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Summary. We are interested in the biased random walk on a supercrit-
ical Galton–Watson tree in the sense of Lyons [22] and Lyons, Pemantle
and Peres [28], and study a phenomenon of slow movement. In order to
observe such a slow movement, the bias needs to be random; the resulting
random walk is then a tree-valued random walk in random environment.
We investigate the recurrent case, and prove, under suitable general inte-
grability assumptions, that upon the system’s non-extinction, the maximal
displacement of the walk in the first n steps, divided by (log n)3, converges
almost surely to a known positive constant.
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1 Introduction

1.1 Stochastically biased random walks on Galton–Watson trees

Let T be a supercritical Galton–Watson tree rooted at ∅. Two vertices x and y are said

to be connected, and denoted by x ∼ y, if x is either the parent or a child of y. For a vertex

x ∈ T, we denote by |x| the distance between x and the root ∅, and ∅ = x0, x1, . . . , x|x|

the shortest path between the root and x. Let ω = (ω(x), x ∈ T\{∅}) be a sequence
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of vectors defined by ω(x) = (ω(x, y), y ∼ x) such that ω(x, y) > 0, ∀y ∼ x and that
∑

y∼x ω(x, y) = 1.

Given the sequence ω, we define a random walk (Xn, n ≥ 0) on T whose transition

probabilities are

Pω(Xn+1 = y |Xn = x) = ω(x, y).

For each vertex x ∈ T\{∅}, we denote its parent by ←x, and its children by (x(1), · · · , x(N(x))),

where N(x) stands for the number of children of x. Instead of looking at ω(x, y) (for y ∼ x

and x ∈ T), it is often more convenient to study A(x) := (Ai(x), 1 ≤ i ≤ N(x)) defined by

(1.1) Ai(x) :=
ω(x, x(i))

ω(x,
←
x)

, 1 ≤ i ≤ N(x).

Example (Biased random walk on a Galton–Watson tree). When Ai(x) ≡ λ, ∀x,
∀i (where 0 < λ <∞ is a constant), the random walk (Xn) is the λ-biased random walk on

T studied by Lyons [22], [23], Lyons, Pemantle and Peres [27], [28], Peres and Zeitouni [32],

and Ben Arous et al. [3]. More particularly, if Ai(x) ≡ 1, ∀x, ∀i, we get the simple random

walk on T.

Ben Arous and Hammond [4] considered the case that Ai(x) does not depend on x nor

on i, but can be random. They called the resulting walk (Xn) randomly biased walk on T,

and proved that the walk is more regular in some sense than the biased random walk. �

We focus, in this paper, on a phenomenon of slow movement of the walk in the recurrent

case. In order to exhibit the slow movement, the transition probabilities need to be random

(which was already the case in the aforementioned work of Ben Arous and Hammond [4]):

the resulting random walk (Xn) is a so-called random walk in random environment. In

dimension 1 (which, informally, corresponds to the case N(x) = 1 for all x), a celebrated

theorem of Sinai [33] says that Xn

(logn)2
converges in distribution to a non-degenerate law.

From now on, we assume (A(x), x ∈ T\{∅}) to be i.i.d., and write A = (A1, · · · , AN) for
a random vector having the distribution of any of A(x). Note that here N itself is random

and follows the law of reproduction of T. We always use P to denote the probability with

respect to the environment, and P := P ⊗ Pω the annealed measure. It is convenient to

consider (ω,T) as a marked tree, see (1.6) below in terms of a branching random walk. As

such, when we say “for almost all environment ω”, we mean, in fact, for almost all (ω, T).

Let us introduce the logarithmic moment-generating function of A:

ψ(t) := logE
{ N∑

i=1

Ati

}
∈ (−∞, ∞], t ≥ 0.
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In particular, ψ(0) = logE(N). We always assume ψ(0) > 0, so that the Galton–Watson

tree is supercritical. Furthermore, we assume that there exists some δ > 0 such that

(1.2) ψ(t) <∞, ∀ t ∈ (−δ, 1 + δ), and that E(N1+δ) <∞.

We first recall the following recurrence/transience criterion:

Theorem A (Lyons and Pemantle [25]). (i) If inft∈[0, 1] ψ(t) ≤ 0, then for almost all ω,

(Xn) is recurrent.

(ii) If inft∈[0, 1] ψ(t) > 0, then for almost all ω, (Xn) is transient on the set of non-

extinction.

Theorem A was proved in [25] under the additional condition that the distribution of Ai

does not depend on i; this condition was removed in Faraud [11]. See also Menshikov and

Petritis [30] for a proof of this criterion (under the additional assumptions that N > 1 is

deterministic and that the law of Ai does not depend on i) via Mandelbrot’s multiplicative

cascades.

The transient case (i.e., if inft∈[0, 1] ψ(t) > 0) has received much research attention recently

([1], [2], [3], [4]).

If inft∈[0, 1] ψ(t) < 0, the walk (Xn) is positive recurrent for almost all ω; in this case, it

is not hard (see [17], under the additional assumptions that N is deterministic and that the

law of Ai does not depend on i) to prove that 1
logn

max0≤k≤n |Xk| converges almost surely to

a positive constant.

We assume inft∈[0, 1] ψ(t) = 0 from now on. There are two different regimes in this case,

depending on the sign of ψ′(1) = e−ψ(1)E{∑N
i=1Ai logAi}. If ψ′(1) < 0 (and inft∈[0, 1] ψ(t) =

0), then by defining κ := inf{t > 1 : ψ(t) = 0} ∈ (1, ∞] (with inf ∅ := ∞) and κ1 :=

1 − 1
min{κ, 2} ∈ (0, 1

2
], the order of magnitude of |Xn| is, loosely speaking, nκ1 . [That κ > 1

is a consequence of the convexity of ψ.] More precisely, as far as strong convergence is

concerned, Hu and Shi [17] proved (assuming N is deterministic and that the law of Ai does

not depend on i) that max0≤k≤n |Xk| = nκ1+o(1), P-almost surely. For (functional) weak

convergence, Peres and Zeitouni [32] established a quenched functional central limit theorem

for biased random walk on T (corresponding to the case Ai =
1

E(N)
, ∀i, and thus κ = ∞;

assuming moreover N > 1 a.s.). The latter was extended by Faraud [11] for walks satisfying

κ ∈ (8, ∞] for the quenched case and κ ∈ (5,∞] for the annealed case. The problem of

whether |Xn|
nκ1

converges weakly (in either quenched or annealed setting) for the whole region

κ ∈ (2,∞] remains open, to the best of our knowledge.
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Figure 1: The different possible shapes for ψ

This paper is devoted to the study of the second situation: ψ′(1) ≥ 0 (and inft∈[0, 1] ψ(t) =

0). It was known that the walk is then extremely slow, at least under the additional con-

ditions that N is deterministic and that the law of Ai does not depend on i: there exist

constants 0 < c1 ≤ c2 <∞ such that (see [18])

(1.3) c1 ≤ lim inf
n→∞

max0≤k≤n |Xk|
(log n)3

≤ lim sup
n→∞

max0≤k≤n |Xk|
(log n)3

≤ c2, P-a.s.

One of the main goals of this paper is to prove that almost sure convergence holds in

(1.3) if ψ′(1) ≥ 0 (and inft∈[0, 1] ψ(t) = 0). The limiting constant in (1.3), however, will

have different natures depending on whether ψ′(1) = 0 or ψ′(1) > 0. If ψ′(1) ≥ 0 (and

inft∈[0, 1] ψ(t) = 0), there exists 0 < θ ≤ 1 such that

(1.4) ψ′(θ) = 0.

The case θ = 1 corresponds to ψ′(1) = 0; in this case, the condition inft∈[0, 1] ψ(t) = 0 is

equivalent to ψ(1) = 0, and the walk is null recurrent. The case θ < 1, on the other hand,

corresponds to ψ′(1) > 0, and the walk is positive recurrent (see [11]).

To give the limiting constant in (1.3), we define

(1.5) αθ :=
3π2

2

1

θ
E
( N∑

i=1

Aθi (logAi)
2
)
.

We write simply α for α1.

Theorem 1.1 Assume ψ(1) = ψ′(1) = 0. On the set of non-extinction,

lim
n→∞

max0≤k≤n |Xk|
(logn)3

=
4

α
, P-a.s.,

where the constant α = α1 is defined in (1.5).
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Theorem 1.2 Assume inft∈[0, 1] ψ(t) = 0 and ψ′(1) > 0. On the set of non-extinction,

lim
n→∞

max0≤k≤n |Xk|
(log n)3

=
1

αθ
, P-a.s.,

where θ ∈ (0, 1) is as in (1.4) and αθ is defined in (1.5).

Theorem 1.2 is proved in Section 4, whereas the proofs of the upper and lower bounds in

Theorem 1.1 are in Sections 5 and 6, respectively. In the next paragraph, we explain how it

is that the (log n)3 rate in Theorem 1.1 arises, by means of an associated branching random

walk which plays the role of potential for our walk (Xn).

1.2 Branching random walks and maxima along rays

The influence of the random environment on the behaviour of (Xn) is best formulated

in terms of an associated potential process. To make the presentation easier, we artificially

add a special vertex,
←
∅, which is to be thought of as the parent of ∅. Since the values of the

transition probabilities at a finite number of vertices have no influence on any of the results

of the paper, we feel free to modify the value of ω(∅, •), the transition probability at ∅,

in such a way that (Ai(x), 1 ≤ i ≤ N(x)), for x ∈ T (including x = ∅ now), form an i.i.d.

collection of random variables. Let ω(
←
∅, ∅) = 1, and define consistently

ω(∅,
←
∅) :=

1

1 +
∑N(∅)

i=1 Ai(∅)
.

The potential process associated with the random environment is defined by V (∅) := 0

and

(1.6) V (x) := −
∑

y∈ ]]∅, x]]
log

ω(
←
y , y)

ω(
←
y ,
⇐
y )
, x ∈ T\{∅},

where
⇐
y is the parent of

←
y , [[∅, x]] the set of vertices on the shortest path connecting ∅ to

x, and ]]∅, x]] := [[∅, x]]\{∅}.
Clearly, (V (x), x ∈ T) is a branching random walk, in the usual sense of Biggins [6]. It

can be described as follows: Initially, a single particle is located at 0, which is the ancestor

of the system. At time 1, the ancestor dies, giving birth to new particles who form the

first generation, and who are positioned according to the distribution of (− logAi(∅), 1 ≤
i ≤ N(∅)). At time 2, each of the particles in the first generation dies, giving birth to
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new particles that are positioned (with respect to their birth places) according to the same

distribution of (− logAi(∅), 1 ≤ i ≤ N(∅)); these new particles form the second generation.

The system goes on according to the same mechanism. We assume that for any n, each

particle at generation n produces new particles independently of each other and of everything

up to the n-th generation. The positions of the particles in the n-th generation are denoted

by (V (x), |x| = n).

The condition inft∈[0, 1] ψ(t) = 0 is equivalent to inf t∈[0, 1] E(
∑
|x|=1 e

−tV (x)) = 1, whereas

ψ′(1) ≥ 0 means E(
∑
|x|=1 V (x)e−V (x)) ≤ 0.

In the recurrent case, there is a simple relationship between the potential (V (x), x ∈ T)

and the walk (Xn). For any k ≥ 0, let

τk := inf{j ≥ 1 : |Xj| = k}, inf∅ := ∞.

So τ0 is the first return time to the root if the walk starts from ∅. It turns out that there

exists 0 < c(ω) <∞ possibly depending on the environment, such that for any n ≥ 1,

(1.7) ̺n := Pω{τn < τ0} ≥ c(ω)

n
exp

(
− min
|x|=n

V (x)
)
,

where, for any vertex x, we write

(1.8) V (x) := max
y∈ ]]∅, x]]

V (y).

Inequality (1.7) was proved in [18] under the additional conditions that N is deterministic

and that the law of Ai does not depend on i. Since the proof is simple, we reproduce it here:

For any x ∈ T, let T (x) := inf{i ≥ 0 : Xi = x} be the first hitting time of the walk at vertex

x. By definition, for any n ≥ 1, τn = min|x|=n T (x), so that

(1.9) Pω{τn < τ0} ≥ max
|x|=n

Pω{T (x) < τ0}.

We fix a vertex x with |x| = n. To compute Pω{T (x) < τ0}, we define a random sequence

(σj)j≥0 (depending on x) by σ0 := 0 and

σj := inf
{
k > σj−1 : Xk ∈ [[∅, x]]\{Xσj−1

}
}
, j ≥ 1.

If the walk (Xn) is recurrent, then (σj) is well-defined.

