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Abstract

The numerical simulation of the deformation of vesicle membranes under simple
shear external fluid flow is considered in this paper. A new saddle-point approach
is proposed for the imposition of the fluid incompressibility and the membrane inex-
tensibility constraints, through Lagrange multipliers defined in the fluid and on the
membrane respectively. Using a level set formulation, the problem is approximated
by mixed finite elements combined with an automatic adaptive mesh procedure at
the vicinity of the membrane boundary. Numerical experiments show that this com-
bination of the saddle-point and adaptive mesh method enhances the robustness of
the method. The effect of inertia on the stability of the vesicle is also investigated.

Keywords: level set method, mass conservation, adaptive finite element method,
Helfrich energy, vesicle dynamics, red cell membrane, simple shear flow

1. Introduction

Phospholipid membranes are abundant in biology. They represent the major com-
ponent of the cytoplasmic membrane of real cells. They are also present within the
cell cytoplasm, e.g. the Golgi apparatus, a complex assembly of phospholipid layers
which serve to form small vesicles for protein transport. Phospholipid membranes
are also used in many industrial applications, as in giant liposome emulsions for cos-
metics. A simple closed membrane of pure phospholipid suspended in an aqueous
solution, also called a suspension of vesicles, constitute an attractive model system
in order to describe mechanical and viscoelastic behaviors of many cells, like red
blood cells. They are also considered as promising drug carriers for a delivery at
specific sites in the organisms. This explains the increasing interest for biologi-
cal membranes from various communities ranging from biology [38, 34] to applied
mathematics [36, 21, 4]. This contribution is concerned with a certain aspect of
mathematical modeling of vesicles, and more generally of phospholipid membranes.

Vesicles are formed by amphiphilic molecules self-assembled in water to build bi-
layers, in a certain range of concentration and temperature. At room, as well as at
the physiological temperature, the membrane is a two dimensional incompressible
fluid. Due to incompressibility, the main mode of deformation of a vesicle is bend-
ing. A basic ingredient for biomembranes is thus bending energy. Canham [9] and
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Helfrich [18, 30] introduced the following expression of the bending energy:

k

2

∫

Γ

(H −H0)
2 ds+

kg
2

∫

Γ

K ds, (1)

where H = H1 + H2 is the mean curvature of the membrane surface, with H1

and H2 are the principle curvatures and K = H1H2 is the Gauss curvature. The
membrane surface is denoted by Γ while Ω represents the volume inside the vesi-
cle, such that Γ = ∂Ω. The integrals are performed along the membrane surface
where ds denotes a surface area, while, in this paper, dx will represent a volume
element. The constants k and kg have the dimension of an energy and represent
the bending modulus and the Gaussian curvature modulus, respectively. Also H0

denotes the spontaneous curvature that describes the asymmetry of the membrane.
In this paper, H0 = 0, since H0 is relevant only for three-dimensional problems
(see appendix Appendix A) and we restrict to the bidimensional case in this paper.
Finally, from the Gauss-Bonnet theorem, the second term of the Canham-Helfrich
energy (1) is a topological invariant. Since topological changes are not considered
in this paper, this second term is omitted here.

Vesicles can be more or less inflated. The deflation could be due to osmotic effects,
depending on additives in the solution. It could also be due to thermal effects:
the thermal expansion of phospholipids is greater than those of the water inside
the membrane, and thus, the area A0 of the vesicle increases more rapidly than its
volume V0. The reduced volume, denoted as γ, measures the deflation:

γ =
3V0
4π

×
(
4π

A0

)3/2

∈ ]0, 1]. (2)

Thus, γ compares the vesicle volume V0 with the volume of a sphere having the area
equal to A0: γ is a number without dimension, that equals to 1 when the vesicle
is a sphere and is lower than 1 otherwise. For instance, for the human red blood
cell γ ≈ 0.64. By varying γ, the shape that minimizes the energy of curvature can
vary from an ellipsoid stretched to a biconcave shape, towards forms varied as that
of the Peanut. In the two-dimensional case, V0 and A0 denotes the area and the
perimeter respectively. The reduced area γ compares the area of the vesicle with
the area of a circle having the same perimeter as the vesicle. The reduced area is
expressed in the two-dimensional case by:

γ =
V0
π

×
(
2π

A0

)2

.

Notice that, for a circle, the reduced area equals to 1.

Notice that the vesicle membrane is impermeable (no osmosis), the number of
molecules remains fixed in each layer, and the energetic cost of stretching or com-
pressing the membrane is much larger than the cost of bending deformations: the
membrane could be considered as inextensible. In order to satisfy this inextensibil-
ity constraint, two approaches are commonly available. The first one use the penalty
approach, together with a penalty parameter (see e.g. [10, 12]): the inextensibil-
ity constraint then is not exactly satisfied and the approximate solution depends
upon the penalty parameter. The second solution introduces a Lagrange multiplier,
that interprets as the surface tension of the membrane, and the inextensibility con-
straints is exactly satisfied. In our present work, the second solution was selected,
since it avoid the dependence of the solution upon the penalty parameter. Despite
it has not yet retain attentions in the context of membrane vesicle application, it is
of common use for incompressible fluid flow applications (see e.g. [35]).
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Furthermore, for general interface fluid flow problems, there are two main classes of
numerical methods usually used: the Lagrangian methods class based on an explicit
interface parameterization and discretization while the Eulerian methods class uses
an implicit function that expresses the interface by its equation. The popular phase
field and level set methods fall into this second class.

