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Abstract

In this paper we are interested in computability aspects of subshifts
and in particular Turing degrees of 2-dimensional SFTs (i.e. tilings). To
be more precise, we prove that given any Π

0

1 subset P of {0, 1}N there is a
SFT X such that P × Z

2 is recursively homeomorphic to X \ U where U

is a computable set of points. As a consequence, if P contains a recursive
member, P and X have the exact same set of Turing degrees. On the other
hand, we prove that if X contains only non-recursive members, some of
its members always have different but comparable degrees. This gives a
fairly complete study of Turing degrees of SFTs.

Wang tiles have been introduced by Wang [24] to study fragments of first
order logic. Independently, subshifts of finite type (SFTs) were introduced to
study dynamical systems. From a computational and dynamical perspective,
SFTs and Wang tiles are equivalent, and most recursive-flavoured results about
SFTs were proved in a Wang tile setting.

Knowing whether a tileset can tile the plane with a given tile at the origin
(also known as the origin constrained domino problem) was proved undecidable
by Wang [25]. Knowing whether a tileset can tile the plane in the general case
was proved undecidable by Berger [3, 4].

Understanding how complex, in the sense of recursion theory, the points
of an SFT can be is a question that was first studied by Myers [20] in 1974.
Building on the work of Hanf [13], he gave a tileset with no recursive tilings.
Durand/Levin/Shen [12] showed, 40 years later, how to build a tileset for which
all tilings have high Kolmogorov complexity.

A Π0
1 set is an effectively closed subset of {0, 1}N, or equivalently the set

of oracles on which a given Turing machine halts. Π0
1 sets occur naturally in

various areas in computer science and recursive mathematics, see e.g. [7, 22]
and the upcoming book [8]. It is easy to see that any SFT is a Π0

1 class (up to

a recursive coding of ΣZ
2

into {0, 1}N). This has various consequences. As an
example, every non-empty SFT contains a point which is not Turing-hard (see
Durand/Levin/Shen [12] for a self-contained proof). The main question is how
different SFTs are from Π0

1 classes. In the one-dimensional case, some answers
to these questions were given by Cenzer/Dashti/King/Tosca/Wyman [10, 5, 6].
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The main result in this direction was obtained by Simpson [23], building on
the work of Hanf and Myers: for every Π0

1 class S, there exists a SFT with
the same Medvedev degree as S. The Medvedev degree roughly relates to the
“easiest” Turing degree of S. What we are interested in is a stronger result: can
we find for every Π0

1 set S a SFT which has the same Turing degrees ? We prove
in this article that this is true if S contains a recursive point but not always
when this is not the case. More exactly we build (Theorem 4.1) for every Π0

1

class S a SFT for which the set of Turing degrees is exactly the same as for
S with the additional Turing degree of recursive points. We also show that
SFTs that do not contain any recursive point always have points with different
but comparable degrees (Corollary 5.11), a property that is not true for all Π0

1

classes. In particular there exists Π0
1 classes that do not have any points with

comparable degrees.
As a consequence, as every countable Π0

1 class contains a recursive point, the
question is solved for countable sets: the sets of Turing degrees of countable Π0

1

classes are the same as the sets of Turing degrees of countable sets of tilings. In
particular, there exist countable sets of tilings with some non-recursive points.
This can be thought as a two-dimensional version of Theorem 8 in [6].

This paper is organized as follows. After some preliminary definitions, we
start with a quick proof of a generalization of Hanf, already implicit in Simp-
son [23]. We then build a very specific tileset, which forms a grid-like structure
while having only countably many tilings, all of them recursive. This tileset will
then serve as the main ingredient to prove the result on the case of classes with
a recursive point in section 4. In section 5 we finally show the result on classes
without recursive points.

1 Preliminaries

1.1 SFTs and tilings

We give here some standard definitions and facts about multidimensional sub-
shifts, one may consult Lind [18] for more details. Let Σ be a finite alphabet, the

d-dimensional full shift on Σ is the set ΣZ
d

=
{

c = (cx)x∈Zd

∣

∣∀x ∈ Z
d, cx ∈ Σ

}

.