Let Zk := Xσk , k ≥ 0, which is the restriction of (Xj) on the path [[∅, x]]. For i ≤ n, let

xi be the unique vertex in [[∅, x]] with |xi| = i (in particular, x0 = ∅, xn = x). Then for

1 ≤ i < n,

Pω

{
Zk+1 = xi+1

∣∣∣Zk = xi

}
=

ω(xi, xi+1)

ω(xi, xi+1) + ω(xi, xi−1)
= 1− Pω

{
Zk+1 = xi−1

∣∣∣Zk = xi

}
,
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which yields

Pω{T (x) < τ0} = ω(∅, x1)Pω

{
(Zk) hits x before hitting ∅

∣∣∣Z0 = x1

}

=
ω(∅, x1) e

V (x1)

∑
z∈ ]]∅, x]] e

V (z)
,(1.10)

the second identity following from a general formula (Zeitouni [34], formula (2.1.4)) for the

exit problem of one-dimensional random walk in random environment. Since
∑

z∈ ]]∅, x]] e
V (z) ≥

maxz∈ ]]∅, x]] e
V (z) = eV (x), this implies

(1.11) Pω{T (x) < τ0} ≤ ω(∅, x1) e
V (x1)−V (x).

Going back to (1.9), we immediately obtain (1.7) with c(ω) := min|x|=1[ω(∅, x) e
V (x)] > 0.

The probability ̺n is closely related to the maximal displacement of the branching random

walk. The following simple observation was implicitly stated in [18] (pp. 1993–1996):

Fact 1.3 Assume inft∈[0,1] ψ(t) = 0 and ψ′(1) ≥ 0. Let 0 < c < ∞ be a constant. Almost

surely on the set of non-extinction,

(i) if ̺n ≥ e−(c+o(1))n
1/3

for all sufficiently large n, then

lim inf
n→∞

1

(log n)3
max
0≤k≤n

|Xk| ≥
1

c3
;

(ii) if ̺n ≤ e−(c+o(1))n
1/3

for all sufficiently large n, then

lim sup
n→∞

1

(logn)3
max
0≤k≤n

|Xk| ≤
1

c3
.

As such, an upper bound for min|x|=n V (x) yields, via inequality (1.7), a lower bound for

̺n, which, in turn, will lead to a lower bound for the maximal displacement of the walk (Xj).

Theorem 1.4 Assume inft∈[0, 1] E{
∑
|x|=1 e

−tV (x)} = 1 and E{∑|x|=1 V (x)e−V (x)} ≤ 0. Let

θ ∈ (0, 1] be such that E{
∑
|x|=1 V (x)e

−θV (x)} = 0. We have, on the set of non-extinction,

lim
n→∞

1

n1/3
min
|x|=n

V (x) =
(3π2σ2

θ

2

)1/3
, P-a.s.,

where

σ2
θ :=

1

θ
E
{ ∑

|x|=1

V (x)2e−θV (x)
}
.
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We mention that Fang and Zeitouni [10] have independently obtained Theorem 1.4, under

the condition that N is non-random and Ai(∅), for 1 ≤ i ≤ N , are i.i.d.

Comparing Theorem 1.4 with Theorems 1.1 and 1.2, we observe that (1.7) is optimal

in the case ψ′(1) > 0 (or, equivalently, E{
∑
|x|=1 V (x)e

−V (x)} < 0), but not in the case

ψ′(1) = 0 (or, equivalently, E{
∑
|x|=1 V (x)e−V (x)} = 0).

The proofs of the theorems are organized as follows.

• Section 2: Theorem 1.4.

• Section 4: Theorem 1.2.

• Section 5: Theorem 1.1, upper bound.

• Section 6: Theorem 1.1, lower bound. [This is the heart of the paper.]

Section 3 is devoted to a probability estimate for one-dimensional random walks, which will

be exploited in the proofs of Theorems 1.1 and 1.2 later on.

Throughout the paper, we use the convention
∑

∅
:= 0, max∅ := 0 and min∅ := ∞. The

letter c, with or without subscript, denotes a finite and positive constant, whose value may

vary from line to line. Furthermore, an ∼ bn, n→ ∞, means limn→∞
an
bn

= 1.

2 Proof of Theorem 1.4

Assume ψ(1) = 0, i.e., E{
∑
|x|=1 e

−V (x)} = 1.

The condition E(N1+δ) < ∞ in (1.2) guarantees that P{N(x) < ∞, ∀x} = 1 (N(x)

being the number of children of x). Recall that given a vertex x ∈ T, x0 := ∅, x1, · · · ,
x|x| := x are the vertices on [[∅, x]] with |xi| = i for any 0 ≤ i ≤ |x|. The condition ψ(1) = 0

yields that for any n ≥ 1 and any measurable function F : Rn × R
n → [0, ∞),

(2.1) E
( ∑

|x|=n
e−V (x)F [V (xi), N(xi−1), 1 ≤ i ≤ n]

)
= E

(
F [Si, νi−1, 1 ≤ i ≤ n]

)
,

where (Si − Si−1, νi−1), for i ≥ 1, are i.i.d. random vectors, whose common distribution is

determined by

(2.2) E[f(S1, ν0)] = E
( ∑

|x|=1

e−V (x)f(V (x), N(∅))
)
= E

( N∑

i=1

Aif(− logAi, N)
)
,

for any measurable function f : R
2 → [0, ∞). Considering only the first argument, (2.1)

says that for any n ≥ 1 and any measurable function F : Rn → [0, ∞),

(2.3) E
( ∑

|x|=n
e−V (x)F (V (xi), 1 ≤ i ≤ n)

)
= E[F (Si, 1 ≤ i ≤ n)],
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with the distribution of S1 determined by

E(f(S1)) = E
( ∑

|x|=1

e−V (x)f(V (x))
)
,

for any measurable function f : R → [0, ∞). Formula (2.3) is well-known, and can be

proved by means of a simple argument by induction in n. See, for example, Biggins and

Kyprianou [7]. The proof of (2.1) follows exactly from the same argument. In Section 6, we

will see an extension of (2.1), which, in particular, gives a probabilistic interpretation of the

new random walk (Si).

[The distribution of S1 is well-defined upon the assumption ψ(1) = 0. If furthermore

ψ′(1) = 0, then E(S1) = 0; in words, (Sn) is a mean-zero random walk, with σ2 = E(S2
1).]

Formula (2.3) naturally leads to studying the one-dimensional random walk (Sn). How-

ever, we sometimes need to work in a slightly more general setting: For each n ≥ 1, let

X
(n)
i , 1 ≤ i ≤ n, be i.i.d. real-valued variables; define S

(n)
0 := 0 and S

(n)
j :=

∑j
i=1X

(n)
i for

1 ≤ j ≤ n. Let (an) be positive numbers such that an → ∞ and a2n
n

→ 0, n → ∞. Assume

that there exists some η > 0 and a constant σ2 > 0 such that, as n→ ∞,

(2.4) E(X
(n)
1 ) = o

(an
n

)
, sup

n≥1
E(|X(n)

1 |2+η) <∞, Var(X
(n)
1 ) → σ2.

The following estimate is essentially due to Mogulskii [31]:

Proposition 2.1 (A triangular version of Mogulskii [31]) Assume (2.4). Let g1 < g2

be continuous functions on [0, 1] with g1(0) < 0 < g2(0). Consider the measurable event

Fn :=
{
g1(

i

n
) ≤ S

(n)
i

an
≤ g2(

i

n
), for 1 ≤ i ≤ n

}
.

We have

(2.5) lim
n→∞

a2n
n

logP(Fn) = −π
2σ2

2

∫ 1

0

dt

[g2(t)− g1(t)]2
.

Moreover, for any b > 0,

(2.6) lim
n→∞

a2n
n

logP
{
Fn,

S
(n)
n

an
≥ g2(1)− b

}
= −π

2σ2

2

∫ 1

0

dt

[g2(t)− g1(t)]2
.

If the law of X
(n)
1 does not depend on n (in which case we can even take η = 0),

Proposition 2.1 is Mogulskii [31]’s theorem. For a detailed proof of Proposition 2.1, see [13].

A useful consequence of Proposition 2.1 is as follows. Again, if the law of X
(n)
1 does not

depend on n, we only need X
(n)
1 to have a finite second moment in order to have (2.4).
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Corollary 2.2 Assume that (2.4) is satisfied with an := n1/3.

(i) Let f : [0, 1] → (0,∞) be a continuous function, and let (fn) be a sequence of contin-

uous functions converging uniformly to f on [0, 1]. Then for any b > 0, when n→ ∞,

sup
0≤u≤b n1/3

P
(
u ≥ S

(n)
i ≥ u− n1/3fn(

i

n
), 1 ≤ i ≤ n

)
= e

−π2σ2

2
(1+o(1))n1/3

∫ 1
0

dt
f2(t) .

(ii) For any b > a > 0, we have, as n→ ∞,

n∑

j=1

e−b(n−j)
1/3

P
(
an1/3 ≥ S

(n)
i > an1/3 − b(n− i)1/3, ∀ 1 ≤ i ≤ j

)
= e−min{b, 3π2σ2

2b2
}(1+o(1))n1/3

.

Proof of Corollary 2.2. We first prove (ii). Let ε > 0. Define k := ⌊1
ε
⌋, nℓ := ℓ⌊εn⌋ for ℓ = 0,

· · · , k − 1 and nk := n. By (2.5), the sum in (ii) is, for all large n and some constant c,

≤ ⌊εn⌋
k∑

ℓ=1

e−b(n−nℓ)
1/3

P
(
an1/3 ≥ S

(n)
i > an1/3 − b(n− i)1/3, ∀ 1 ≤ i ≤ nℓ−1

)

≤ ⌊εn⌋
k∑

ℓ=1

e−b(n−nℓ)
1/3

e−(
3π2σ2

2b2
−ε)(n1/3−(n−nℓ−1)

1/3)

≤ e−min{b, 3π2σ2

2b2
}(1−cε)n1/3

.

This proves the upper bound in (ii) as ε can be arbitrarily small. The lower bound is easier:

we only need to consider two terms: j = ⌊εn⌋ and j = n, and apply again (2.5).

The proof of (i) goes along similar lines by cutting the interval {0 ≤ u ≤ b n1/3} into

smaller intervals of length of order εn with small ε > 0, using monotonicity and applying

Proposition 2.1. The details are omitted. �

We now proceed to the proof of Theorem 1.4: if inft∈[0, 1] E{
∑
|x|=1 e

−tV (x)} = 1 and

E{
∑
|x|=1 V (x)e−V (x)} ≤ 0, then on the set of non-extinction,

lim
n→∞

1

n1/3
min
|x|=n

V (x) =
(3π2σ2

θ

2

)1/3
, P-a.s.,

where σ2
θ :=

1
θ
E{∑|x|=1 V (x)

2e−θV (x)} and θ ∈ (0, 1] is such that E{∑|x|=1 V (x)e
−θV (x)} = 0.

Without loss of generality, we can assume θ = 1. Indeed, if 0 < θ < 1, then by considering

Ṽ (x) := θV (x), we have inft∈[0, 1]E(
∑
|x|=1 e

−tṼ (x)) = 1 and E(
∑
|x|=1 Ṽ (x)e

−Ṽ (x)) = 0, so

that by the case θ = 1, 1
n1/3 min|x|=nmaxy∈ ]]∅, x]] Ṽ (y) → (3π

2σ̃2

2
)1/3 P-almost surely on the set

of non-extinction, where σ̃2 := E{
∑
|x|=1 Ṽ (x)

2e−Ṽ (x)}.
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So we only need to prove Theorem 1.4 in the case θ = 1. In the rest of the section, we

assume E(
∑
|x|=1 e

−V (x)) = 1 and E(
∑
|x|=1 V (x)e−V (x)) = 0, and prove that, on the set of

non-extinction,

(2.7) lim
n→∞

1

n1/3
min
|x|=n

V (x) =
(3π2σ2

2

)1/3
, P-a.s.,

with σ2 := σ2
1 = E{

∑
|x|=1 V (x)

2e−V (x)}. For the sake of clarity, we prove the upper and

lower bounds in distinct parts.

Proof of (2.7): lower bound. We assume E(
∑
|x|=1 e

−V (x)) = 1 and E(
∑
|x|=1 V (x)e−V (x)) = 0.