For Lagrangian methods, the interface, which represents here the biological mem-
brane, is discretized by a set of points which are going to be moved with a speed
depending on the studied problem. The mesh, capturing the interface, may regen-
erated at each time step, while the boundary conditions between inside and outside
volume of the interface could be directly imposed at the element level. The older
method used for vesicle fluid application falls into this category: the boundary ele-

ment method transforms all viscous volume terms into surface integrals through a
Green kernel and only a surface mesh of the interface is required [32, 33]. Neverthe-
less, inertia terms are not reducible to boundary integrals and, despite some recent
improvements, this approach suffers from some limitations. A more recent approach
bases on both a mesh of the interface and a volume mesh. When the volume mesh
is compatible with the interface discretization, the classical finite element method

could be used [8]. A commonly used variant fixes the volume mesh one time for all
and expresses interface integrals on a discrete moving surface mesh: this is the so
called penalty immersed boundary method [23, 24].

The Eulerian methods are characterized by the use of a meshing strategy that is
independent of the movements of the interface: this approach allows the use of
fixed and fully structured volume mesh. Moreover, no more surface mesh of the
moving interface is required. Very complex shapes, with strong variations of the
curvature and possible topological changes, becomes also possible. In the case of
a diffuse interface, as for fluid mixtures, the interface is represented by a smooth
transition zone. Indeed, at least at the molecular scale, there is a small zone of
mixture between species. From a numerical point of view, the diffuse interface
notion could be interpreted as a way of regularization of a sharp model interface,
together with a regularization parameter, associated to the interface width: this is
the phase field method, introduced by Allen and Cahn [2], and applied recently to
vesicles [5, 11]. A second Eulerian method, the level set method [29], do no more
requires any regularization and is able to catch sharp interfaces: a simple transport
equation is used to move the level set function. See [28] for applications to vesicle
dynamics.

Nevertheless, both phase field and level set methods suffer a lack of precision when
dealing with the inextensibility constraints. In this paper we develop a new level
set method that exactly solve these constraints at the discrete level: it extends
to the vesicle dynamics a previous work on level set methods for the advection
equation [26].

In the present work we focus our attention on describing the dynamics of a single
suspended vesicle in a linear shear gradient of a plane flow. Vesicles in shear flow
in the limit of the vanishing Reynolds number (also called the Stokes limit) have
been the subject of extensive studies [4]. In the present work, inertia terms are not
neglected, and non-zero Reynolds numbers are considered. This situation is more
realistic for both red blood cells and vesicle practical flows applications.

An outline of the paper is as follows. A saddle-point approach allows us to char-
acterize the solution in a weak formulation, which is discretized using mixed finite
elements in section 2. In Section 3 we focus on the numerical method. We present
our level set method formulation for the vesicle dynamics and show the finite ele-
ment discretization as well the advection mass preservation improvement. Section
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4 is devoted to show numerical results illustrating the vesicle membrane in the tum-
bling and the tank-treading regimes. Finally, for the first time, the effect of the
inertia terms is elaborated and we show that beyond a critical value of the number
of Reynolds the vesicle passes from a tumbling to a tank-treading regime.

2. Problem statement

2.1. Notations and preliminary results

x2

n

−L 0

L

−L

x1
L

−V

V

∂Λ

Ω

ν

Γ = ∂Ω

Λ

Figure 1: Notations for the vesicle interacting with a surrounding shear flow.

Let Λ = ]−L,L[d be the bounded region containing the vesicle and the surrounding
fluid, where L > 0 is the half domain width. Numerical computations are performed
in this paper with d = 2, while the mathematical formulation could be extended to
d = 3 with few modifications. Let T > 0: for any t ∈ ]0, T [, the membrane Γ(t) ⊂ Λ
is the closed surface defined by:

Γ(t) = {(t, x) ∈ ]0, T [×Λ; φ(t, x) = 0} , (3)

where φ is the level set function. By convention, the vesicle Ω(t) ⊂ Λ is the region
where φ(t, .) is negative and we have Γ(t) = ∂Ω(t).

Let u denotes the velocity of the fluid in Λ. The membrane Γ(t) is transported at
the same velocity, and thus, the level set function satisfies:

Dφ

Dt
=
∂φ

∂t
+ u.∇φ = 0 in ]0, T [×Λ, (4a)

where D/Dt denotes the material derivative. The previous transport equation may
be completed by suitable boundary and initial conditions:

φ = φb on ]0, T [×Σ− (4b)

φ(0) = φ0 in Λ (4c)
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where Σ− = {x ∈ ∂Λ; u.ν(x) < 0} is the upstream and ν denotes the outward unit
normal to the surrounding bounding box Λ. Concerning the initial condition (4c),
the function φ0 denotes the signed distance between x and the given initial shape
membrane ∂Ω(0):

φ0(x) =

{
inf {|y − x|; y ∈ ∂Ω(0)} when x /∈ Ω(0),
inf {−|y − x|; y ∈ ∂Ω(0)} otherwise.

Let n denotes the unit outward normal vector to the shape Ω (see Fig. 1). Let f
be any scalar function and v be any vector field. The surface gradient, the surface
divergence and the Laplace-Beltrami operator are respectively expressed by:

∇sf = (I − n⊗ n) ∇f = ∇f − (n.∇f) n, (5a)

divs v = (I − n⊗ n) : ∇v = div v − ((∇v).n).n, (5b)

∆sf = divs (∇sf) . (5c)

Here, ⊗ denotes the tensorial product of two vectors and the semicolumn : is the
two times contracted product between tensors.

The mean and the Gauss curvatures can be expressed in terms of the normal n
(see [25]):

H = ∇s.n = ∇.n,
2K = H2 −∇n : ∇nT .

