Turing degrees of multidimensional SFTs - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Turing degrees of multidimensional SFTs

Résumé

In this paper we are interested in computability aspects of subshifts and in particular Turing degrees of 2-dimensional SFTs (i.e. tilings). To be more precise, we prove that given any \pizu subset $P$ of $\{0,1\}^\NN$ there is a SFT $X$ such that $P\times\ZZ^2$ is recursively homeomorphic to $X\setminus U$ where $U$ is a computable set of points. As a consequence, if $P$ contains a recursive member, $P$ and $X$ have the exact same set of Turing degrees. On the other hand, we prove that if $X$ contains only non-recursive members, some of its members always have different but comparable degrees. This gives a fairly complete study of Turing degrees of SFTs.
Fichier principal
Vignette du fichier
preprint.pdf (262.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00613165 , version 1 (03-08-2011)
hal-00613165 , version 2 (25-08-2011)
hal-00613165 , version 3 (01-06-2012)

Identifiants

Citer

Emmanuel Jeandel, Pascal Vanier. Turing degrees of multidimensional SFTs. 2011. ⟨hal-00613165v1⟩
282 Consultations
594 Téléchargements

Altmetric

Partager

More