Let 0 < a < (3π
2σ2

2
)1/3 and b := (3π

2σ2

2
)1/3. Let n ≥ 1. For all |x| = n, let

Hx := inf{j ∈ [1, n] : V (xj) ≤ an1/3 − b(n− j)1/3}, inf∅ := ∞.

n

V (xj)

an1/3

(a− b)n1/3

Hx

Figure 2: Hx

Assume there exists a vertex x with |x| = n such that V (x) ≤ an1/3. Then Hx ≤ n;

writing j := Hx and y := xj , we have, for all i < j, an1/3 ≥ V (yi) > an1/3 − b(n − i)1/3 and

V (y) ≤ an1/3 − b(n− j)1/3. Therefore, by writing

Uj :=
∑

|y|=j
1{V (y)≤an1/3−b(n−j)1/3, an1/3≥V (yi)>an1/3−b(n−i)1/3, ∀i<j},

we obtain:

P
(
min
|x|=n

V (x) ≤ an1/3
)
≤ P

( n⋃

j=1

{Uj ≥ 1}
)
≤

n∑

j=1

E(Uj).

11



By (2.3), we have E(Uj) = E[eSj1{Sj≤an1/3−b(n−j)1/3, an1/3≥Si>an1/3−b(n−i)1/3, ∀i<j}]. Hence

P
(
min
|x|=n

V (x) ≤ an1/3
)
≤

n∑

j=1

ean
1/3−b(n−j)1/3P

(
an1/3 ≥ Si > an1/3 − b(n− i)1/3, ∀i < j

)
.

Applying Corollary 2.2 (ii) and noting that min{b, 3π2σ2

2b2
} = (3π

2σ2

2
)1/3, we get that, for any

0 < a < (3π
2σ2

2
)1/3,

(2.8) lim sup
n→∞

1

n1/3
logP

(
min
|x|=n

V (x) ≤ an1/3
)
≤ a−

(3π2σ2

2

)1/3

,

which implies
∑

nP{min|x|=n V (x) ≤ an1/3} < ∞. The lower bound in (2.7) follows from

the Borel–Cantelli lemma, as a can be as close to (3π
2σ2

2
)1/3 as possible. �

Proof of (2.7): upper bound. Assume E{
∑
|x|=1 e

−V (x)} = 1 and E{
∑
|x|=1 V (x)e

−V (x)} = 0.

Let n ≥ 1 and b > a > ε > 0. The key step in the proof of the upper bound in (2.7)

is the following estimate, which is a consequence of the Paley–Zygmund inequality (see [13]

for a proof): For any Borel sets Ii,n ⊂ R, 1 ≤ i ≤ n, and any integer rn ≥ 1, we have

(2.9) P
{
∃|x| = n : V (xi) ∈ Ii,n , ∀1 ≤ i ≤ n

}
≥ E[eSn 1{Si∈Ii,n , νi−1≤rn, ∀ 1≤i≤n}]

1 + (rn − 1)
∑n

j=1 hj,n
,

where

hj,n := sup
u∈Ij,n

E
(
eSn−j1{Si∈Ii+j,n−u, ∀0≤i≤n−j}

)
,

and Ii+j,n − u := {v − u : v ∈ Ii+j,n}. [We recall that (Si − Si−1, νi−1), i ≥ 1, are i.i.d.

random vectors (with S0 := 0) whose common distribution is given by (2.2).]

We choose rn := ⌊en1/4⌋ and Ii,n := [(a − ε)n1/3 − b(n − i)1/3, an1/3]. In particular,

{∃|x| = n : V (xi) ∈ Ii,n , ∀1 ≤ i ≤ n} ⊂ {min|x|=n V (x) ≤ an1/3}. It follows from (2.9) that

P
(
min
|x|=n

V (x) ≤ an1/3
)
≥ e(a−ε)n

1/3
P{Si ∈ Ii,n , νi−1 ≤ en

1/4
, ∀ 1 ≤ i ≤ n}

1 + en1/4
∑n

j=1 hj,n
.

Let X
(n)
j , 1 ≤ j ≤ n, be i.i.d. random variables such that X

(n)
1 has the same distribution

as S1 conditioned on {ν0 ≤ en
1/4}. Let S(n)

0 := 0 and S
(n)
j := X

(n)
1 + ...+X

(n)
j for 1 ≤ j ≤ n.

Then

P{Si ∈ Ii,n , νi−1 ≤ en
1/4

, ∀ 1 ≤ i ≤ n}
= [P(ν0 ≤ en

1/4

)]nP
{

max
0≤k≤n

S
(n)
k ≤ an1/3, S

(n)
i ≥ (a− ε)n1/3 − b(n− i)1/3, ∀1 ≤ i ≤ n

}
.
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The second probability expression on the right-hand side is, according to Proposition 2.1

(we easily check that condition (2.4) is satisfied), = exp{−(1+o(1))π
2σ2

2
n1/3

∫ 1

0
dt

(ε+b(1−t)1/3)2},
which is bounded by exp{−(3π

2σ2

2b2
−c1(ε))n1/3} for all sufficiently large n, with c1(ε) denoting

a constant such that limε→0 c1(ε) = 0. On the other hand, by (2.2), we have, for any η > 0,

E[(ν0)
η] = E(Nη

∑N
i=1Ai), which is finite (by Hölder’s inequality and (1.2)) if η > 0 is chosen

to be sufficiently small; thus [P(ν0 ≤ en
1/4

)]n → 1 as n→ ∞. Accordingly, for all sufficiently

large n and some constant c2(ε) satisfying limε→0 c2(ε) = 0,

(2.10) P
(
min
|x|=n

V (x) ≤ an1/3
)
≥ exp{n1/3[a− 3π2σ2

2b2
− c2(ε)]}

1 + en1/4
∑n

j=1 hj,n
.

We now estimate
∑n

j=1 hj,n. By definition,

hj,n = sup
0≤u≤εn1/3+b(n−j)1/3

E
(
eSn−j1{u≥Si≥u−εn1/3−b(n−j−i)1/3, ∀ i≤n−j}

)

≤ sup
0≤u≤εn1/3+b(n−j)1/3

euP
(
u ≥ Si ≥ u− εn1/3 − b(n− j − i)1/3, ∀ i ≤ n− j

)
.

Let A be an integer such that A ≥ 1
ε2
. Let nℓ := ℓ⌊ n

A
⌋ for ℓ = 0, 1, · · · , A− 1 and nA := n.

If j ∈ [nℓ, nℓ+1] ∩ Z (for some 0 ≤ ℓ ≤ A− 1), then

hj,n ≤ eεn
1/3+b(n−nℓ)

1/3

sup
0≤u≤(b+ε)n1/3

P
(
u ≥ Si ≥ u− εn1/3 − b(n− nℓ − i)1/3, ∀i ≤ n− nℓ+1

)
.

We now bound the supremum on the right-hand side. If ℓ is such that 1− ℓ+1
A

≤ ε, then we

simply say that the supremum is bounded by 1, so that maxnℓ≤j≤nℓ+1
hj,n ≤ eεn

1/3+b(n−nℓ)
1/3

.

If 1− ℓ+1
A
> ε, we bound the supremum by applying Corollary 2.2 (i) to f(t) := ε

(1− ℓ+1
A

)1/3
+

b( A−ℓ
A−(ℓ+1)

− t)1/3: since f(t) ≤ ε2/3+ b(1+ 1
εA

− t)1/3 ≤ ε2/3+ b(1+ ε− t)1/3 (using A ≥ 1
ε2

for

the second inequality), we have
∫ 1

0
dt
f2(t)

≥ 3
b2
−c3(ε), with c3(ε) denoting a constant satisfying

limε→0 c3(ε) = 0; hence by Corollary 2.2 (i),

max
nℓ≤j≤nℓ+1

hj,n ≤ eεn
1/3+b(n−nℓ)

1/3−( 3π2σ2

2b2
−c3(ε))(n−nℓ+1)

1/3

.

Therefore, for all sufficiently large n and a constant c(ε) satisfying limε→0 c(ε) = 0, we have,

uniformly in all ℓ ∈ [0, A− 1] ∩ Z,

max
nℓ≤j≤nℓ+1

hj,n ≤ en
1/3[(b− 3π2σ2

2b2
)++c(ε)],
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where u+ := max{u, 0}. As a consequence, max0≤j≤n hj,n = max0≤ℓ≤A−1maxnℓ≤j≤nℓ+1
hj,n ≤

en
1/3[(b− 3π2σ2

2b2
)++c(ε)] for all sufficiently large n. In view of (2.10), we obtain that, for any

b > a > 0,

(2.11) lim inf
n→∞

1

n1/3
logP

(
min
|x|=n

V (x) ≤ an1/3
)
≥ −

(
b− 3π2σ2

2b2
)+

+ a− 3π2σ2

2b2
.

We now fix a > (3π
2σ2

2
)1/3 and η > 0. We can choose b > a sufficiently close to a such

that (b− 3π2σ2

2b2
)+ − a + 3π2σ2

2b2
< η; accordingly, for all sufficiently large n,

(2.12) P
(
min
|x|=n

V (x) ≤ an1/3
)
≥ e−η n

1/3

.

From here, it is routine (McDiarmid [29]) to obtain the upper bound in (2.7); we produce

the details for the sake of completeness. Let Rn := inf{k : #{x : |x| = k} ≥ e2η n
1/3}. For

all large n,

P
{
Rn <∞, max

k∈[n
2
, n]

min
|x|=k+Rn

V (x) > max
|y|=Rn

V (y) + an1/3
}

≤
∑

k∈[n
2
, n]

P
{
Rn <∞, min

|x|=k+Rn

V (x) > max
|y|=Rn

V (y) + an1/3
}

≤
∑

k∈[n
2
, n]

[
P
{
min
|x|=k

V (x) > an1/3
}]⌊e2ηn1/3 ⌋

,

which, according to (2.12), is summable in n. By the Borel–Cantelli lemma, P-a.s. for all

large n, we have either Rn = ∞, or maxk∈[n
2
, n] min|x|=k+Rn V (x) ≤ max|y|=Rn V (y) + an1/3.

By the law of large numbers for the branching random walk (Biggins [5]), there exists

a constant c ∈ (0, ∞) such that 1
n
max|y|=n V (y) → c, P-almost surely upon the system’s

survival. In particular, upon survival, max|y|=n V (y) ≤ 2cn, P-almost surely for all large

n. Consequently, upon the system’s survival, P-almost surely for all large n, we have either

Rn = ∞, or maxk∈[n
2
, n]min|x|=k+Rn V (x) ≤ 2cRn + an1/3.

Recall that the number of particles in each generation forms a supercritical Galton–

Watson process. In particular, conditionally on the system’s survival, #{u: |u|=k}
(EN)k

converges

a.s. to a (strictly) positive random variable when k → ∞, which implies Rn ∼ 2η n1/3

log(EN)

P-a.s. (n → ∞), and maxk∈[n
2
, n]min|x|=k+Rn V (x) ≥ min|x|=n V (x) P-almost surely for all

large n. As a consequence, upon the system’s survival, we have, P-almost surely for all large

n,

min
|x|=n

V (x) ≤ 5cη

log(EN)
n1/3 + an1/3.
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Since a (resp. η) can be as close to (3π
2σ2

2
)1/3 (resp. 0) as possible, this yields the upper

bound in (2.7), and completes the proof of Theorem 1.4. �

Our proof of Theorem 1.4 gives the following deviation probability of min|x|=n V (x), which

may be of independent interest.

Proposition 2.3 Assume ψ(1) = ψ′(1) = 0. For any 0 < a ≤ (3π
2σ2

2
)1/3, we have

(2.13) lim
n→∞

1

n1/3
logP

(
min
|x|=n

V (x) ≤ an1/3
)
= a−

(3π2σ2

2

)1/3

.

Proof. If 0 < a < (3π
2σ2

2
)1/3, the upper and lower bounds in (2.13) follow from (2.8) and

(2.11), respectively. [In (2.11), we use the fact that b := (3π
2σ2

2
)1/3 solves b = 3π2σ2

2b2
.]

If a = (3π
2σ2

2
)1/3, only the lower bound in (2.13) requires a proof, which follows immedi-

ately from (2.11). �

Remark 2.4 Assume ψ(1) = ψ′(1) = 0. Theorem 1.4 says that, on the set of non-

extinction, P-almost surely for n → ∞, there exists xn with |xn| = n such that V (xn) =

(1 + o(1))(3π
2σ2

2
)1/3n1/3. One may wonder whether the vertices (xn) can be chosen to form

an infinite ray (i.e., each xn is a child of xn−1). The answer is no: Jaffuel [20] proves that

this is possible only if we increase the function (3π
2σ2

2
)1/3n1/3 to (81π

2σ2

8
)1/3n1/3. �

3 An estimate for one-dimensional random walks

We present in this section a probability estimate for one-dimensional random walks. It

will be used in the proofs of Theorems 1.1 and 1.2 in the forthcoming sections. For each

n ≥ 1, let X
(n)
i , 1 ≤ i ≤ n, be i.i.d. real-valued variables; let S

(n)
0 := 0 and S

(n)
j :=

∑j
i=1X

(n)
i

for 1 ≤ j ≤ n. Let (an) be positive numbers such that an → ∞ and a2n
n

→ 0, n → ∞. We

write S
(n)

j := max1≤i≤j S
(n)
i for 1 ≤ j ≤ n.