2.2. Minimization and saddle-point formulations

For any velocity field u defined in ]0, T [×Λ, the instantaneous energy of the system
is defined at any time t ∈ ]0, T [ by:

J(u(t)) =

∫

Λ

η |D (u(t)) |2 dx+

∫

∂Ω(t)

k

2
H2 ds, (6)

where D(u) = (∇u + (∇u)T )/2 is the symmetric part of the gradient of velocity
tensor and |.| denotes the Euclidean norms of vectors or tensors. The previous
expression of the energy includes two terms: the viscous energy and the Canham-
Helfrich bending energy. There are two corresponding scalar parameters: η is the
viscosity and k the bending modulus of the Canham-Helfrich energy introduced
in (1). In practice, the viscosity η is not constant over Λ: it takes a constant value
η0 outside the vesicle Ω(t) and a different constant value η1 inside the vesicle.

Notice that, in the bending energy term in (6), the membrane ∂Ω(t) depends upon
the velocity field u via (3) and the level-set function φ, satisfying the transport
problem (4) that involves u. Also, the curvature H on ∂Ω(t) depends implicitly
upon u.

The unknown velocity field may satisfy the boundary conditions and two additional
constraints: the fluid mass conservation and the membrane inextensibility. The
mass conservation reduces to the divergence-free condition divu = 0 since the den-
sity, denoted by ρ, is supposed to be constant. Conversely, the membrane inextensi-
bility writes locally divs u = 0. Let us introduce the following spaces of admissible
velocities:

V(ub) =
{
v ∈

(
H1 (Λ)

)d
; v = ub on ΣD

}
,

K(t,ub) = {v ∈ V(ub); div v = 0 in Λ and divs v = 0 on ∂Ω(t)} .
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The boundary ΣD = ]− L,L[d−1×{−L,L} is associated to the Dirichlet boundary
condition ub(t, x), expressed for a shear flow by:

ub(t, x) =

{
V when xd = L

−V when xd = −L

for all (t, x) ∈ ]0, T [×ΣD. Here, V denotes the given shear velocity at the surround-
ing box boundary (see Fig. 1). Finally, the problem expresses as a minimization
one:

find u ∈ C0
(
]0, T [, L2(Λ)d

)
∩ L2 (]0, T [,K(t,ub)) such that





u(t) = arg inf
v∈K(t,ub)

J(v), ∀t ∈]0, T [,

u(0) = u0 in Λ.

where u0 is the given initial velocity. This is a strongly nonlinear shape optimization
problem, expressed in terms of the unknown u.

The space of admissible velocities K(t,ub) contains the incompressibility and inex-
tensibility constraints: it is not suitable for practical finite element discretization,
since there are no known finite element basis of such spaces. Conversely, the uncon-
strained space of V(ub) is of practical interest: the two constraints can be imposed
via two Lagrange multipliers: the pressure p and the surface tension λ. Let us
introduce the following Lagrangian:

L (u; p, λ) = J(u) +

∫

Λ

p divu dx+

∫

∂Ω(t)

λdivs v ds.

The previous minimization problem can be rewritten as a saddle point problem:

find u ∈ C0
(
]0, T [, L2(Λ)d

)
∩ L2 (]0, T [,V(ub)), p ∈ L2

(
]0, T [, L2(Λ)

)

and λ ∈ L2
(
]0, T [, H

1

2 (Λ)
)
such that





(u, p, λ) = arg inf
v∈V(ub)

sup
q∈L2(Λ)

µ∈H
1

2 (∂Ω(t))

L (v; q, µ),

u(0) = u0 in Λ.

Here H
1

2 (∂Ω) denotes as usual [1] the space of the trace of elements of H1(Ω) on
∂Ω.

2.3. Variational formulation

Since the Lagrangian L is differentiable, the saddle point (u; p, λ) satisfies the
following variational optimality system:

∂L

∂u
(u; p, λ)(v) = 0, ∀v ∈ V(0),

∂L

∂p
(u; p, λ)(q) = 0, ∀q ∈ L2(Λ),

∂L

∂λ
(u; p, λ)(µ) = 0, ∀µ ∈ H

1

2 (∂Ω) .

Remark that, since J is not convex in general, the previous optimality system
could include both local minimums and maximums of the energy J . Thus, this
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optimality system is not equivalent to the minimization or saddle-point problems;
nevertheless, a minimum of J is also a solution of the optimality system. After
expansion of the derivatives of L , the optimality system leads to the following
variational formulation of the problem:

find u ∈ C0
(
]0, T [, L2(Λ)d

)
∩ L2 (]0, T [,V(ub)), p ∈ L2

(
]0, T [, L2

0 (Ω)
)

and λ ∈ L2
(
]0, T [, H

1

2 (∂Ω)
)
such that

∫

Λ

ρ
Du

Dt
.v dx+

∫

Λ

2η D(u) : D(v) dx

+

∫

Λ

p div v dx+

∫

∂Ω(t)

λdivs v ds =

∫

∂Ω(t)

f .v ds, ∀v ∈ V(0), (7a)

∫

Λ

q divu dx = 0, ∀q ∈ L2(Λ), (7b)

∫

∂Ω(t)

µ divs .u ds = 0, ∀µ ∈ H
1

2 (∂Ω(t)). (7c)

together with the initial condition u(0) = u0. Recall that ∂Ω(t) is given by (3) in
terms of the level set function φ, which is solution of the transport problem (4a)-(4c)

involving u. We have introduced the material time derivative
Du

Dt
= ∂tu + u.∇u:

it expresses the velocity time derivative in the (fixed) Eulerian frame and involves
the nonlinear inertia term. The strength f , that appears in the right-hand-side of
(7a), is associated to the Canham-Helfrich bending energy and is given by [30, 25]:

f = k

{
∆sH +H

(
H2

2
− 2K

)}
n.

This is not an obvious computation, since ∂Ω(t) and H depend implicitly upon u:
it requires some advanced shape optimization tools. In the two-dimensional case,
since K = 0, this expression reduces to: f = k

(
∆sH +H3/2

)
n.