For v ∈ Z
d, the shift functions σv : ΣZ

d

→ ΣZ
d

, are defined locally by σv(cx) =

cx+v. The full shift equipped with the distance d(x, y) = 2−min{‖v‖|v∈Z
d,xv 6=yv}

is a compact, perfect, metric space on which the shift functions act as homeo-

morphisms. An element of ΣZ
d

is called a configuration.
Every closed shift-invariant (invariant by application of any σv) subset X

of ΣZ
d

is called a subshift. An element of a subshift is called a point of this
subshift.

Alternatively, subshifts can be defined with the help of forbidden patterns.
A pattern is a function p : P → Σ, where P is a finite subset of Z

d. Let F

be a collection of forbidden patterns, the subset XF of ΣZ
d

containing only
configurations having nowhere a pattern of F . More formally, XF is defined by

XF =
{

x ∈ ΣZ
d
∣

∣

∣
∀z ∈ Z

d, ∀p ∈ F, xz+P 6= p
}

.

In particular, a subshift is said to be a subshift of finite type (SFT) when the
collection of forbidden patterns is finite. Usually, the patterns used are blocks
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or n-blocks, that is they are defined over a finite subset P of Z
d of the form

J0, n− 1K
d
.

Given a subshift X , a block or pattern p is said to be extensible if there
exists x ∈ X in which p appears, p is also said to be extensible to x.

In the rest of the paper, we will use the notation ΣX for the alphabet of the
subshift X .

A subshift X ⊆ ΣZ
2

X is a sofic shift if and only if there exists a SFT Y ⊆ ΣZ
2

Y

and a local map f : ΣY → ΣX such that for any point x ∈ X , there exists a
point y ∈ Y such that for all z ∈ Z

d, xz = f(yz).
Wang tiles are unit squares with colored edges which may not be flipped or

rotated. A tileset T is a finite set of Wang tiles. A coloring of the plane is a
mapping c : Z2 → T assigning a Wang tile to each point of the plane. If all
adjacent tiles of a coloring of the plane have matching edges, it is called a tiling.

In particular, the set of tilings of a Wang tileset is a SFT on the alphabet
formed by the tiles. Conversely, any SFT is isomorphic to a Wang tileset.
From a recursivity point of view, one can say that SFTs and Wang tilesets are
equivalent. In this paper, we will be using both indiscriminately. In particular,
we note XT the SFT associated to a set of tiles T .

We say a SFT (tileset) is origin constrained when the letter (tile) at position
(0, 0) is forced, that is to say, we only look at the valid tilings having a given
letter (tile) t at the origin.

More information on SFTs may be found in Lind and Marcus’ book [19].
The notion of Cantor-Bendixson derivative is defined on set of configura-

tions. This notion was introduced for tilings by Ballier/Durand/Jeandel [1]. A
configuration c is said to be isolated in a set of configurations C if there exists a
pattern p such that c is the only configuration of C containing p. The Cantor-
Bendixson derivative of C is noted D(C) and consists of all configurations of C
except the isolated ones. We define C(λ) inductively for any ordinal λ:

• C(0) = S

• C(λ+1) = D
(

C(λ))
)

• C(λ) =
⋂

γ<λ C
(γ) when λ is limit.

The Cantor-Bendixson rank of C, noted CB(C), is defined as the first ordinal
λ such that C(λ) = C(λ+1). An element x is of rank λ in C if λ is the least
ordinal such that x 6∈ C(λ).

A configuration x is periodic, if there exists n ∈ N
∗ such that σnei(x) = x, for

any i ∈ {1, . . . , d}, where the ei’s form the standard basis. A vector of periodicity
of a configuration is a vector v ∈ Z

d \ {(0, . . . , 0)} such that σv(x) = x. A
configuration x is quasiperiodic (see Durand [11] for instance) if for any pattern
p appearing in x, there exists N such that this pattern appears in all Nd cubes
in x. In particular, a periodic point is quasiperiodic. A configuration is strictly
quasiperiodic if it is quasiperiodic and not periodic. A subshift is minimal if
it is nonempty and contains no proper nonempty subshift. Equivalently, all
its points have the same patterns. In this case, it contains only quasiperiodic
points. It is known that every subshift contains a minimal subshift, see e.g.
Durand [11].
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1.2 Computability background