Proposition 3.1 Assume (2.4). Let f : [0, 1] → (0,∞) be a continuous function. For

δ ≥ 0, we consider the event

Gδ(n) :=
{
(1 + δ)S

(n)

j − S
(n)
j ≤ an f(

j

n
), ∀1 ≤ j ≤ n

}
.

(i) If δ = 0, then

lim
n→∞

a2n
n

logP
{
G0(n)

}
= −π

2σ2

8

∫ 1

0

ds

f 2(s)
.
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Moreover, for any fixed 0 < b < 1,

lim
n→∞

a2n
n

logP
{
G0(n), S

(n)

n − S(n)
n ≤ b an f(1)

}
= −π

2σ2

8

∫ 1

0

ds

f 2(s)
.

(ii) If δ > 0, then

lim
n→∞

a2n
n

logP
{
Gδ(n)

}
= −π

2σ2

2

∫ 1

0

ds

f 2(s)
.

We mention that for the centered random walk (Sn) given in (2.3), assumption (2.4) is

obviously satisfied. Hence Proposition 2.1 as well as Corollary 3.2 below, hold also for (Sn).

Proof of Proposition 3.1. (i) Let 0 < ε < 1
4
min{b, min0≤t≤1 f(t)} and let A be a large

integer. Consider a sufficiently large n such that sup0≤s<t≤1, t−s≤2Aa2n/n |f(t) − f(s)| ≤ ε.

Let m = ⌊ n
A2a2n

⌋. For 0 ≤ k < Am, let rk := k⌊Aa2n⌋ and rAm := n. Note that ⌊Aa2n⌋ ≤
rAm − rAm−1 ≤ 2⌊Aa2n⌋. Let ℓ ∈ [0, A − 1] ∩ Z and k ∈ [ℓm, (ℓ + 1)m − 1] ∩ Z. For all

rk ≤ j < rk+1, |f( jn)− f( ℓ
A
)| ≤ ε. Define

E(±)
n :=

A−1⋂

ℓ=0

(ℓ+1)m−1⋂

k=ℓm

rk+1−1⋂

j=rk

{
S
(n)

j − S
(n)
j ≤ an (f(

ℓ

A
)± ε)

}
.

Then

P
(
G0(n)

)
≤ P

(
E(+)
n

)
,

P
(
G0(n), S

(n)

n − S(n)
n ≤ b an f(

j

n
)
)

≥ P
(
E(−)
n ∩

⋂

0≤k≤Am
{S(n)

rk
− S(n)

rk
≤ εan}

)
.

Observe that for any rk, conditionally on σ{S(n)
j , 0 ≤ j ≤ rk} and on {S(n)

rk
− S

(n)
rk = x}, the

reflecting process (S
(n)

i+rk
− S

(n)
i+rk

, 0 ≤ i ≤ rk+1 − rk) has the same law as (max{x, S(n)

i } −
S
(n)
i , 0 ≤ i ≤ rk+1 − rk). Using this observation for all k, we see that

P(E(+)
n ) ≤

A−1∏

ℓ=0

(ℓ+1)m−1∏

k=ℓm

P
{

max
0≤i<rk+1−rk

(S
(n)

i − S
(n)
i ) ≤ an (f(

ℓ

A
) + ε)

}
,(3.1)

P
(
E(−)
n ∩

⋂

0≤k≤Am
{S(n)

rk
− S(n)

rk
≤ εan}

)
≥

A−1∏

ℓ=0

(ℓ+1)m−1∏

k=ℓm

P
{
Υk

}
,(3.2)

with

Υk :=
{

max
0≤i<rk+1−rk

(S
(n)

i −S(n)
i ) ≤ an (f(

ℓ

A
)−2ε), S

(n)

rk+1−rk−S
(n)
rk+1−rk < εan, S

(n)

rk+1−rk > εan

}
.
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Now, we prove the upper bound in (i). By (3.1),

a2n
n

logP(E(+)
n ) ≤ ma2n

n

A−1∑

ℓ=0

logP
{
S
(n)

i − S
(n)
i ≤ an (f(

ℓ

A
) + ε), ∀ 0 ≤ i < ⌊Aa2n⌋

}
.

According to Donsker’s invariance principle,1 the probability term on the right-hand side

converges, when n→ ∞, to

P
{

sup
0≤t≤1

(W (t)−W (t)) ≤ 1

σ
√
A
(f(

ℓ

A
) + ε)

}
,

where W is a standard one-dimensional Brownian motion, and W (t) = sup0≤s≤tW (s). By

Lévy’s identity, (W (t)−W (t), t ≥ 0) is distributed as (|W (t)|, t ≥ 0); thus we have

(3.3) P
{

sup
0≤t≤1

(W (t)−W (t)) ≤ u
}
= e−(1+o(1))

π2

8u2 , u→ 0,

which can be easily deduced from Formula (5.9) of page 342 of Feller [?], taking a = 2u,

t = 1 and x = u. As a consequence, for all sufficiently large A, say A ≥ A0 = A0(ε, σ, f),

logP
{

sup
0≤t≤1

(W (t)−W (t)) ≤ 1

σ
√
A
(f(

ℓ

A
) + ε)

}
≤ −(1− ε)π2σ2A

8(f( ℓ
A
) + ε)2

.

Since m ∼ n
a2nA

2 , we get, for A ≥ A0,

lim sup
n→∞

a2n
n

logP(E(+)
n ) ≤ 1

A2

A−1∑

ℓ=0

logP
{

sup
0≤t≤1

(W (t)−W (t)) ≤ 1

σ
√
A
(f(

ℓ

A
) + ε)

}

≤ −π
2σ2

8

1− ε

A

A−1∑

ℓ=0

1

(f( ℓ
A
) + ε)2

.

Letting A→ ∞ and then ε→ 0, we get the upper bound in (i):

lim sup
n→∞

a2n
n

logP
{
S
(n)

i − S
(n)
j ≤ an f(

j

n
), ∀1 ≤ j ≤ n

}
≤ − π2σ2

8

∫ 1

0

ds

f 2(s)
.

To prove the lower bound in (i), we go back to the events Υk in (3.2). Observe that

for each 1 ≤ i ≤ rk+1 − rk, all the three events in Υk are non-decreasing with respect to

S
(n)
i − S

(n)
i−1. By the FKG inequality,

P
(
Υk

)
≥ P

(
max

0≤i<rk+1−rk
(S

(n)

i − S
(n)
i ) ≤ an (f(

ℓ

A
)− 2ε)

)

×P
(
S
(n)

rk+1−rk − S
(n)
rk+1−rk < εan

)
P
(
S
(n)

rk+1−rk > εan

)
.

1Finite-dimensional convergence is checked by Lindeberg’s condition in the central limit theorem, whereas
tightness is proved via a standard argument as in Billingsley [8].
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Recall that rk+1 − rk = ⌊Aa2n⌋ for 0 ≤ k < Am − 1, and ⌊Aa2n⌋ ≤ rAm − rAm−1 ≤ 2⌊Aa2n⌋.
Using Donsker’s invariance principle again, we see that there exists a constant c(ε) > 0 such

that for all k, P(S
(n)

rk+1−rk − S
(n)
rk+1−rk < εan)P(S

(n)

rk+1−rk > εan) ≥ c(ε). From this, the lower

bound in (i) follows in the same way as the upper bound in (i).

(ii) Let us first prove the following fact: for any fixed c > 0,

(3.4) P
{

sup
0≤s≤1

(W (s)−W (s)) ≤ u,W (1) ≤ c u
}
= e−

π2

2u2
(1+o(1)), u→ 0.

To see why (3.4) holds, we denote by L(t) the local time at 0 of W up to time t, and

recall from Borodin and Salminen ([9], page 259, Formula 1.16.2) that, for λ > 0,

∫ ∞

0

e−λtP
(
sup
s≤t

|W (s)| ≤ 1, L(t) ≤ c
)
dt =

1

λ

(
1− 1

cosh(
√
2λ)

)(
1− e−c

√
λ
2

coth(
√
2λ)

)
.

By analytic continuation, we get that for 0 < λ < π2

2
,

∫ ∞

0

eλtP
(
sup
s≤t

|W (s)| ≤ 1, L(t) ≤ c
)
dt =

1

λ

( 1

cos(
√
2λ)

− 1
)(

1− e−c
√

λ
2
cotan(

√
2λ)

)
.

This implies, by means of a Tauberian theorem (see, for example, Theorem 3.2 of [16]), that

P
(

sup
0≤s≤t

|W (s)| ≤ 1, L(t) ≤ c
)
= e−(

π2

2
+o(1))t, t→ ∞,

which, by scaling, is equivalent to P(sup0≤s≤1 |W (s)| ≤ u, L(1) ≤ u
δ
) = e−(

π2

2u
+o(1)), u→ 0.

By Lévy’s identity, the two processes (W −W, W ) and (|W |, L) have the same law; conse-

quently, this implies (3.4).

Now let us proceed to prove the upper bound in (ii). Let ε > 0, and let (rk) be as in

the proof of (i), i.e., A is a large integer, m := ⌊ n
A2a2n

⌋, rk := k⌊Aa2n⌋ (for 0 ≤ k < Am)

and rAm := n, with n sufficiently large such that |f( j
n
) − f( ℓ

A
)| ≤ ε for rk ≤ j ≤ rk+1 and

k ∈ [ℓm, (ℓ+ 1)m) ∩ Z. Let

F (+)
n :=

A−1⋂

ℓ=0

(ℓ+1)m−1⋂

k=ℓm

{
max

rk≤j≤rk+1

(S
(n)

j − S
(n)
j ) ≤ an (f(

ℓ

A
) + ε), S

(n)

rk+1
≤ c

δ
an

}
,

where c = sup0≤t≤1 f(t). Clearly Gδ(n) ⊂ F
(+)
n . The Markov property yields that for

each k, conditionally on σ{S(n)
j , 0 ≤ j ≤ rk} and on {S(n)

rk
− S

(n)
rk = xk, S

(n)
rk = yk}, the

process (S
(n)

i+rk
, S

(n)

i+rk
− S

(n)
i+rk

, 0 ≤ i ≤ rk+1 − rk) has the same law as (max{xk, S
(n)

i } +
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yk, max{xk, S
(n)

i } − S
(n)
i , 0 ≤ i ≤ rk+1 − rk). On F

(+)
n , we have −yk ≤ xk ≤ (c + ε)an

(recalling that c = sup0≤t≤1 f(t)), thus yk ≥ −(c+ ε)an. Therefore, by the Markov property,

P(F (+)
n ) ≤

A−1∏

ℓ=0

(ℓ+1)m−1∏

k=ℓm

P
{

max
0≤i≤rk+1−rk

(S
(n)

i −S(n)
i ) ≤ an (f(

ℓ

A
)+ε), S

(n)

rk+1−rk ≤ (c+ε+
c

δ
)an

}
.

This is the analogue of (3.1) for (ii). From here, the rest of the proof of the upper bound

in (ii) is done by using exactly the same arguments as in (i), by applying (3.4) instead of

(3.3). We omit the details.

The proof of the lower bound in (ii) is easy. Indeed, let 0 < ε < inft∈[0, 1] f(t), and let

F (−)
n :=

{
−(f(

i

n
)− ε) ≤ S

(n)
i

an
≤ ε

1 + δ
, ∀0 ≤ i ≤ n

}
.

Clearly F
(−)
n ⊂ Gδ(n). By (2.5), we have

lim
n→∞

a2n
n

logP(F (−)
n ) = −π

2σ2

2

∫ 1

0

dt

(f(t)− ε+ ε
1+δ

)2
.

Letting ε→ 0 gives the lower bound in (ii). �

The following corollary follows from Proposition 3.1 exactly as Corollary 2.2 follows from

Proposition 2.1.

Corollary 3.2 Assume that (2.4) is satisfied with an = n1/3. Let a > 0 and δ > 0. Then

for n→ ∞,

n∑

j=1

e−a(n−j)
1/3

P
(
S
(n)

i − S
(n)
i ≤ a(n− i)1/3, ∀ 1 ≤ i ≤ j

)
= e−min{a, 3π2σ2

8a2
}(1+o(1))n1/3

,

n∑

j=1

e−a(n−j)
1/3

P
(
(1 + δ)S

(n)

i − S
(n)
i ≤ a(n− i)1/3, ∀ 1 ≤ i ≤ j

)
= e−min{a, 3π2σ2

2a2
}(1+o(1))n1/3

.