2.4. Strong formulation

In order to deal with the integrals over ∂Ω(t), a generalization of the Green formula
over the closed surface ∂Ω(t) is used (see e.g. [25]):

∫

∂Ω

∇sµ.v ds+

∫

∂Ω

µ divs v ds =

∫

∂Ω

µv.nH ds, ∀µ ∈ H
1

2 (∂Ω), ∀v ∈ H1(Λ).

(8)
Equation (7a) is then integrated by parts on Ω and Λ\Ω and terms are then merged.
Thus, for all v ∈ V(0), we have:

∫

Λ

ρ
Du

Dt
.v dx−

∫

Λ

div (2η D(u)− pI) .v dx+

∫

∂Λ

{(2ηD(u)− pI) .ν} .v ds

+

∫

∂Ω(t)

{[2η D(u)− pI] .n} .v ds−
∫

∂Ω(t)

∇sλ.v ds+

∫

∂Ω(t)

λHn.v ds

=

∫

∂Ω(t)

f .v ds

where [.] denotes the jump of a quantity across ∂Ω(t) in the direction n of the
normal, I is the identity tensor and div is the divergence of a symmetric tensor,
defined as the divergence of its row or column vectors.
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Finally, the strong form of the problem writes:

find φ, u, p and λ such that

∂φ

∂t
+ u.∇φ = 0 in ]0, T [×Λ (9a)

ρ

(
∂u

∂t
+ u.∇u

)
− div (2ηD(u)) +∇p = 0 in ]0, T [×(Λ\∂Ω) (9b)

divu = 0 in ]0, T [×Λ (9c)

[u] = 0 on ]0, T [×∂Ω (9d)

−k
{
∆sH +H

(
H2

2
− 2K

)}
n

+H λn−∇sλ+ [2η D(u)− pI] .n = 0 on ]0, T [×∂Ω (9e)

divs u = 0 on ]0, T [×∂Ω (9f)

φ = φb on ]0, T [×Σ− (9g)

u = ub on ]0, T [×ΣD (9h)

(2ηD(u)− pI).ν = 0 on ]0, T [×ΣN (9i)

φ(0) = φ0 in Λ (9j)

u(0) = u0 in Λ (9k)

where ΣN = {−L,L}d−1×]− L,L[ is associated to a Neumann-type boundary con-
dition.

Notice that equation (9b) is written in Λ\∂Ω, i.e. in Ω and its complementary Λ\Ω.
On ∂Ω, the jump term in (9e) points out the balance with membrane strengths:
indeed, the first normal term comes from the Canham-Helfrich bending energy.
This energy being a purely geometrical quantity, it cannot give rise to a tangential
strength: any tangential movement of points on a surface is only modifying their
positions without affecting the shape of the surface and its curvature energy. The
second and third terms in (9e) involves the Lagrange multiplier λ, known as the
surface tension, and defined on the membrane ∂Ω(t). The second term is normal
and it is similar to the strengths of capillarities engendered by the surface tension
when modelling of the dynamics of drops. The term ∇sλ is tangential and its action
is known as the Marangoni effect.

2.5. Dimensionless problem

Let us put the problem in dimensionless form. The characteristic length R0 of the
vesicle is chosen equal to the radius of a sphere having the same surface as the
vesicle ∂Ω in the tree dimensional case. In the two-dimensional case, it represents
the radius of a circle having the same perimeter as ∂Ω. The characteristic velocity
U = V R0/L is chosen to be equal to the shear velocity at a distance R0 from the
center. The characteristic viscosity η0 is chosen as the viscosity of the fluid at the
exterior of the membrane.

Let us introduce the following four dimensionless numbers:

Re =
ρR0U

η0
, Ca =

η0R
2
0U

k
, α =

R0

L
and β =

η1
η0

The Reynolds number Re, as usual, expresses the ratio of inertia effects with the
viscous ones. The capillarity number Ca compares the strength of the imposed
flow η0U/R0 to the bending resistance of the membrane k/R3

0. The dimensionless
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number α represents the confinement of the vesicle in the shear flow and β is the
viscosity ratio. The initial shape ∂Ω(0) is also characterized by a fifth dimensionless
number: γ, the reduced area, already introduced in (2).

In the rest of the paper, only dimensionless quantities are used and, since there is no
ambiguity, there are still denoted with the same notations as the original quantities.
The dimensionless boundary condition writes:

ub(t, x) =

{
1/α when xd = α

−1/α when xd = −α

A dimensionless viscosity function is also defined:

η∗(t, x) =

{
β when x ∈ Ω(t)
1 otherwise

The dimensionless problem writes:

find φ, u, p and λ such that

∂φ

∂t
+ u.∇φ = 0 in ]0, T [×Λ (10a)

Re

(
∂u

∂t
+ u.∇u

)
− div (2η∗D(u)) +∇p = 0 in ]0, T [×(Λ\∂Ω) (10b)

divu = 0 in ]0, T [×Λ (10c)

[u] = 0 on ]0, T [×∂Ω (10d)

− 1

Ca

{
∆sH +H

(
H2

2
− 2K

)}
n

+H λn−∇sλ+ [2η∗D(u)− pI] .n = 0 on ]0, T [×∂Ω (10e)

divs u = 0 on ]0, T [×∂Ω (10f)

φ = φb on ]0, T [×Σ− (10g)

u = ub on ]0, T [×ΣD (10h)

(2ηD(u)− pI).ν = 0 on ]0, T [×ΣN (10i)

φ(0) = φ0 in Λ (10j)

u(0) = u0 in Λ (10k)

where the normal and the curvature are expressed in term of the level set function:
n = ∇φ/|∇φ| andH = divs n. Biophysical applications, as the prediction of vesicles
behavior in small blood vessels, is our aim in this paper, and constitute a guideline
for the choice of dimensionless parameters. Following Vitkova and al. [37] on vesicles
under shear flow, we estimate the physical parameters:

R0 ≈ 5× 10−5 m, ρ ≈ 103 kg/m3,
L ≈ 10−3 m, η0 ∈

[
5× 10−4, 0.2

]
kg.s−1.m−1,

k ≈ 10−19 J.