A Π0
1 class P ⊆ {0, 1}N is a class of infinite sequences on {0, 1} for which there

exists a Turing machine that given x ∈ {0, 1}N as an oracle halts if and only if

x 6∈ P . Equivalently, a class S ⊆ {0, 1}N is Π0
1 if there exists a recursive set L so

that x ∈ S if no prefix of x is in L. An element of a Π0
1 class is called a member

of this class.
We say that two sets S, S′ are recursively homeomorphic if there exists a

bijective recursive function f : S → S′. That is to say there are two Turing
machines M (resp. M ′) such that given a member of S (resp. S′) computes
a member of S′ (resp. S). Furthermore, for any s ∈ S, s′ ∈ S′ such that s′ is
computed by M from s, M ′ computes s from s′.

The Cantor-Bendixson rank of S, is well defined similarly as for subshifts.
See Cenzer/Remmel [7] for Π0

1 sets and Kechris [17] for Cantor-Bendixson
rank and derivative.

For x, y ∈ {0, 1}N we say that x is Turing-reducible to y if y is computable
by a Turing machine using x as an oracle and we write y ≤T x. If x ≤T y and
y ≤T x, we say that x and y are Turing-equivalent and we write x ≡T y. The
Turing degree of x ∈ {0, 1}N is its equivalence class under the relation ≡T .

1.3 Subshifts and Π
0

1
classes

As it is clear from the definitions, SFTs in any dimension are Π0
1 classes. More

generally, effective subshifts, see e.g. Cenzer/Dashti/King [5]), that is subshifts
defined by a computable (or equivalently, in this case, by a computably enu-
merable) set of forbidden patterns are Π0

1 classes. As such, they enjoy similar
properties. In particular, there exists many “basis theorems”, ie theorems that
assert that any Π0

1 (non-empty) class has a member with some specific property.
As an example, every countable Π0

1 class has a computable member, see
e.g. Cenzer/Remmel [8]. For subshifts, we can say a bit more: every countable
subshift has a periodic (hence computable) member. Every Π0

1 class has a point
of low degree, as prove in Jockusch/Soare [15]. A proof of this from the point
of view of subshifts (actually tilings) is given in Durand/Levin/Shen [12].

2 Π
0
1 sets and origin constrained tilings

A straighforward corollary of Hanf [13] is that Π0
1 classes and origin constrained

SFTs are recursively isomorphic. This is stated explicitely in Simpson [23].

Theorem 2.1. Given any Π0
1 class P ⊆ {0, 1}N, there exists a SFT X and a

letter t ∈ ΣX such that each origin constrained point corresponds to a member
of P .

Proof. Let P be a Π0
1 class, and M the Turing machine that proves it, that is

M given x ∈ {0, 1}N as an oracle halts if and only if x 6∈ P .
We use the classic encoding of Turing machines, see fig. 1. We modify all tiles

containing a symbol from the tape, to allow them to contain a second symbol.
This symbol is copied vertically. All these second symbols represent the oracle.
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Figure 1: A set of Wang tiles, encoding computation of a Turing machine: the
states are in the circles and the tape is in the rectangles. A tiling containing
the bottom right tile contains the space-time diagram of a run of the Turing
machine.

Then the SFT constrained by the tile starting the computation contains
exactly the runs of the Turing machine with members of P on the oracle tape.

Corollary 2.2. Any Π0
1 subset P of {0, 1}N is recursively homeomorphic to an

origin constrained SFT.

3 Producing a sparse grid

The main problem in the previous construction is that points which do not have
the given letter at the origin can be very wild: they may correspond to configu-
rations with no computation (no head of the Turing Machine) or computations
starting from an arbitrary (not initial) configuration. A way to solve this prob-
lem is described in Myers’ paper [20] but is unsuitable for our purposes (It was
however used by Simpson to obtain a weaker result on Medvedev degrees, see
[23]).

Our idea is as follows: we build a SFT which will contain, among others
points, the sparse grid of Figure 2c. The interest being that all others points
will have at most one intersection of two black lines. This means that if we put
computation cells of a given Turing machine in the intersection points, every
point which is not of the form of Figure 2c will contain at most one cell of the
Turing machine, and thus will contain no computation.