4 Proof of Theorem 1.2

We assume inft∈[0, 1] ψ(t) = 0 and ψ′(1) ≥ 0 in this section. Let θ ∈ (0, 1] be such that

ψ′(θ) = 0 as in (1.4). By Theorem 1.4 and (1.7), we get that, on the set of non-extinction,

lim inf
n→∞

1

n1/3
log ̺n ≥ −α1/3

θ , P-a.s.,
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where αθ :=
3π2

2θ
E[

∑N
i=1A

θ
i (logAi)

2] = 3π2

2θ
E[

∑
|x|=1 V (x)2e−θV (x)], and ̺n := Pω{τn < τ0} is

as in (1.7). In view of Fact 1.3, it remains only to check that if ψ′(1) > 0 (i.e., if θ < 1),

then we have, on the set of non-extinction,

(4.1) lim sup
n→∞

1

n1/3
log ̺n ≤ −α1/3

θ , P-a.s.

We do not assume ψ′(1) > 0 for the moment (so θ can be 1, and the inequality (4.2)

below can also be used in the proof of Theorem 1.1 in the next section). Let a > 0, n ≥ 1

and δ ≥ 0. For any y with |y| ≤ n, say |y| = j, we introduce the following event:

Eδ(y) =
{
(1 + δ)V (y)− V (y) ≥ a

θ
(n− j)1/3

}
∩
j−1⋂

i=1

{
(1 + δ)V (yi)− V (yi) <

a

θ
(n− i)1/3

}
,

where yi is the unique vertex of [[∅, y]] that is in the i-th generation, whereas V (x) :=

maxz∈ ]]∅, x]] V (z) as in (1.8).

a(n− i)1/3

ij

V (xi)− V (xi)

a
θ
(n− i)1/3

ij

(1 + δ)V (xi)− V (xi)

Figure 3: j = inf{i : Eδ(xi) holds.}

Let as before τn := inf{i ≥ 1 : |Xi| = n} and T (x) := inf{k ≥ 0 : Xk = x}. Consider

any vertex x with |x| = n. Let j = j(x) ∈ [1, n] ∩ Z be the smallest integer such that

(1 + δ)V (xj)− V (xj) ≥ a
θ
(n− j)1/3. Such a j exists. Moreover, we have T (x) ≥ T (xj), and

Eδ(xj) holds. Consequently,

τn = inf
|x|=n

T (x) ≥ min
1≤j≤n

inf{T (y) : |y| = j and Eδ(y) holds},

so that ̺n = Pω{τn < τ0} ≤
∑n

j=1

∑
|y|=j 1Eδ(y) Pω{T (y) < τ0}. By (1.11), we obtain:

(4.2) ̺n ≤
n∑

j=1

∑

|y|=j
1Eδ(y) ω(∅, y1) e

V (y1)−V (y) = ω(∅,
←
∅)

n∑

j=1

∑

|y|=j
1Eδ(y) e

−V (y),

which is bounded by
∑n

j=1

∑
|y|=j 1Eδ(y) e

−V (y).
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We now assume furthermore ψ′(1) > 0, so that θ < 1. We choose δ ∈ (0, 1
θ
− 1). Since

(1 + δ)θ < 1, we have

̺(1+δ)θn ≤
n∑

j=1

∑

|y|=j
1Eδ(y) e

−(1+δ)θV (y).

Consider the branching random walk Ṽ (x) := θV (x) for any x. If we define ψ̃(t) :=

logE[
∑
|x|=1 e

−tṼ (x)], then ψ̃(1) = ψ̃′(1) = 0. We apply formula (2.3) to (Ṽ (x)), and

obtain a centered one-dimensional random walk (S̃i, 0 ≤ i ≤ n) with σ̃2 := E(S̃2
1) =

E[
∑
|x|=1 θ

2V (x)2e−θV (x)] such that for 1 ≤ j ≤ n (writing Ŝi := max1≤k≤i S̃k, ∀i),

E
( ∑

|y|=j
1Eδ(y) e

−(1+δ)θV (y)
)

= E
(
eS̃j−(1+δ)Ŝj 1{(1+δ)Ŝi−S̃i<a(n−i)1/3, ∀i<j, (1+δ)Ŝj−S̃j≥a(n−j)1/3}

)

≤ e−a(n−j)
1/3

P
(
(1 + δ)Ŝi − S̃i < a(n− i)1/3, ∀i < j

)
.

It follows that

E(̺(1+δ)θn ) ≤
n∑

j=1

e−a(n−j)
1/3

P
(
(1 + δ)Ŝi − S̃i < a(n− i)1/3, ∀i < j

)
.

We choose a := (3π
2σ̃2

2
)1/3 = θα

1/3
θ . Applying Corollary 3.2 (ii) to (S̃i), we get E(̺

(1+δ)θ
n ) ≤

e−(a+o(1))n
1/3

, for n → ∞. By Chebyshev’s inequality and the Borel–Cantelli lemma, P-

almost surely for n → ∞, ̺
(1+δ)θ
n ≤ e−(a+o(1))n

1/3
. Since δ can be arbitrarily small, this

implies (4.1), and completes the proof of Theorem 1.2. �

5 Proof of Theorem 1.1: upper bound

We prove that if ψ(1) = ψ′(1) = 0, then2

(5.1) lim sup
n→∞

max0≤k≤n |Xk|
(log n)3

≤ 8

3π2σ2
, P-a.s.,

where σ2 := E{∑|x|=1 V (x)2e−V (x)}.
Let, for any n ≥ 1,

(5.2) βn := Pω{τn < T←
∅
},

where τn := inf{i ≥ 1 : |Xi| = n} is as before the first time that the walk reaches the n-th

generation, whereas T←
∅
:= inf{i ≥ 0 : Xi =

←
∅} is the first time that the walk hits

←
∅. There

2On the set of extinction, the upper bound is, in fact, trivially true.
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is a simple relation between βn and ̺n := Pω{τn < τ0}, as stated in the following lemma.

We mention that no condition on ψ is in force for the lemma.

Lemma 5.1 Assume that the walk (Xn) is recurrent. We have, for all n ≥ 1,

(5.3) ̺n ≤ βn ≤ ̺n

ω(∅,
←
∅)
.

Proof of Lemma 5.1. The first inequality in (5.3) is trivial. Let us prove the second. Let

T
(0)
∅ := 0 and T

(k)
∅ := inf{i > T

(k−1)
∅ : Xi = ∅} (for k ≥ 1). In words, T

(k)
∅ is the k-th return

time to the root ∅. [Thus T
(1)
∅ = τ0.] Since the walk is recurrent, each T

(k)
∅ is well-defined.

Recall that βn represents the probability that, starting from the root, the walk visits

generation n before hitting
←
∅. By considering the number of returns to ∅ (which can be 0)

by the walk before visiting generation n, we have

βn = Pω{τn < T←
∅
} =

∞∑

k=0

Pω

{
T

(0)
∅ < T

(1)
∅ < · · · < T

(k)
∅ < τn < T

(k+1)
∅ , τn < T←

∅

}
.

Applying the strong Markov property successively at T
(k)
∅ , · · · , T (1)

∅ , we see that the prob-

ability on the right-hand side equals [Pω{T (1)
∅ < (τn ∧ T←

∅
)}]k Pω{τn < T

(1)
∅ } (notation:

u ∧ v := min{u, v}). Therefore

βn =
Pω{τn < T

(1)
∅ }

1− Pω{T (1)
∅ < (τn ∧ T←

∅
)}

=
̺n

1− Pω{τ0 < (τn ∧ T←
∅
)} .

Since 1− Pω{τ0 < (τn ∧ T←
∅
)} ≥ 1− Pω{τ0 < T←

∅
} = ω(∅,

←
∅), this yields the lemma. �

We now turn to the proof of (5.1). Assume ψ(1) = ψ′(1) = 0. We claim that it suffices

to prove that

(5.4) lim sup
n→∞

1

n1/3
logE(βn) ≤ −

(3π2σ2

8

)1/3

.

Indeed, if (5.4) holds, then by Chebyshev’s inequality and the Borel–Cantelli lemma, for any

ε > 0 and P-almost surely all sufficiently large n, βn ≤ exp[−(1 − ε)(3π
2σ2

8
)1/3n1/3], which

by Lemma 5.1 yields ̺n ≤ exp[−(1 − ε)(3π
2σ2

8
)1/3n1/3]. In view of Fact 1.3, we obtain (5.1).

It remains to prove (5.4). Let a := (3π
2σ2

8
)1/3 and n ≥ 1. By (4.2) and Lemma 5.1,

E(βn) ≤
n∑

j=1

E
( ∑

|y|=j
1E0(y) e

−V (y)
)
,
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where

E0(y) :=
{
V (y)− V (y) ≥ a(n− j)1/3

}
∩
j−1⋂

i=1

{
V (yi)− V (yi) < a(n− i)1/3

}
.

Applying (2.3), this leads to (with Sj := max1≤i≤j Si as before):

E(βn) ≤
n∑

j=1

E
{
eSj1{Sj−Sj≥a(n−j)1/3, Si−Si<a(n−i)1/3, ∀i<j}e

−Sj

}

≤
n∑

j=1

e−a(n−j)
1/3

P
{
Si − Si < a(n− i)1/3, ∀i < j

}
,

which, according to Corollary 3.2 (i), is bounded by exp[−(1+o(1))(3π
2σ2

8
)1/3n1/3] for n→ ∞.

This yields (5.4). �

6 Proof of Theorem 1.1: lower bound

We start by recalling a spinal decomposition for the branching random walk (V (x)). This

decomposition has been used in the literature by many authors in various forms, going back

at least to Kahane and Peyrière [21]. The material in this paragraph is borrowed from Lyons,

Pemantle and Peres [26] and Lyons [24]. The starting point is to a change-of-probabilities

technique on the space of trees; we refer to the aforementioned references for more precision.

Assume ψ(1) = 0, i.e., E{
∑
|x|=1 e

−V (x)} = 1. Let

Wn :=
∑

|x|=n
e−V (x), n ≥ 0.

Clearly, (Wn) is a martingale with respect to the filtration (Fn), where Fn is the sigma-

algebra generated by the branching random walk in the first n generations.

By Kolmogorov’s extension theorem, there exists a probability Q on F∞ (the sigma-

algebra generated by the branching random walk) such that for any n,

(6.1) Q|Fn
=Wn •P|Fn

,

i.e., Q(A) = E(Wn 1A), ∀A ∈ Fn. The law of the branching random walk under the new

probability Q is called the law of a size-biased branching random walk. It is clear that the

size-biased branching random walk survives with probability one.
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There is a one-to-one correspondence between a branching random walk and a marked

tree. On the enlarged probability space formed by marked trees with distinguished rays, we

may construct a probability Q satisfying (6.1), and an infinite ray {w0 = ∅, w1, ..., wn, ..}
such that for any n ≥ 1,

←
wn = wn−1 (recalling that

←
x is the parent of x) and

(6.2) Q
{
wn = x

∣∣∣Fn

}
=

e−V (x)

Wn

, ∀ |x| = n.

For any individual x 6= ∅, let

∆V (x) := V (x)− V (
←
x).

We write, for k ≥ 1,

(6.3) Ik :=
{
x : |x| = k,

←
x = wk−1, x 6= wk

}
.

In words, Ik is the set of children of wk−1 except wk, or equivalently, the set of the brothers

of wk, and is possibly empty. Finally, let us introduce the following sigma-field:

(6.4) Gn := σ
{
(∆V (x), x ∈ Ik), V (wk), wk, Ik, 1 ≤ k ≤ n

}
.

The promised spinal decomposition is as follows (xu denoting concatenation of x and u).

Although it slightly differs from the spinal decomposition presented in Lyons [24], we feel

free to omit the proof.

Proposition 6.1 Assume ψ(1) = 0, and fix n ≥ 1. Under probability Q,

(i) the random variables (∆V (wk), ∆V (x), x ∈ Ik), 1 ≤ k ≤ n, are i.i.d.;

(ii) conditionally on Gn, the shifted branching random walks ({V (xu) − V (x)}|u|=k, 0 ≤
k ≤ n− |x|), for x ∈

⋃n
k=1 Ik, are independent, and have the same law as ({V (u)}|u|=k, 0 ≤

k ≤ n− |x|) under P.