The shear velocity at the wall V is between 1.2× 10−2 and 0.12 m/s. These exper-
imental values leads to consider the following dimensionless parameter ranges:

Re ∈
[
1.5× 10−9, 1.5× 10−4

]
,

Ca ∈
[
3× 103, 3× 106

]
.

The vesicles are deflated with γ between 0.92 and 0.99. While the experimental
value of the confinement was α = 1/20, the influence of this parameter is studied
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by varying its value between 1/2 and 1/5 in the case of regular meshes and reaching
1/12 when using adaptive meshes methods, as presented in the next section. Finally,
the viscosity ratio β is varying around a critical value associated to a stability
transition and are less than 20.

3. Numerical methods

3.1. Time discretization and the characteristic method

For simplicity, the numerical methods are presented when d = 2: in that case
the Gauss curvature is null: K = 0. Nevertheless, the methods extend to three-
dimensional case, just inserting the computation ofK in the Canham-Helfrich force.

Let 0 = t0 < t1 < t2 < ... < tN = T be a subdivision of the time interval [0, T ] with
a constant time step ∆t = tn+1 − tn, n = 1, 2, ..., N . At step n = 0, let φ0 = φ0
be the initial condition. For any n ≥ 1, the unknowns φn, un, pn and λn at time
step n are computed by induction, using values at previous time steps. The time
discretization is performed by using the method of characteristics: for any t > 0
and x ∈ Λ, the characteristic curve X(., x, ; t) passing at time t through x is defined
by the following ordinary differential equation:

{
∂X

∂t
(s, x; t) = u (X(s, x; t), t) , s ∈ ]0, T [

X(t, x; t) = x.

For any function ϕ(t, x), the total derivative Dϕ/Dt expresses:

Dϕ

Dt
(t, x) =

(
∂ϕ

∂t
+ u.∇ϕ

)
(t, x) =

∂

∂τ
(ϕ (X(t, x; τ), τ)) |τ=t

Following Pironneau [31], this derivative is approximated by a first-order backward
Euler scheme:

Dϕ

Dt
(tn, x) ≈ ϕ(tn, x)− ϕ(tn−1, Xn−1

1 (x))

∆t

where Xn−1
1 (x) = x−∆t un−1(x) denotes the first-order forward Euler approxima-

tion of X(tn−1, x; tn). The time-discretization of the transport equation (10a) leads
to:

φn = φn−1 ◦Xn−1
1 in Λ (11)

Then, the vesicle shape at step n is known:

∂Ωn = {x ∈ Λ; φn(x) = 0}
Ωn = {x ∈ Λ; φn(x) < 0}

The dimensionless viscosity is also computed explicitly:

ηn∗ =

{
β when x ∈ Ωn

1 otherwise

Also, the normal nn and the curvatures Hn and Kn are computed at this step,
together with differential operators (5) on the surface ∂Ωn, and defined for any
scalar function f and any vector field v by:

∇n
s f = (I − nn ⊗ nn) ∇f, (12a)

divns v = (I − nn ⊗ nn) : ∇v, (12b)

∆n
s f = divns (∇n

s f) . (12c)

10



For any y ∈ C3([0, T ]), a Taylor expansion shows that:

dy

dt
(t) =

3y(t)− 4y(t−∆t) + y(t− 2∆t)

2∆t
+O

(
∆t2

)
.

Based on this approximation and following [35, chap. 5], the time discretization of
the inertia term is performed by using a second order combined characteristic and
finite difference discretization method. Let us introduce the second-order charac-
teristics:

u∗ = 2un−1 − un−2

Xn−1
2 (x) = x− ∆t u∗(x) a.e. x ∈ Λ,

Xn−2
2 (x) = x− 2∆t u∗(x) a.e. x ∈ Λ.

Notice that u∗ represents a prediction by extrapolation of u at time tn. The problem
becomes:

find un, pn and λn such that

Re

2∆t

(
3un − 4un−1oXn−1

2 + un−2oXn−2
2

)

−div (2ηn∗D (un)) +∇pn = 0 in Λ\∂Ωn, (13a)

divun = 0 in Λ, (13b)

[un] = 0 on ∂Ωn, (13c)

− 1

Ca

(
∆n

sH
n +

(Hn)
3

2

)
nn +Hnλnnn −∇n

sλ
n

+ [2ηn∗D (un)− pnI] .nn = 0 on ∂Ωn, (13d)

divns .u
n = 0 on ∂Ωn, (13e)

un = ub on ΣD. (13f)

The second order induction on (un)n≥0 is bootstrapped by using the initial con-

dition: u−1 = u0 = u0, where u−1 stands here for a convenient notation. The
previous scheme use two main steps. The first step (11) is an explicit computation
involving the characteristics. The second step (13) is a linear generalized Stokes
sub-system that involves a constraint on the boundary of the vesicle together with
the usual incompressibility constraint. We point out that this scheme transforms
a strongly nonlinear shape optimization problem into a succession explicit compu-
tations and linear subproblems. The next paragraph presents how such a linear
subproblem is treated.