To do this construction, we will first draw increasingly big and distant
columns as in Figure 2a and then superimpose the same construction for rows
as in Figure 2b, thus obtaining the grid of Figure 2c.
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(a) (b) (c) (d)

Figure 2: The tiling in which the Turing machines will be encoded.

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40

Figure 3: Our set of Wang tiles T .
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It is then fairly straightforward to see how we can encode a Turing machine
inside a configuration having the skeleton of Figure 2c by looking at it diagonally:
time increases going to the north-east and the tape is written on the north-
west/south-east diagonals1.

Our set of tiles T of Figure 3 gives the skeleton of Figure 2a when forgetting
everything but the black vertical borders. We will prove in this section that it
is countable. We set here the vocabulary:

• a vertical line is formed of a vertical succession of tiles containing a vertical
black line (tiles 5, 6, 17, 21, 24, 25, 26, 27, 31, 35, 36, 37).

• a horizontal line is formed of a horizontal succession of tiles containing a
horizontal black line (tiles 13, 14, 15, 16, 22, 23, 38) or a bottom signal,

• the bottom signal is formed by a connected path of tiles among (30, 31,
27, 14, 7, 36, 38)

• the red signal is formed by a connected path of tiles containing a red line
(tiles among 3 ,7, 10, 12, 14, 19, 22, 32, 33, 38).

• tile 30 is the corner tile

• tiles 30, 32, 33, 34 are the bottom tiles

Lemma 3.1. The SFT XT admits at most one point, up to translation, with
two or more vertical lines. This point is drawn on Figure 4.

Proof. The idea of the construction is to force that whenever there are two
vertical lines, then the point is a shifted of the one in Figure 4. Note also that
whenever the corner tile appears in a point, it is necessarily a shifted version of
the point on Figure 4.

Suppose that we have a tiling in which two vertical lines appear. These
two lines necessarily face each other horizontaly: it is impossible for them not
to have a bottom, and their bottoms are at the same height. Suppose the
horizontal distance between them is k+ 1. There must then be horizontal lines
between them forming squares, because of the diagonal. Inside these squares
there must be a red signal: inside each square, this red signal is vertical, it is
shifted to the right each time it crosses a horizontal line. This ensures that
there are exactly k squares in this column. Furthermore, the bottom square has
necessarily a bottom signal going through its top horizontal line. The bottom
signal forces the square of the column before to be of size k − 1 and the square
of the column after to be of size exactly k + 1. Thus, the corner tile appears in
the point.

Lemma 3.2. XT is countable.

Proof. Lemma 3.1 states that there is one point, up to shift, that has two or
more vertical lines. This means that the other points have at most one such
line.

1Note that we will have to skip one diagonal out of two in our construction, in order for

the tape to increase at the same rate as the time.
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Figure 4: Tiling α: the unique valid tiling of T in which there are 2 or more
vertical lines.
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• If a point has exactly one vertical line, then it can have at most two
horizontal lines: one on the left of the vertical one and one on the right.
A red signal can then appear on the left or the right of the vertical line
arbitrary far from it. There is a countable number of such points.

• If a point has no vertical line, then it has at most one horizontal line. A
red signal can then appear only once. There is a finite number of such
points, up to shift.

There is a countable number of points that can be obtained with the tileset T .
All types of obtainable points are shown in Figure 5 and 4.

By taking our tileset T = {1, . . . , 40} and mirroring all the tiles along the
south-west/north-east diagonal, we obtain a tileset T ′ = {1′, . . . , 40′} with the
exact same properties, except it enforces the squeleton of Figure 2b. Remember
that whenever the corner tile appeared in a point, then necessarily this point
was a shifted of α. Analogously, the corner tile of T ′ appearing in a point
means the this point is a shifted of α′. We hence construct a third tileset
τ = (T \ {30} × T ′ \ {30′}) ∪ {(30, 30′)} which is the superimposition of T and
T ′ with the restriction that tiles 30 and 30′ are necessarily superimposed to each
other. The corner tile (30, 30′) of τ has the property that whenever it appears,
the tiling is the superimposition of the skeletons of Figures 2a and 2b with the
corner tiles at the same place: there is only one such tiling, we call it β.

The skeleton of Figure 2c is obtained from β if we forget about the parts
of the lines of the T layer (resp. T ′) that are superimposed to white tiles, 29’
(resp. 29), of T ′ (resp. T ).