We now proceed to (the beginning of) the proof of the lower bound in Theorem 1.1, of

which we recall the statement: under the assumption ψ(1) = ψ′(1) = 0, we have, on the set

of non-extinction,

(6.5) lim inf
n→∞

max0≤k≤n |Xk|
(logn)3

≥ 4

α
=

8

3π2σ2
, P-a.s.,

where σ2 := E{∑|x|=1 V (x)2e−V (x)}.
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w0

w1

w2

wn
PP P PP

Figure 4: A Q-tree

Let βn := Pω{τn < T←
∅
} be as in (5.2), where τn = inf{i ≥ 1 : |Xi| = n}, and T←

∅
=

inf{i ≥ 0 : Xi =
←
∅}. We claim that it suffices to prove that

(6.6) lim inf
n→∞

1

n1/3
logE(βn) ≥ −

(3π2σ2

8

)1/3

.

It is indeed easy to check that (6.6) implies (6.5): Let S := {the system survives},
Sn := {the system survives at least until generation n}. Clearly S ⊂ Sn for any n. Recall

that there exists (see [19], p. 755) a constant c > 0 such that for all large n,

P(Wn < n−c |Sn) ≤ n−2.

On the other hand, we have (see [17], p. 543, Remark; the result therein states for the regular

tree, but the same proof by convexity obviously holds in the general case)

E
(
e
−t βn

E(βn)

)
≤ E(e−tWn), t ≥ 0.

Since βn = 0 = Wn on S c
n , it is equivalent to say that E(e−t

βn
E(βn) |Sn) ≤ E(e−tWn |Sn).

Therefore, for any ε > 0 and all sufficiently large n,

P
( βn

E(βn)
< e−εn

1/3
∣∣∣Sn

)
≤ e1E

(
e−e

εn1/3
Wn

∣∣∣Sn

)
≤ n−2e + e−n

−ceεn
1/3

.

Since S ⊂ Sn, this implies
∑

nP( βn
E(βn)

< e−εn
1/3 |S ) ≤ 1

P(S )

∑
nP( βn

E(βn)
< e−εn

1/3 |Sn) <

∞. If (6.6) holds, then by the Borel–Cantelli lemma, on the set S , P-almost surely for

all sufficiently large n, βn ≥ e−εn
1/3

E(βn) ≥ exp{−[2ε + (3π
2σ2

8
)1/3]n1/3}, and thus ̺n ≥
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ω(∅,
←
∅) exp{−[2ε + (3π

2σ2

8
)1/3]n1/3} (Lemma 5.1). In view of Fact 1.3, we obtain (6.5), the

lower bound in Theorem 1.1.

The rest of the section is devoted to the proof of (6.6). Let as before ̺n := Pω{τn < τ0}.
Since βn ≥ ̺n (Lemma 5.1), we only need to bound E(̺n) from below.

For any vertex x, let P x
ω be the (quenched) probability such that P x

ω{X0 = x} = 1. We

first prove a formula for ̺n without the assumption ψ(1) = ψ′(1) = 0. We mention that if

|x| = n, then under P x
ω , τn is the first return time to generation n.

Lemma 6.2 Assume that the walk (Xn) is recurrent. For any n ≥ 1, we have

̺n = ω(∅,
←
∅)

∑

|x|=n

e−V (x)

ω(x,
←
x)
P x
ω{τn > τ0}.

Proof of Lemma 6.2. The beginning of the proof uses a similar idea as in the proof of Lemma

5.1, except that instead of considering the number of returns to ∅ before hitting generation

n, we consider the last site at generation n visited by the walk during an excursion. More

precisely, for any x with |x| ≥ 1, let T
0)
x := 0 and T

(k)
x := inf{i > T

(k−1)
x : Xi = x} (for

k ≥ 1). In words, T
(k)
x is the time of the k-th visit at x.

Recall that ̺n is the (quenched) probability that during an excursion away from the root

∅, the walk hits generation n. By considering the last site at generation n visited by the

walk during the excursion, we have

̺n =
∑

|x|=n

∞∑

k=1

Pω

{
T (k)
x < τ0 < T (k+1)

x , max
T

(k)
x <i≤τ0

|Xi| < n
}

=
∑

|x|=n

∞∑

k=1

Pω

{
T (k)
x < τ0, max

T
(k)
x <i≤τ0

|Xi| < n
}
.

Applying the strong Markov property at T
(k)
x , we see that the probability on the right-hand

side equals Pω{T (k)
x < τ0}P x

ω{τn > τ0}. Therefore,

̺n =
∑

|x|=n
P x
ω{τn > τ0}

∞∑

k=1

Pω{T (k)
x < τ0} =

∑

|x|=n
P x
ω{τn > τ0}Eω

( τ0−1∑

i=0

1{Xi=x}

)
.

Eω(
∑τ0−1

i=0 1{Xi=x}), is the expected number of visits at site x in an excursion, and can

therefore be explicitly computed. Indeed one can easily check that, as a function of x, it is

invariant with respect to the transition matrix ω(x, y). In the particular setting of Markov
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chains on trees any invariant measure can be computed, using an easy recurrence. One gets

that all the invariant measures are proportional to π(x) := 1

ω(x,
←
x )

e−V (x), for x 6=
←
∅ (Note

that this formula is also valid for x = ∅, because of the consistent definition of ω(∅,
←
∅)).

Therefore, there exists 0 < c(ω) <∞ such that

Eω

( τ0−1∑

i=0

1{Xi=x}

)
=

c(ω)

ω(x,
←
x)

e−V (x).

To determine the value of c(ω), we take x := ∅, to see that c(ω) = ω(∅,
←
∅). This yields the

lemma. �

Assume ψ(1) = 0. We make use of the size-biased branching random walk, and work

under the new probability Q. Recall the definitions of Q and wn from (6.1) and (6.2),

respectively. By Lemma 6.2,

E(̺n) = EQ

{ ω(∅,
←
∅)

ω(wn, wn−1)
Pwn
ω {τn > τ0}

}
.

We observe that

Pwn
ω {τn > τ0} =

n∏

j=1

Pwj
ω {τn > T (wj−1)} =:

n∏

j=1

Yj.

Obviously, Yn = ω(wn, wn−1), Yn−1 = ω(wn−1, wn−2).

Let j ≤ n− 2. By the Markov property, Yj = ω(wj, wj−1) +
∑

x:
←
x=wj

ω(wj, x)P
x
ω{τn >

T (wj−1)}, whereas by the strong Markov property, P x
ω{τn > T (wj−1)} = P x

ω{τn > T (wj)} Yj
for all x such that

←
x = wj. Accordingly,

Yj =
ω(wj, wj−1)

1−∑
x:
←
x=wj

ω(wj, x)P x
ω{τn > T (wj)}

=
1

1 +
∑

x:
←
x=wj

B(x)P x
ω{τn < T (wj)}

,

where

B(x) := e−[V (x)−V (
←
x )] =

ω(
←
x, x)

ω(
←
x,
⇐
x)
.

So, if we write

ξj :=
∑

x:
←
x=wj , x 6=wj+1

B(x)P x
ω{τn < T (wj)}, 1 ≤ j ≤ n− 2,

then Yj = 1
1+ξj+(1−Yj+1)B(wj+1)

, 1 ≤ j ≤ n − 2, and E(̺n) = EQ{ ω(∅,
←
∅)

ω(wn, wn−1)

∏n
j=1 Yj} =

EQ{ω(∅,
←
∅)

∏n−1
j=1 Yj}.
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Let Gn be the sigma-algebra generated by the first n generations of the spine (see (6.4)).

By Proposition 6.1, underQ, the random variables ξ1, · · · , ξn−1 are conditionally independent

given Gn. Moreover, for any 1 ≤ j ≤ n− 2,

(6.7) EQ(ξj |Gn) =
∑

x:
←
x=wj , x 6=wj+1

B(x)E(βn−1−j) ≤
E(βn−1−j)

ω(wj, wj−1)
.

We now provide a lower bound for E(̺n), by replacing (Yj)1≤j≤n−1 by a new collec-

tion of random variables, denoted by (Zj)1≤j≤n−1 and defined as follows: Zn−1 := Yn−1 =

ω(wn−1, wn−2) and for 1 ≤ j ≤ n− 2,

(6.8) Zj :=
1

1 + EQ(ξj |Gn) + (1− Zj+1)B(wj+1)
.

Since Zn−1, B(wn−1), B(wn−2), · · · , B(w2) are Gn-measurable, it follows by backwards in-

duction on j that each Zj, for 1 ≤ j ≤ n− 1, is Gn-measurable.

Lemma 6.3 Assume ψ(1) = 0. For any n ≥ 3, we have

EQ

{ n−1∏

j=1

Yj

∣∣∣Gn
}
≥

n−1∏

j=1

Zj, Q-a.s.

Proof of Lemma 6.3. For any c ∈ [0, 1] and a := (a1, · · · , an−1) ∈ R
n−1
+ , we define

F
c,a
n−1(un−1) := c, un−1 ∈ R+, and for 1 ≤ j ≤ n− 2,

F
c,a
j (uj, · · · , un−2) :=

1

1 + uj + aj+1[1− F
c,a
j+1(uj+1, · · · , un−2)]

, (uj, · · · , un−2) ∈ R
n−j−1
+ .

Then by backwards induction on j, we have, for 1 ≤ j ≤ n− 1,

Yj = F
Yn−1,B(w)
j (ξj, · · · , ξn−2), Zj = F

Zn−1,B(w)
j (EQ(ξj |Gn), · · · ,EQ(ξn−2 |Gn)),

where B(w) := (B(w1), · · · , B(wn−1)). Note that both Yn−1 and B(w) are Gn-measurable.

Recall that (under Q) ξ1, · · · , ξn−2 are conditionally independent given Gn. By Jensen’s

inequality, if Φ : R
n−2
+ → R is coordinate-wise convex, then EQ{Φ(ξ1, · · · , ξn−2) |Gn)} ≥

Φ(EQ(ξ1 |Gn), · · · ,EQ(ξn−2 |Gn)), Q-a.s. So we only need to show that for any c ∈ [0, 1]

and a ∈ R
n−1
+ , (u1, · · · , un−2) 7→

∏n−1
j=1 F

c,a
j (uj, · · · , un−2) as a function on R

n−2
+ , is convex

in each of ui.

Since the product of non-negative, coordinate-wise non-increasing, coordinate-wise con-

vex functions is still (non-negative, coordinate-wise non-increasing, and) coordinate-wise
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convex, we only have to check that for any j ≤ n − 2, the function (uj, · · · , un−2) 7→
F
c,a
j (uj, · · · , un−2) is non-negative (which is obvious), coordinate-wise non-increasing, and

coordinate-wise convex. We prove it by induction on j.

By definition, F c,a
n−2(un−2) = [1+un−2+(1− c)an−1]

−1, which is obviously non-increasing

and convex in un−2.

Assume that for 1 ≤ j ≤ n− 3, (uj+1, · · · , un−2) 7→ F
c,a
j+1(uj+1, · · · , un−2) is coordinate-

wise non-increasing and coordinate-wise convex. Since

F
c,a
j (uj, · · · , un−2) =

1

1 + uj + aj+1[1− F
c,a
j+1(uj+1, · · · , un−2)]

,

F
c,a
j is non-increasing and convex in each of ui (for j ≤ i ≤ n − 2): the monotonicity is

obvious, whereas the convexity follows from the fact that y 7→ 1
1+uj+(1−y)aj+1

is convex and

non-decreasing on [0, 1] and that f ◦ g is convex if f is convex and non-decreasing while g is

convex. �

Recall that E(̺n) = EQ{ω(∅,
←
∅)

∏n−1
j=1 Yj}. Since ω(∅,

←
∅) is Gn-measurable, it follows

from Lemma 6.3 that

(6.9) E(̺n) ≥ EQ

{
ω(∅,

←
∅)

n−1∏

j=1

Zj

}
.

We now give a lower bound for
∏n−1

j=1 Zj by means of a deterministic lemma. The proof

of the lemma is in the Appendix.

Lemma 6.4 Let n > k ≥ 2. Let bj+1 > 0 and rj ≥ 0 for all 0 ≤ j < n. Define (zj)1≤j≤n by

zn = 0 and

zj :=
1

1 + rj + bj+1(1− zj+1)
, 1 ≤ j ≤ n− 1.