3.2. The generalized Stokes subproblem

3.2.1. Formulation

Let us introduce the Canham-Helfrich force, that appears in the right-hand side of
the generalized Stokes subproblem:

fn =
1

Ca

(
∆n

sH
n +

(Hn)
3

2

)
nn. (14)

11



where nn = ∇φn/|∇φn|, Hn = divs n
n and φn is known at this step of the algo-

rithm. The following bilinear forms are first introduced:

m(u,v) =

∫

Λ

u.v dx, ∀u,v ∈
(
L2(Λ)

)2
,

an(u,v) =

∫

Λ

2 ηn∗ D(u) : D(v) dx, ∀u,v ∈
(
H1(Λ)

)2
,

b1(v, q) = −
∫

Λ

q div v dx, ∀q ∈ L2(Λ), ∀v ∈ H(div,Λ),

bn2 (v, µ) = −
∫

∂Ωn

µ divns v ds, ∀µ ∈ H
1

2 (∂Ωn), ∀v ∈ H(divs, ∂Ω
n).

where H(div,Λ) =
{
s ∈

(
L2(Λ)

)2
; div s ∈ L2(Λ)

}
(see e.g. [15, 7]). The varia-

tional formulation of (13a)-(13f) writes:

(S): find un ∈ V(ub), p
n ∈ L2(Λ) and λn ∈ H

1

2 (∂Ωn) such that

3Re

2∆t
m (un,v) + an (un,v) + b1 (v, p

n) + bn2 (v, λ
n)

= mn
s (f

n,v) +
Re

2∆t
m
(
4un−1oXn−1

2 − un−2oXn−2
2 ,v

)
, (15a)

b1 (u
n, q) = 0, (15b)

bn2 (u
n, µ) = 0, (15c)

for all v ∈ V(0), q ∈ L2(Λ) and µ ∈ H
1

2 (∂Ωn).

3.2.2. The Canham-Helfrich force

Let us consider in details the Canham-Helfrich force, as defined in (14). The force
involves fourth order derivatives of the level set function and a direct discretiza-
tion approach would requires a high regularity finite element method, such as the
Hermite one (see e.g. [6]) with H2 and C1 regularity. In order to use standard La-
grange finite element, with only H1 and C0 regularity, the fourth-order derivatives
are treated here with a different approach, based on a duality argument.

Since Hn = divnn and nn = ∇φn/|∇φn|, then Hn involves the second order
derivative of the level set function. Let us define the skeleton of Ω as the set
of points that are equidistant to at least two distinct points of ∂Ω (see e.g. [3,
p. 195]). In order to avoid division by |∇φn|, that could vanish on the skeleton, two
intermediate variables rn = ∇(|∇φn|) and Gn = Hn|∇φn| are used. First, using a
classical Green formula in Λ, rn can be characterized as

rn ∈ H0(div,Λ) and

∫

Λ

rn.s dx =

∫

Λ

|∇φn| div s dx, ∀s ∈ H0(div,Λ),

where H0(div,Λ) = {s ∈ H(div,Λ); s.ν = 0}. Next, let us turn to Gn. A simple
development leads to:

Gn|∇φn| = −Hn |∇φn|2 = −div

( ∇φn
|∇φn|

)
|∇φn|2 = rn.∇φn −∆φn|∇φn|

The duality argument is used for the ∆φn term at the right-hand side and Gn is
characterized by

Gn ∈ H1(Λ) and

∫

Λ

Gn ζ |∇φn| dx =

∫

Λ

(rn.∇φn) ζ dx+
∫

Λ

∇φn.∇ζ |∇φn| dx, ∀ζ ∈ H1(Λ).

12



Finally, Hn is defined as the restriction to ∂Ωn of Gn/|∇φn|. Notice that this
quantity is well defined since |∇φn| is not vanishing at the vicinity of ∂Ωn.

Let us consider the following Green formula on the closed surface Γn = ∂Ωn:
∫

Γn

∆n
s ξ ζ ds+

∫

Γn

∇n
s ξ.∇n

s ζ ds = 0, ∀ξ, ζ ∈ H1(Γn).

Then Y n = −∆sH
n can be computed in a weak sense:

Y n ∈ H1(∂Ωn) and

∫

∂Ωn

Y n ζ ds =

∫

∂Ωn

∇n
sH

n.∇n
s ζ ds, ∀ζ ∈ H1(∂Ωn)

Let us summarize the procedure. The following additional bilinear forms are intro-
duced:

mn
w(φ, ψ) =

∫

Λ

ϕψ |∇φn| dx, ∀ϕ, ψ ∈ L2(Λ),

anw(φ, ψ) =

∫

Λ

∇ϕ∇ψ |∇φn| dx, ∀ϕ, ψ ∈ H1(Λ),

mn
s (ξ, ζ) =

∫

∂Ωn

ξ ζ ds, ∀ξ, ζ ∈ L2(∂Ωn),

cn(ξ, ζ) =

∫

∂Ωn

∇n
s ξ.∇n

s ζ ds, ∀ξ, ζ ∈ H1(∂Ωn).

Then, compute successively as:

rn ∈ H0(div,Λ) and m(rn, s) = −b1(|∇φn|, sn), ∀s ∈ H0(div,Λ),

Gn ∈ H1(Λ) and mn
w(G

n, ψ) = anw(φ
n, ψ) +m(rn.∇φn, ψ), ∀ψ ∈ H1(Λ),

Hn =
Gn

|∇φn| on ∂Ωn,

Y n ∈ H1(∂Ωn) and mn
s (Y

n, ζ) = cn(Hn, ζ), ∀ζ ∈ H1(∂Ωn),

nn =
∇φn
|∇φn| on ∂Ωn,

fn =
1

Ca

(
−Y n +

(Hn)
3

2

)
nn on ∂Ωn.