As a consequence of Lemma 3.2, Xτ is also countable. And as a consequence
of Lemma 3.1, the only points in xτ in which computation can be embedded
are the shifts of β. The shape of β is the one of Figure 2c, the coordinates of
the points of the grid are the following (supposing tile (30, 30′) is at the center
of the grid):

{(f(n), f(m)) | f(m)/4 ≤ f(n) ≤ 4f(m)}

{(f(n), f(m)) | m/2 ≤ n ≤ 2m}

where f(n) = (n+ 1)(n+ 2)/2− 1.

Lemma 3.3. The Cantor-Bendixson rank of Xτ is 12.

Proof. The Cantor-Bendixson rank of XT \ {α} is 6, see Figure 5, thus the rank
of XT \ {α} ×XT ′ \ {α′} is 11. Adding the configurations corresponding to the
superimposition of α and α′, Xτ has rank 12.

4 Π
0
1 classes with recursive members and SFTs

The SFT constructed before will allow us to prove a series of theorems on Π0
1

classes with recursive points. The foundation of these is Theorem 4.1 which
establishes a recursive homeomorphism between SFTs and Π0

1 classes, up to a
recursive subset of the SFT. This recursive homeomorphism is the best we can
hope for, as will be shown in section 5. Then from this “partial” homeomorphism,
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A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Y ZZ Z ai bi ci

dk,i ek fk,j gi hi lk,i

mi,j ni,j oi pi qk rk,i,j

si ti,j ui vi wi xi,j

Figure 5: The other configurations: the A − ZZ configurations are unique (up
to shift), and the configurations with subscripts i, j ∈ N, k ∈ Z

2 represent the
fact that distances between some of the lines can vary. Note that configuration
ZZ cannot have a red signal on its left, because it would force another vertical
line.
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we will be able to deduce results on the set of Turing degrees of SFTs and Π0
1

classes.

Theorem 4.1. For any Π0
1 class S of {0, 1}N there exists a tileset τS such that

S × Z
2 is recursively homeomorphic to XτS \O where O is a computable set of

configurations.

Proof. This proof uses the construction of section 3. Let M be a Turing machine
such that M halts with x as an oracle iff x 6∈ S. Take the tileset τ of section 3 and
encode, as explained earlier, in configuration β the Turing machine M having
as an oracle x on an unmodifiable second tape. This gives us τM , O is the set
all points except the β ones. To each (x, z) ∈ S × Z

2 we associate the β tiling
having a corner at position z and having x on its oracle tape. O is computable,
because it contains a countable number (Lemma 3.2) of computable points (none
of these points can contain more than one step of computation).

Corollary 4.2. For any Π0
1 class S of {0, 1}N with a recursive member, there

exists a SFT X with the same set of Turing degrees.

Corollary 4.3. For any countable Π0
1 class S of {0, 1}N, there exists a SFT X

with the same set of Turing degrees.

Proof. We know, from Cenzer/Remmel [7], that countable Π0
1 sets have 0 (com-

putable elements) in their set of Turing degrees, thus the SFT XτM described in
the proof of Theorem 4.1 has exactly the same set of Turing degrees as S.

Theorem 4.4. For any countable Π0
1 class S of {0, 1}N there exists a SFT X

such that CB(X) = CB(S) + 11.

Proof. Lemma 3.3 states that Xτ is of Cantor-Bendixson rank 12, 11 without
β. In the tileset τM of the previous proof, the Cantor-Bendixson rank of the
contents of the tape is exactly CB(S), hence CB(XτS ) = CB(S) + 11.

From Ballier/Durand/Jeandel [1] we know that for any subshift X , if CB(X) ≥
2, then X has only recursive points. Thus an optimal construction would have
to augment the Cantor-Bendixson rank by at least 2.

Corollary 4.5. For any countable Π0
1 class S of {0, 1}N there exists a sofic

subshift X such that CB(X) = CB(S) + 2.

Proof. Take a projection that just keeps the symbols of the Turing machine tape
τM of the proof of Theorem 4.1 and maps everything else to a blank symbol.
Recall the Turing machine tape cells are the intersections of the vertical lines
and horizontal lines. This projection leads to 3 possible configurations :

• a completely blank configuration,

• a completely blank configuration with only one symbol somewhere,

• a configuration with a white background and points corresponding to the
intersections in the sparse grid of Figure 2c.