Let v(0) := 0 and v(j) := −∑j
i=1 log bi, 1 ≤ j ≤ n. For anym0 = 0 < m1 < ... < mk = n−1,

we have
n−1∏

j=1

zj ≥
2−k

∏k
i=1(mi −mi−1)

exp
{
−

k∑

i=1

(
λi + (mi −mi−1)

2 r(i) ev
∗
i

)}
,

where for 1 ≤ i ≤ k (with y+ := max{y, 0} for y ∈ R),

r(i) := max
mi−1<j≤mi

rj ,

λi := max
mi−1<j≤mi

(v(j)− v(mi)) + (v(mi)− v(1 +mi))
+,

v∗i := max
mi−1<j≤ℓ≤mi

(v(j)− v(ℓ)).
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We continue with the proof of the lower bound in Theorem 1.1. Recall from (6.9) that

E(̺n) ≥ EQ{ω(∅,
←
∅)

∏n−1
j=1 Zj}.

Let k ≥ 2 and m0 := 0 < m1 < m2 < ... < mk = n − 1. Taking bj+1 = B(wj+1) and

rj := EQ(ξj |Gn), we note from (6.8) that we may take the choice of zj = Zj in Lemma 6.4.

Applying this lemma, and arguing that
∏k

i=1(mi −mi−1) ≤
∏k

i=1 n = nk, we find that

(6.10) E(̺n) ≥
1

(2n)k
EQ

(
ω(∅,

←
∅) e−

∑k
i=1 Λi−

∑k
i=1(mi−mi−1)2 r(i) e

S∗i
)
,

where, for any 1 ≤ i ≤ k,

r(i) := max
mi−1<j≤mi

EQ(ξj |Gn) ≤ max
mi−1<j≤mi

E(βn−1−j)

ω(wj, wj−1)
,

Λi := max
mi−1<j≤mi

(Sj − Smi
) + (Smi

− S1+mi
)+,

S∗i := max
mi−1<j≤ℓ≤mi

(Sj − Sℓ),

with Sj := V (wj), 0 ≤ j ≤ n. [In the inequality for r(i), we used (6.7).]

We choose: χ := 1
100

, k := ⌊n 1−χ
3 ⌋, m0 := 0, mi := n − (k − i)3⌊nχ⌋ for 1 ≤ i ≤ k − 1,

and mk := n− 1.

Let c > 1 be a constant sufficiently large such that Q{S2 ≥ S1, ω(w1, ∅) ≥ 1
c
} > 1

c
. Let

E(1)
n :=

mk⋂

j=mk−1+1

{
Sj+1 ≥ Sj, ω(wj, wj−1) ≥

1

c

}
.

On E
(1)
n , we have Λk ≤ 0, r(k) ≤ c, and S∗k = 0, whereas by definition, mk − mk−1 =

⌊nχ⌋ − 1 ≤ nχ. Therefore, by (6.10),

E(̺n) ≥ e−c n
2χ

(2n)k
EQ

(
ω(∅,

←
∅) e−

∑k−1
i=1 Λi−

∑k−1
i=1 (mi−mi−1)

2 r(i) eS
∗
i 1

E
(1)
n

)

=
e−c n

2χ

(2n)k
EQ

(
ω(∅,

←
∅) e−

∑k−1
i=1 Λi−

∑k−1
i=1 (mi−mi−1)2 r(i) e

S∗i
)
Q(E(1)

n ),

the last identity being a consequence of the fact (notation: w−1 :=
←
∅) that under Q, (Sj −

Sj−1, ω(wj−1, wj−2)), for j ≥ 1, are independent (they are i.i.d. for j ≥ 2). By the definition

of c, Q(E
(1)
n ) = [Q{S2 ≥ S1, ω(w1, ∅) ≥ 1

c
}]mk−mk−1 ≥ (1

c
)mk−mk−1 = (1

c
)⌊n

χ⌋−1. Hence,

E(̺n) ≥
e−c n

2χ

(2n)k c⌊nχ⌋−1 EQ

(
ω(∅,

←
∅) e−

∑k−1
i=1 Λi−

∑k−1
i=1 (mi−mi−1)2 r(i) e

S∗i
)
.
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Let ε ∈ (0, χ
3
). Write a∗ := (3π

2σ2

8
)1/3. By (5.4), there exists some constant c1 > 0 such

that E(βi) ≤ c1 e
−(a∗−ε)(i+1)1/3 for all i ≥ 1. Thus

r(i) ≤ c1 e
−(a∗−ε)(n−mi)

1/3

minmi−1<j≤mi
ω(wj, wj−1)

, 1 ≤ i ≤ k.

Consider

E(2)
n :=

{
ω(wj, wj−1) ≥ e−n

ε

, ∀ 1 ≤ j ≤ mk−1
}
∩ {ω(∅,

←
∅) ≥ e−n

ε}.

On E
(2)
n , we have, for any 1 ≤ i ≤ k−1, r(i) ≤ c1e

−(a∗−ε)(n−mi)
1/3+nε

, whereas mi−mi−1 ≤ n,

thus (mi − mi−1)
2r(i) ≤ e−(a∗−2ε)(n−mi)1/3 (for all sufficiently large n; we insist on the fact

that i < k). Hence

(6.11) E(̺n) ≥
e−c n

2χ−nε

(2n)k c⌊nχ⌋−1 EQ

(
e−

∑k−1
i=1 [Λi+eS

∗
i −(a∗−2ε)(n−mi)

1/3
] 1

E
(2)
n

)
.

Let, for 1 ≤ i ≤ k − 1,

E
(3)
n,i :=

{
S∗i < (a∗ − 2ε)(n−mi)

1/3, max
mi−1<j≤mi

(Sj − Smi
) ≤ nε, |S1+mi

− Smi
| ≤ nε

}
.

On the event E
(3)
n,i (for 1 ≤ i ≤ k − 1), we have Λi ≤ nε + nε = 2nε, and, of course,

S∗i − (a∗ − 2ε)(n−mi)
1/3 ≤ 0, so that Λi + eS

∗
i −(a∗−2ε)(n−mi)1/3 ≤ 2nε + 1 ≤ 3nε. Going back

to (6.11), we obtain:

(6.12) E(̺n) ≥
e−c n

2χ−nε−3nε(k−1)

(2n)k c⌊nχ⌋−1 Q
(
E(2)
n ∩

k−1⋂

i=1

E
(3)
n,i

)
.

By independence,

Q
(
E(2)
n ∩

k−1⋂

i=1

E
(3)
n,i

)
= Q{ω(∅,

←
∅) ≥ e−n

ε}
k−1∏

i=1

Q
(
E

(3)
n,i , min

mi−1<ℓ≤mi

ω(wℓ, wℓ−1) ≥ e−n
ε
)

≥ 1

2

k−1∏

i=1

Q
(
E

(3)
n,i , min

mi−1<ℓ≤mi

ω(wℓ, wℓ−1) ≥ e−n
ε
)
,

the last inequality holding for all sufficiently large n (in view of the fact that Q{ω(∅,
←
∅) ≥
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e−n
ε} → 1, n→ ∞). By independence again, for any 1 ≤ i ≤ k − 1,

Q
(
E

(3)
n,i , min

mi−1<ℓ≤mi

ω(wℓ, wℓ−1) ≥ e−n
ε
)

= Q
(
|S1+mi

− Smi
| ≤ nε, ω(wmi

, wmi−1) ≥ e−n
ε
)
×

×Q
(
S∗i < (a∗ − 2ε)(n−mi)

1/3, max
mi−1<j≤mi

(Sj − Smi
) ≤ nε,

min
mi−1<ℓ<mi

ω(wℓ, wℓ−1) ≥ e−n
ε
)

= Q
(
|S2 − S1| ≤ nε, ω(w1, ∅) ≥ e−n

ε
)
×Q

(
Fi(n), min

1≤ℓ<∆i

ω(wℓ, wℓ−1) ≥ e−n
ε
)
,

where, for 1 ≤ i ≤ k − 1,

∆i := mi −mi−1,

Fi(n) :=
{

max
1≤ℓ≤∆i

(Sℓ − Sℓ) < (a∗ − 2ε)(n−mi)
1/3, S∆i

− S∆i
≤ nε

}
,

with Sℓ := max1≤j≤ℓ Sj as before. Again, Q{|S2 − S1| ≤ nε, ω(w1, ∅) ≥ e−n
ε} is greater

than 1
2
for large n because it converges to 1. Therefore, for all large n,

Q
(
E(2)
n ∩

k−1⋂

i=1

E
(3)
n,i

)
≥ 1

2k

k−1∏

i=1

Q
(
Fi(n), min

1≤ℓ<∆i

ω(wℓ, wℓ−1) ≥ e−n
ε
)
.

To bound the probability expression on the right-hand side, we use the following lemma,

which is a uniform version of Proposition 3.1. Its proof is in the Appendix.

Lemma 6.5 Let Si − Si−1, i ≥ 1, be i.i.d. mean-zero random variables (S0 := 0) with

σ2 := E(S2
1) ∈ (0, ∞). For any δ > 0, there exist r0 > 1 and 0 < η < 1 such that for all

r ∈ [r0, η
√
n ] ∩ Z, for all events A

(n)
i , 1 ≤ i ≤ n, satisfying the following two conditions:

• (Si − Si−1, A
(n)
i ), for 1 ≤ i ≤ n, are i.i.d.,

• P(∩ni=1A
(n)
i ) ≥ 1− η

r
,

we have

η

r
e−(1+δ)

π2σ2

8
n
r2 ≤ P

(
max
1≤i≤n

(Si − Si) < r, Sn = Sn,

n⋂

i=1

A
(n)
i

)
≤ e−(1−δ)

π2σ2

8
n
r2 ,

where Si := max1≤j≤i Sj.

Recall that (A1, · · · , AN) is a random vector distributed as any of (A1(x), · · · , AN(x)(x))

defined in (1.1). Since E[ 1

ω(∅,
←
∅)
] = E[1 +

∑N
i=1Ai] = 1 + eψ(1) = 2, we have, Q{ω(w1, ∅) <
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e−n
ε} = P{ω(∅,

←
∅) < e−n

ε} ≤ 2e−n
ε
(by Markov’s inequality). Therefore, for all large n

and all 1 ≤ i ≤ k − 1,

Q
{

min
1≤ℓ<∆i

ω(wℓ, wℓ−1) ≥ e−n
ε
}

= [Q{ω(w1, ∅) ≥ e−n
ε}]∆i−1

≥ (1− 2e−n
ε

)∆i−1

≥ (1− 2e−n
ε

)n ≥ 1− e−n
ε/2

.

We apply Lemma 6.5 to A
(n)
i := {ω(wi, wi−1) ≥ e−n

ε} (with ∆i− 1 and (a∗− 2ε)(n−mi)
1/3

playing the roles of n and r, respectively; noting that ∆i−1 ∼ 3(k− i)2nχ and (n−mi)
1/3 ∼

(k − i)nχ/3, so the last condition in the lemma on A
(n)
i is satisfied), to see that for all large

n and for all 1 ≤ i ≤ k − 1,

Q
(
Fi(n), min

1≤ℓ<∆i

ω(wℓ, wℓ−1) ≥ e−n
ε
)
≥ exp

(
− (1 + ε)

3π2σ2

8(a∗ − 2ε)2
nχ/3

)
,

which implies that

Q
(
E(2)
n ∩

k−1⋂

i=1

E
(3)
n,i

)
≥ 1

2k
exp

(
− (k − 1)(1 + ε)

3π2σ2

8(a∗ − 2ε)2
nχ/3

)
.

By definition, k = ⌊n(1−χ)/3⌋; hence

lim inf
n→∞

1

n1/3
logQ

(
E(2)
n ∩

k−1⋂

i=1

E
(3)
n,i

)
≥ −(1 + ε)

3π2σ2

8(a∗ − 2ε)2
.

This, together with (6.12), yields

lim inf
n→∞

1

n1/3
logE(̺n) ≥ −

(3π2σ2

8

)1/3

.

Since βn ≥ ̺n (Lemma 5.1), we obtain (6.6), thus the lower bound in Theorem 1.1.

A Appendix. Proofs of Lemmas 6.4 and 6.5

Proof of Lemma 6.4. Although the lemma is deterministic, our proof is probabilistic. We

note that the value of b1 plays no role in the lemma.

Let (ηi)i≥0 be a Markov chain on {0, 1, · · · , n} with transition probabilities

P
(
ηi+1 = k

∣∣ ηi = j
)
=





bj+1

1+bj+1
, if k = j + 1,

1
1+bj+1

, if k = j − 1.

0 < j < n.
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[The transition probabilities from j = 0 and j = n, having no importance, can be anything.