3.2.3. Extension and regularization

The previous variational formulation involves integrals over the moving surface ∂Ωn:
in order to avoid the explicit re-triangulation of the surface ∂Ωn at each time step,
integrals over ∂Ωn are transformed into integrals over Λ. First, remarks that an
integral over ∂Ωn can be written as an integral over Λ with the help of the level set
function φn and the Dirac measure δ:

∫

∂Ωn

ϕds =

∫

Λ

ϕ̃ |∇φn| δ(φn) dx

where ϕ̃ is an extension to Λ of any function ϕ defined in ∂Ωn. Also, the normal
vector nn, defined over ∂Ωn, extends as ∇φn/|∇φn| to Λ. Since there is no ambi-
guity, this extension of the normal is still denoted by nn. Also, the notations for
the extension to Λ of the surface operators defined in (12) are still conserved. By
this way, the Canham-Helfrich force, as expressed by (14), can be extended to Λ.

Nevertheless, the explicit management of Dirac measures is not an easy task in
finite element methods. Thus, the previous extension is combined together with a

13



regularization procedure. Three sharp functions are here considered: the Heaviside
function H (φn), that acts as the indicator of Λ\Ωn, the Dirac measure δ(φn) that
localizes the surface ∂Ωn, and the sign function sgn(φn), that will be used in a
forthcoming paragraph, for the redistancing of the level set function.

In order to avoid the triangulation of ∂Ωn, a banded region of width 2ε is introduced,
for some ε > 0. The Heaviside H , the Dirac δ and the sign functions are replaced
respectively by Hε, δε and sgnε, defined for all φ ∈ R by:

Hε(φ) =





0, when φ < −ε,

1

2


1 +

φ

ε
+

sin

(
πφ

ε

)

π


 , when |φ| ≤ ε,

1, otherwise,

δε(φ) =
dHε

dφ
(φ) =





1

2ε

(
1 + cos

(
πφ

ε

))
, if |φ| ≤ ε

0, otherwise

sgnε(φ) = 2Hε(φ) − 1

The sharp viscosity is also replaced by a smooth one:

ηn∗,ε = β + (1− β)Hε (φ
n)

The previous bilinear forms admits a regularized counterpart:

anε (u,v) =

∫

Λ

2 ηn∗,εD(u) : D(v) dx, ∀u,v ∈
(
H1(Λ)

)2
,

mn
s,ε(u,v) =

∫

Λ

u.v |∇φn| δε (φn) dx, ∀u,v ∈
(
L2(Λ)

)2
,

bn2,ε(v, µ) = −
∫

Λ

µ divns v |∇φn| δε (φn) dx, ∀µ ∈ L2(Λ), ∀v ∈
(
H1(Λ)

)2
,

cnε (ξ, ζ) =

∫

Λ

∇n
s ξ.∇n

s ζ |∇φn| δε (φn) dx, ∀ξ, ζ ∈ H1(Λ)

The computation of the curvature Hn is unchanged while the Canham-Helfrich
force becomes: find Y n

ε ∈ H1(Λ) such that

ms,ε(Y
n
ε , ζ) = cε(H

n, ζ), ∀ζ ∈ H1(Λ).

Then, compute the extension to Λ of the force:

fnε =
1

Ca

(
−Y n

ε +
(Hn)

3

2

)
nn in Λ.

Problem (15) admits a regularized variant:

(S)ε: find un
ε ∈ V(ub), p

n
ε ∈ L2(Λ) and λnε ∈ L2 (Λ) such that

3Re

2∆t
m (un

ε ,v) + anε (u
n
ε ,v) + b1 (v, p

n
ε ) + bn2,ε (v, λ

n
ε )

= mn
s,ε (f

n
ε ,v) +

Re

2∆t
m
(
4un

ε oX
n
2 − un−1

ε oXn−1
2 ,v

)
, (16a)

b1 (u
n
ε , q) = 0, (16b)

bn2,ε (u
n
ε , µ) = 0, (16c)

for all v ∈ V(0), q ∈ L2(Λ) and µ ∈ L2(Λ). Notice that the surface tension λnε is
now extended to Λ. The regularization parameter ε will be chosen as proportional
to the the mesh size h, as presented in the next paragraph.

14



3.2.4. Finite element discretization

The Taylor-Hood finite element approximation (see e.g. [7]) for the Stokes problem
is considered here for the velocity-pressure approximation of the generalized Stokes
problem. Let Th a finite element triangulation of Λ, where h > 0 stands for the
largest element diameter [6]. The following finite dimensional spaces are introduced:

Xh =
{
q ∈ C0

(
Λ
)
, q|K ∈ P1, ∀K ∈ Th

}
,

Sh =
{
s ∈ X2

h, s.ν = 0 on ∂Λ
}
,

Xh =
{
u ∈

(
C0
(
Λ
))2

, u|K ∈ (P2)
d
, ∀K ∈ Th

}
,

Vh(ub) = Xh ∩ V(ub).

Let us assume that φnh ∈ Xh is an approximation of φn at the n-th time step. The
computation of the discrete Canham-Helfrich force write:

rnh ∈ Sh and m(rnh , s) = −b1(|∇φnh |, sn), ∀s ∈ Sh,

Gn
h ∈ Xh and mn

w(G
n
h , ψ) = anw(φ

n
h , ψ) +m(rnh.∇φnh , ψ), ∀ψ ∈ Xh,

Hn
h =

Gn
h

|∇φnh |
in Λ,

Y n
h ∈ Xh and ms,ε(Y

n
h , ζ) = cε(H

n
h , ζ), ∀ζ ∈ Xh,

nn
h =

∇φnh
|∇φnh |

in Λ,

fnh =
1

Ca

(
−Y n

h +
(Hn

h )
3

2

)
nn
h in Λ.

