Computing the dynamics of biomembranes by combining conservative level set and adaptive finite element methods
Résumé
The numerical simulation of the deformation of vesicle membranes under simple shear external fluid flow is considered in this paper. A new saddle-point approach is proposed for the imposition of the fluid incompressibility and the membrane inextensibility constraints, through Lagrange multipliers defined in the fluid and on the membrane respectively. Using a level set formulation, the problem is approximated by mixed finite elements combined with an automatic adaptive mesh procedure at the vicinity of the membrane boundary. Numerical experiments show that this combination of the saddle-point and adaptive mesh method enhances the robustness of the method. The effect of inertia on the stability of the vesicle is also investigated.
Origine | Fichiers produits par l'(les) auteur(s) |
---|