For example, we can take P{ηi+1 = 0 | ηi = 0} = 1 = P{ηi+1 = n | ηi = n}.] Define

τη(j) := inf{i ≥ 1 : ηi = j} (with inf∅ := ∞ as usual). Let Pj be the probability such that

Pj{η0 = j} = 1, and let Ej be the expectation with respect to Pj. We claim that (∞ being

not <∞)

(A.1)

n−1∏

j=1

zj ≥
k∏

i=1

Emi

(
1(τη(mi−1)<τη(mi))(1 + r(i))−τη(mi−1)

)
,

and for any integers 0 ≤ ℓ < m ≤ n and r ≥ 0,

Em

(
(1 + r)−τη(ℓ)1(τη(ℓ)<τη(m))

)
≥ 1

2(m− ℓ)
exp

{
− max

ℓ<i≤m
(v(i)− v(m))

−(v(m)− v(m+ 1))+ − r(m− ℓ)2emaxℓ<i≤j≤m[v(i)−v(j)]
}
.(A.2)

Plainly Lemma 6.4 will follow from (A.1) and (A.2).

To prove (A.1), we consider a Markov chain (η̃i)i≥0 on {0, 1, · · · , n} ∪ {∂}, where ∂ is an

absorbing point, such that

P
(
η̃i+1 = k

∣∣ η̃i = j
)
=





bj+1 qj, if k = j + 1,
qj , if k = j − 1,
rjqj , if k = ∂,

0 < j < n,

with qj :=
1

bj+1+1+rj
for all 0 < j < n. [Again, the transition probabilities from j = 0 and

j = n can be anything.] Let τη̃(j) := inf{i ≥ 1 : η̃i = j}. Then

(A.3) zj = Pj

(
τη̃(j − 1) < τη̃(n)

)
, ∀1 ≤ j ≤ n− 1.

Let us check (A.3): zn−1 = qn−1, and if zj = Pj(τη̃(j−1) < τη̃(n)) for j ∈ [2, n−1]∩Z, then

Pj−1(τη̃(j−2) < τη̃(n)) = qj−1+bjqj−1Pj(τη̃(j−2) < τη̃(n)) = qj−1+bjqj−1zjPj−1(τη̃(j−2) <

τη̃(n)) by the Markov property. Hence Pj−1(τη̃(j − 2) < τη̃(n)) =
qj−1

1−bjqj−1zj
, which, by the

definition of qj−1, is
1

1+rj−1+bj(1−zj) . Hence Pj−1(τη̃(j − 2) < τη̃(n)) = zj−1. This establishes

(A.3). As a consequence,

(A.4) Pn−1

(
τη̃(0) < τη̃(n)

)
=

n−1∏

j=1

zj.

We claim that for 0 ≤ ℓ < m < n,

(A.5) Pm

(
τη̃(ℓ) < τη̃(m)

)
≥ Em

(
1(τη(ℓ)<τη(m))(1 + r)−τη(ℓ)

)
,
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where r := maxℓ<j≤m rj. Since Pn−1(τη̃(0) < τη̃(n)) ≥
∏k

i=1Pmi
(τη̃(mi−1) < τη̃(mi)), (A.1)

will be a consequence of (A.4) and (A.5).

To prove (A.5), let Ωℓ,m be the set of all (finite) paths of η̃ starting from m and hitting

ℓ before returning to m (and without being absorbed by ∂). For any γ ∈ Ωℓ,m, let L
±
γ (j) :=∑

i≥0 1(γi=j, γi+1=j±1) and Lγ(j) := L+
γ (j) + L−γ (j). Then

Pm

(
τη̃(ℓ) < τη̃(m)

)
=

∑

γ∈Ωℓ,m

∏

ℓ<j≤m
(bj+1qj)

L+
γ (j)(qj)

L−γ (j)

=
∑

γ∈Ωℓ,m

∏

ℓ<j≤m
(

bj+1

1 + bj+1
)L

+
γ (j)(

1

1 + bj+1
)L
−
γ (j)

( 1 + bj+1

1 + bj+1 + rj

)Lγ(j)

≥
∑

γ∈Ωℓ,m

∏

ℓ<j≤m
(

bj+1

1 + bj+1

)L
+
γ (j)(

1

1 + bj+1

)L
−
γ (j)

( 1

1 + r

)Lγ(j)

= Em

(
1(τη(ℓ)<τη(m))(1 + r)−τη(ℓ)

)
,

yielding (A.5) and hence (A.1).

It remains to show (A.2). We note that Pm{τη(ℓ) < τη(m)} = 1
1+bm+1

Pm−1{τη(ℓ) <
τη(m)}. To compute Pm−1{τη(ℓ) < τη(m)} for the birth-and-death chain, we recall v(j) =

−
∑j

i=1 log bi for j ≥ 1, and use the same argument as in the second identity of (1.10) to see

that Pm−1{τη(ℓ) < τη(m)} = ev(m)
∑m

i=ℓ+1 e
v(i) . Therefore,

Pm

(
τη(ℓ) < τη(m)

)
=

1

1 + bm+1

ev(m)

∑m
i=ℓ+1 e

v(i)

≥ 1

2(m− ℓ)
exp

{
− max

ℓ<i≤m
(v(i)− v(m))− (v(m)− v(m+ 1))+

}
.(A.6)

Under Pm and conditionally on {τη(ℓ) < τη(m)}, τη(ℓ) is stochastically smaller than the

hitting time of ℓ by a Markov chain with the same probability transition as η but reflecting

on m. The expectation of the latter hitting time was estimated by Golosov ([14], p. 498,

(A.1)). Hence

Em

(
τη(ℓ)

∣∣ τη(ℓ) < τη(m)
)
≤ (m− ℓ)2 exp

(
max

ℓ<i≤j≤m
(v(i)− v(j))

)
,

which, by means of the elementary inequality (1 + r)−u ≥ e−ru for u ≥ 0 and Jensen’s

inequality, implies that

Em

(
(1 + r)−τη(ℓ)

∣∣ τη(ℓ) < τη(m)
)
≥ exp

(
− r(m− ℓ)2emaxℓ<i≤j≤m(v(i)−v(j))

)
.
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This together with (A.6) implies (A.2), completing the proof of Lemma 6.4. �

Proof of Lemma 6.5. We start with the proof of the lower bound. Let a ≥ 2 be an integer

whose value will be chosen later on. Let η < 1
a
. Let K := ⌊ n

ar2
⌋, and ni = iar2 for

0 ≤ i ≤ K − 1 and nK := n. Write S#
n := max1≤i≤n(Si − Si). It is clear that

P
(
S#
n < r, Sn = Sn,

n⋂

i=1

A
(n)
i

)

≥ P
(
∀1 ≤ j ≤ K, max

nj−1<i≤nj

(Si − Si) < r, Snj
− Snj

< δr, Sn = Sn,

n⋂

i=1

A
(n)
i

)
.

For any 1 ≤ j ≤ K, conditionally on σ{Si, A(n)
i , 1 ≤ i ≤ nj−1} and on {Snj−1

−Snj−1
= x},

the reflecting random walk (Si+nj−1
− Si+nj−1

, 0 ≤ i ≤ nj − nj−1) has the same law as

(max{x, Si} − Si, 0 ≤ i ≤ nj − nj−1). Accordingly,

P
(
S#
n < r, Sn = Sn,

n⋂

i=1

A
(n)
i

)
≥ qK−1n,r bn,r,

where

qn,r := P
(
S
#
ar2 < (1− δ)r, Sar2 − Sar2 < δr, Sar2 > δr,

ar2⋂

i=1

A
(n)
i

)
,

bn,r := P
(
S
#
nK−nK−1

< (1− δ)r, SnK−nK−1
= SnK−nK−1

> δr,

nK−nK−1⋂

i=1

A
(n)
i

)
.

We observe that

qn,r ≥ P
(
S
#
ar2 < (1− δ)r, Sar2 − Sar2 < δr, Sar2 > δr

)
+P

( ar2⋂

i=1

A
(n)
i

)
− 1

≥ P
(
S
#
ar2 < (1− δ)r, Sar2 − Sar2 < δr, Sar2 > δr

)
− η

r
.

On the other hand, since the three events {S#
ar2 < (1 − δ)r}, {Sar2 − Sar2 < δr} and

{Sar2 > δr} are non-decreasing with respect to each Si − Si−1 (for 1 ≤ i ≤ n), it follows

from the FKG inequality that

qn,r ≥ P
(
S
#
ar2 < (1− δ)r

)
P
(
Sar2 − Sar2 < δr

)
P
(
Sar2 > δr

)
− η

r
.
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By Donsker’s invariance principle,

lim
r→∞

P
(
S
#
ar2 < (1− δ)r

)
P
(
Sar2 − Sar2 < δr

)
P
(
Sar2 > δr

)

= P
(

sup
t∈[0, 1]

(W (t)−W (t)) <
1− δ

σ
√
a

)
P
(
W (1)−W (1) <

δ

σ
√
a

)
P
(
W (1) >

δ

σ
√
a

)
,

where W is a standard Brownian motion, with W (t) := sups∈[0, t]W (s) for any t. Recall that

supt∈[0, 1](W (t)−W (t)) has the same distribution as supt∈[0, 1] |W (t)|; so (see Formula (5.9),

page 342 of Feller [12]) P{supt∈[0, 1](W (t)−W (t)) ≤ x} = exp{−(1 + o(1)) π
2

8x2
}, for x → 0.

Consequently, for all sufficiently large a, say a ≥ a0, we have

P
(

sup
t∈[0, 1]

(W (t)−W (t)) <
1− δ

σ
√
a

)
≥ e−(1+3δ)π

2σ2a
8 .

Since both W (1) − W (1) and W (1) are distributed as the absolute value of a standard

Gaussian random variable, we can even increase the value of a0 (if necessary) such that for

all a ≥ a0 (thus
δ

σ
√
a
is very small), P{W (1) > δ

σ
√
a
} ≥ 1

2
andP{W (1)−W (1) < δ

σ
√
a
} ≥ δ

2σ
√
a
.

Now we fix an arbitrary integer a ≥ a0. For all large r (say r ≥ r0) such that r ≤ η
√
n,

we have

qn,r ≥ e−(1+4δ)π
2σ2a
8 .

The probability bn,r can be estimated in a similar way: from the assumptions on (A
(n)
i )

and the FKG inequality, we deduce that

bn,r ≥ P(S#
nK−nK−1

< (1− δ)r)P(SnK−nK−1
= SnK−nK−1

)P(SnK−nK−1
> δr)− η

r
.

Observe that ar2 ≤ nK − nK−1 ≤ 2ar2. Therefore, by Donsker’s invariance principle, for all

r ≥ r0 (with an increased value of r0 if necessary), P(S#
nK−nK−1

< (1 − δ)r)P(SnK−nK−1
>

δr) ≥ c(a, δ) for some constant c(a, δ) > 0, whereas P(SnK−nK−1
= SnK−nK−1

) = P(S1 ≥
0, S2 ≥ 0, ..., SnK−nK−1−1 ≥ 0) ≥ c′

r
√
a
for some constant c′ > 0. Taking η := min{ c(a,δ)c′

2
√
a
, 1
a
},

we get bn,r ≥ η
r
. Consequently,

P
(
S#
n < r, Sn = Sn,

n⋂

i=1

A
(n)
i

)
≥ qK−1n,r bn,r ≥

η

r
e−(1+4δ)π

2σ2

8
n
r2 ,

proving the lower bound in the lemma.

The upper bound is easier: with the same notation and the choice of a, we have

P
(
S#
n < r, Sn = Sn,

n⋂

i=1

A
(n)
i

)
≤ P

(
∀1 ≤ j ≤ K − 1, max

nj−1<i≤nj

(Si − Si) < r
)

≤
[
P(S#

ar2 < r)
]K−1

.
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For all large r, P(S#
ar2 < r) ≤ e−(1−δ)

π2σ2a
8 ; hence P(S#

n < r, Sn = Sn, ∩ni=1A
(n)
i ) ≤

e−(1−δ)
π2σ2

8
n
r2
−1, yielding the upper bound (by eventually modifying the choice of η in terms

of a). �
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[31] Mogulskii, A.A. (1974). Small deviations in the space of trajectories. Theory Probab.
Appl. 19, 726–736.

[32] Peres, Y. and Zeitouni, O. (2008). A central limit theorem for biased random walks on
Galton-Watson trees. Probab. Theory Related Fields 140, 595–629.

[33] Sinai, Ya.G. (1982). The limiting behavior of a one-dimensional random walk in a ran-
dom medium. Th. Probab. Appl. 27, 256–268.

[34] Zeitouni, O. (2004). Random Walks in Random Environment, XXXI summer school
in probability, St Flour (2001), Lecture Notes in Math. 1837, pp. 193–312. Springer,
Berlin, 2004.

Gabriel Faraud Yueyun Hu
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