
---|
Loading...