Note that a similar theorem in dimension one for effective rather than sofic
subshifts was conjectured in Cenzer/Dashti/Toska/Wyman [6] and later proved
by the authors (personal communication).
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5 Π
0
1 classes without recursive members and sub-

shifts

In this section we prove that two-dimensional SFTs containing only non-recursive
points have the property that they always have points with different but com-
parable degrees, this is corollary 5.11. But we first prove this result for one-
dimensional subshifts, not necessarily of finite type, in Theorem 5.3, the proof
for two-dimensional SFTs needing only a bit more work.

One interest of these proofs, lies in the following theorem, proved by Jockusch
and Soare:

Theorem 5.1 (Jockusch, Soare). There exists Π0
1 classes containing no recur-

sive member, such that any two different members are Turing-incomparable.

The proof of this result can be found in Cenzer and Remmel’s upcoming
book [7] or in the original articles by Jockusch and Soare [15, 14].

This means that one cannot expect a full recursive homeomorphism, i.e.
without removal of the recursive points. Furthermore, this shows that in general,
when a Π0

1 class P has no computable member, it is not true that one can find
a SFT with the same set of Turing degrees.

The main idea of the proof is that any subshift contains a minimal subshift. If
the subshift has no recursive points (actually, no periodic points), this minimal
subshift contains only strictly quasiperiodic points. We will then use some
combinatorial properties of this minimal subshift to obtain our results.

5.1 One-dimensional subshifts

We start with a technical lemma that will allow us to prove the theorem:

Lemma 5.2. Let x be a strictly quasiperiodic point of a minimal one-dimensional
subshift A and ≺ be an order on ΣA. For any word w extensible to x, there exists
two words w0 and w1 such that:

• w appears exactly twice in w0 and w1 respectively,

• let a and b (resp. c and d) be the first differing letters in the blocks directly
following the first and second occurence of w in w0 (resp. w1), then a ≺ b
(resp. d ≺ c).

Proof. By quasiperiodicity of x, w appears infinitely many times in x. By non
periodicity, any two occurences of w must be followed by eventually distinct
words. Let y be the largest word so that whenever w appears in x, then wy
appears. Note that w appears only once in wy, otherwise the x would be
periodic.

By definition of y, the letters after each occurence of wy cannot be all the
same. So there exists two consecutive occurences of wy with differing next
letters a, b with, e.g., a ≺ b (the other case being similar). w0 is then defined as
the smallest word containg both occurences of wy and these letters a, b.

Now x is quasiperiodic, hence some occurence of wyb must also appear be-
fore some occurence of wya, so we can find between these two positions two
occurences of wy with differing next letters c, d with d ≺ c. We can then define
w1 similarly.

12



x
w wa b

wi

w wc d
wi

Figure 6: Two nearest w blocks, the first differing letter a, b and c, d in their
following blocks, and how they form the wi. Note that the first differing letter
might in some cases be inside the second occurence of w, as illustrated on the
right with c, d.

See Figure 6 for an illustration of the construction of w0 and w1.

Theorem 5.3. Let A be a minimal subshift containing only strictly quasiperi-
odic points and x a point of A. Then for any Turing degree d such that
degT x ≤ d, there exists a point y ∈ A with Turing degree d.

Proof. To prove the theorem, we will give two computable functions f : A ×
{0, 1}N → A and g : A → {0, 1}N such that for any x ∈ A and s ∈ {0, 1}N we
have g(f(x, s)) = s. This means in terms of Turing degrees:

degT s ≤ degT f(x, s) ≤ sup
T

(degT x, degT s)

That is to say, we give two algorithms, one (f) that given a point x of A

and a sequence s of {0, 1}N reversibly computes a point of A that embeds s, the
second (g) retrieves s from the computed point.

