Almost sure convergence for stochastically biased random walks on trees - Archive ouverte HAL
Article Dans Une Revue Probability Theory and Related Fields Année : 2012

Almost sure convergence for stochastically biased random walks on trees

Résumé

We are interested in the biased random walk on a supercritical Galton- Watson tree in the sense of Lyons (Ann. Probab. 18:931-958, 1990) and Lyons, Pemantle and Peres (Probab. Theory Relat. Fields 106:249-264, 1996), and study a phenomenon of slow movement. In order to observe such a slow movement, the bias needs to be random; the resulting random walk is then a tree-valued random walk in random environment. We investigate the recurrent case, and prove, under suitable general integrability assumptions, that upon the system's non-extinction, the maximal displacement of the walk in the first n steps, divided by (log n)3, converges almost surely to a known positive constant.
Fichier principal
Vignette du fichier
gyzbiased.pdf (362.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00608163 , version 1 (12-07-2011)

Identifiants

Citer

Gabriel Faraud, Yueyun Hu, Zhan Shi. Almost sure convergence for stochastically biased random walks on trees. Probability Theory and Related Fields, 2012, 154, pp.621-660. ⟨10.1007/s00440-011-0379-y⟩. ⟨hal-00608163⟩
330 Consultations
155 Téléchargements

Altmetric

Partager

More