Let us now give f . Let ≺ be an order on ΣA. Given a point x ∈ A and a
sequence s ∈ {0, 1}N, f recursively constructs another point of A: it starts with
a block C−1 = x0 and recursively constructs bigger and bigger blocks Ci such
that Ci+1 has Ci in its center. Furthermore these blocks are each centered in
0. So that the sequence C−1 → C0 → C1 → · · · → Ci → . . . converges to a
point c of A having all Ci’s in its center. It is sufficient to show then how Ci+1

is constructed from ci.
f works as follows: It searches for two consecutive occurences of Ci in x,

where the two first differing letters satisfy a ≺ b if si+1 = 0 and b ≺ a if
si+1 = 1. We know that f will eventually succeed in finding these occurences
due to Lemma 5.2.

Now we define Ci+1 as the word in x where we find these two occurences,
correctly cut so that the first occurence of Ci is at its center, and its last letter
is the differing letter of the second occurence. See Figure 7.

We thus have f , which is clearly computable. We give now g.
Given Ci and c, one can compute si+1 easily: we just have to look for the

second occurence of Ci in c, the first one being in its center. We then check
whether the first differing letters between the blocks following each occurence
are such that e ≺ f or f ≺ e. This also gives us Ci+1.

This means that from c, one can recover s. We know C−1 = c0 and from
this information, we can get the rest: from c and Ci, one computes easily Ci+1

and si. We have constructed our function g.
So now if we take a sequence s such that degT s > degT x, we can take y =

c = f(x, s). It has the same Turing degree as s since degT s = supT (degT x, degT s).
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x
ci cie f

ci+1

Figure 7: How we construct ci+1 from ci. When si+1 = 0, we have e ≺ f and
f ≺ e otherwise. The words of Lemma 5.2 are completed on the left with the
block preceeding them in x.

Corollary 5.4. Every nonempty one-dimensional subshift S containing only
non recursive points has points with different but comparable degrees.

Proof. Take any minimal subshift of S. It must contain only strictly quasiperi-
odic points, so the previous theorem apply.

For effective subshifts, we can do better

Lemma 5.5. Every nonempy effective subshift S contains a minimal subshifts
S̃ whose set of valid patterns is of Turing degree less than 0′.

0′ is the degree of the Halting problem.

Proof. Let F be the computable set of forbidden patterns defining S. Let wn

be a (computable) enumeration of all words. Define Fn as follows: F−1 = ∅.
Then if Fn∪F ∪{wn+1} defines a nonempty subshift, then Fn+1 = F ∪{wn+1}
else Fn+1 = Fn.

Now take F̃ = ∪nFn. It is clear from the construction that F̃ is computable
given the Halting problem. Moreover F̃ defines a nonempty, minimal subshift
S̃. More exactly the complement of F̃ is exactly the set of patterns appearing
in S̃.

This lemma cannot be improved: an effective subshift is built in Ballier/Jeandel
[2] for which the language of every minimal subshift is at least of Turing degree
0′.

Now it is clear that any minimal subshift S̃ has a computable point in its
set of valid patterns, so that:

Corollary 5.6. Every nonempty effective subshift with no recursive point con-
tains configurations of every Turing degree above 0′.

We do not know if this can be improved. While it is true that all minimal
subshifts have a language of Turing degree at least 0′, this does not mean that
their configurations have all Turing degree at least 0′. In the construction of
[2], there indeed exists recursive minimal points. The construction of Myers [20]
has nonrecursive points, but points of low degree.

5.2 Two-dimensional SFTs

We now prove an analoguous theorem for two dimensional SFTs. We cannot
use the previous result directly as it is not true that any strictly quasiperiodic
configuration always contain a strictly quasiperiodic (horizontal) line. Indeed,
there exists strictly quasiperiodic configurations, even in SFTs with no periodic
configurations, where some line in the configuration is not quasiperiodic (this is
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the case of the “cross” in Robinson’s construction [21]) or for which every line
is periodic of different period (such configurations happen in particular in the
Kari-Culik construction [9, 16]).

We will first try to prove a result similar to Lemma 5.2, for which we will
need an intermediate definition and lemma.

Definition 5.7 (line). A line or n-line of a two-dimensional configuration x ∈

ΣZ
2

is a function l : Z×H → Σ, with H = h+ J0;n− 1K, h ∈ Z, such that

x|Z×H = l.

Where n is the width of the line and h the vertical placement.

One can also define a line in a block by simply taking the intersection of
both domains. The notion of quasiperiodicity for lines is exactly the same as
the one for one dimensional subshifts. We need this notion for the following
lemma, that will help us prove the two-dimensional version of Lemma 5.2. We
also think that this lemma might be of interest in itself.

Lemma 5.8. Let A be a minimal subshift. There exists a point x ∈ A such that
all its lines are quasiperiodic.

Proof. Let {(ai, bi)}i∈N be an enumeration of Z× N and Hi = ai + J0; biK.
If x is a configuration, denote by pi(x) : Z×Hi 7→ Σ the restriction of x to

Z×Hi. We will often view pi as a map from A to (ΣHi )Z. A horizontal subshift

is a subset of ΣZ
2

which is closed and invariant by a horizontal shift.
We will build by induction a non-empty horizontal subshift Ai of A with

the property that every configuration x of Ai has the property that every line
of support Hj , for any j < i, is quasiperiodic. More precisely, pj(Ai) will be a
minimal subshift.

Define A−1 = A. If Ai is defined, consider pi+1(Ai). This is a nonempty
subshift, so it contains a minimal subshift X . Now we define the horizontal
subshift Ai+1 = p−1

i+1(X) ∩ Ai. By construction pi+1(Ai+1) is minimal. Fur-
thermore, for any j < i, pj(Ai+1) is a nonempty subshift, and it is included in
pj(Aj), which is minimal, hence it is minimal.

To end the proof, remark that by compactness ∩iAi is non-empty, as every
finite intersection is non-empty.

Lemma 5.9. Let A be a two-dimensional minimal subshift where all points
(equivalently, some point) have no horizontal period.

Let x be a point of A and ≺ be an order on ΣA. For each n ∈ N, for any
n-block w extensible to x, there exists two blocks w0 and w1 extensible to x such
that:

• w appears exactly twice in both w0 and w1, on the same n-line of vertical
placement 0.

• the first differring letters e and f in the blocks containing and starting
with each occurence of w are such that e ≺ f in w0 and f ≺ e in w1.

Here the word “first” refers to an adequate enumeration of N× Z.
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ci ci

ci+1

e f

Figure 8: How ci+1 is constructed inductively from ci. ci is in the center of
ci+1. The letters e and f are the first differing letters in the blocks containing
the ci’s. Whether e ≺ f of f ≺ e depends on what symbol we want to embed,
0 or 1.

Proof. As the result is about patterns rather than configurations, we can sup-
pose w.l.o.g by Lemma 5.8 that all lines of x are quasiperiodic.

Since w appears in x, it appears a second time on the same n-line in x. Since
x is not horizontally periodic, both occurences are in the center of different
blocks. (The place where they differ may be on a different line, though, if this
particular n-line is periodic)

Now we use the same argument as lemma 5.2 on the m-line containing both
occurences of w and the first place they differ. (Note that we cannot use directly
the lemma as this m-line might itself be periodic, but the proof still works in
this case)

Theorem 5.10. Let A be a two-dimensional minimal subshift where all points
(equivalently, some point) have no horizontal period and x a point of A. Then
for any Turing degree d such that degT x ≤ d, there exists a point y ∈ A with
Turing degree d.

Proof. The proof is identical as the one of Theorem 5.3, Lemma 5.9 being the
two-dimensional counterpart of Lemma 5.2. One can see in Figure 8 how the
Ci’s are contructed in this case.

Corollary 5.11. Every two-dimensional nonempty subshift X containing only
non-recursive points has points with different but comparable degrees.

Proof. X contains a minimal subshift A, which cannot be periodic. If A contains
a point with a horizontal period, then all points of A have a horizontal period,
and the result follows from Theorem 5.3. Otherwise, it follows from the previous
theorem.
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Lemma 5.5 is still valid in any dimensions so that we have:

Corollary 5.12. Every two-dimensional nonempty effective subshift (in partic-
ular any nonempty SFT) with no recursive points contains points of any Turing
degree above 0′.

We conjecture that a stronger statement is true: The set of Turing degrees
of any subshift with no recursive points is upward closed. To prove this, it is
sufficient to prove that for any subshift S and any configuration x of S (which
is not minimal), there exists a minimal configuration in S of Turing degree less
than the degree of x. We however have no idea how to prove this, and no
counterexample comes to mind.
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