The discrete generalized Stokes problem writes:

(S)h: find un
h ∈ Vh(ub), p

n
h ∈ Xh and λnh ∈ Xh such that

3Re

2∆t
m (un

h,v) + anε (u
n
h ,v) + b1 (v, p

n
h) + bn2,ε (v, λ

n
h)

= mn
s,ε (f

n
h ,v) +

Re

2∆t
m
(
4un−1

h oXn−1
2 − un−2

h oXn−2
2 ,v

)
, (17a)

b1 (u
n
h, q) = 0, (17b)

bn2,ε (u
n
h, µ) = 0. (17c)

for all v ∈ Vh(0), q ∈ Xh and µ ∈ Lh. The previous finite-dimensional linear system
involves the following matrix structure:




A BT
1 BT

2

B1 0 0
B2 0 0




Such systems has been extensively studied and various efficient strategies are known
(see e.g. [14]). In the present paper, this system is solved efficiently by the pre-
conditioned conjugate gradient algorithm, as implemented in the Rheolef C++ li-
brary [35].

3.3. The transport subproblem

3.3.1. Redistanciation

Due to the inextensibility of the vesicle membrane and the fluid incompressibility,
the level set function φ, initially chosen to be a signed distance, remains also, for any
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t > 0, a signed distance among the advection step, as shown in appendix Appendix
B. Nevertheless, after time and space discretization, we experimented that the
approximation φh is no more a signed distance after the discrete counterpart of
the advection step. As a consequence, an auxiliary problem called the redistancing

problem has to be solved in order to keep the function φh as a signed distance. The
redistancing step was detailed by the authors in a separate paper [26] and we recall
here briefly the main idea. For all t ∈ ]0, T [, an advection problem depending on
a pseudo-time τ is introduced and we shall find its stationary solution. Let φ̃(t, .)
be the known level set function at time t that is no more a distance function. The
redistancing problem writes:




∂ψ

∂τ
(τ, x; t) + v.∇ψ = sgn

(
φ̃ (t, x)

)
+ λ(τ, x : t) g(ψ) a.e. (τ, x) ∈]0,+∞[×Λ,

ψ(0, x; t) = φ̃(x, t) a.e. x ∈ Λ.

(18)

where the advection vector field is v = sgn
(
φ̃
) ∇ψ
|∇ψ| and sgn

(
φ̃
)
denotes the sign

function and is equal to 0,−1,+1 respectively on ∂Ω(t), inside Ω(t) and outside Ω(t).
We note also that λ(τ, x; t) is a Lagrange multiplier that enforces the constraint
of constant volume locally at x ∈ Λ. We chose g(ψ) = δ(ψ)|∇ψ|, the Lagrange
multiplier has an explicit average value λV over an arbitrary finite volume V ⊂ Λ:

λV(τ ; t) =





∫
V
δ(ψ)

(
v.∇ψ − sgn

(
φ̃
))

ψx
∫
V
δ(ψ) g(ψ) dx

when V ∩ ∂Ω(t) 6= ∅

0 otherwise

(19)

The stationary solution satisfies |∇ψ| = 1 almost everywhere in Λ, consequently
ψ(∞, .; t) is a signed distance and is taken as the new level set function φ(t, .) at time
t. Let us notice that the solution ψ of the redistancing problem (18) preserve the po-
sition of ∂Ω(t): for any τ > 0, the zero level set of ψ(τ, .; t) is the same zero level set
of φ(t, .). As a result the volume meas(Ω(t)) is also preserved, this point has great
importance for numerous applications. However, after discretization by finite dif-
ference or finite element methods, this property is satisfied only approximately. Let
us introduce the redistance operator defined by φ(t, .) = redistancing(φ̃(t, .)).

Let φ̃n be the approximation of φ̃(t), at time tn and ψm,vm be approximations of
ψ(τ),v(τ) respectively at τm. The time discretization is performed by using the
method of characteristics and the total derivative Dψ/Dt is approximated by a
first-order backward Euler scheme as previously. The redistancing problem (18) is
solved explicitly:

ψm+1 =

{
ψm when |φ̃n| < ε

ψm ◦Xm
vε

+∆τ sgnε(φ̃
n) otherwise

(20)

Here, the characteristic have subscripts vε in order to avoid confusion. Let Wh

be the space of piecewise constant functions on Th and πh denotes the Lagrange
interpolation in Qh. Let ψ0

h = φ̃n+1
h . At any step m ≥ 0 of the redistancing

algorithm, suppose ψm
h ∈ Qh being known, and let gm

h ∈ Qd
h be the approximation

of ∇ψm
h ∈W d

h defined by the following linear system:

∫

Λ

gm
h .wh dx =

∫

Λ

∇ψm
h .wh dx, ∀wh ∈ Qd

h

A mass lumping procedure is used for this linear system: the integrals involved in
the computation of the coefficients of the matrix associated to the L2 scalar product
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are evaluated by using the trapeze quadrature formula. By this way, the matrix of
the linear system is replaced by a diagonal one, and the computation of gm

h becomes
explicit. Then, let

vm
ε,h = πh

(
sgnε

(
φ̃n+1
h

) gm
h

|gm
h |

)

Finally, the discrete version of the redistancing algorithm writes also explicitly:

ψm+1
h =

{
ψm
h when |φ̃nh | < ε

πh

{
ψm
h ◦Xm

vε
+∆τ sgnε(φ̃

n
h)(1− |∇ψm

h |)
}

otherwise
(21)

3.3.2. Improvement of the area and perimeter conservations

Let us summarize here the resolution of the problem:

Algorithm 1

• n = 0: Let ∂Ω(0) be the initial shape and φ0h be its associated signed distance
function. Let u0

h = u−1
h ∈ V(ub) be the initial velocity field.

• n ≥ 1: Let φn−1
h ∈ Qh and un−1

h , un−2
h ∈ Vh(ub) being known. Then

step 1 : compute φ̃nh = πh
(
φn−1
h ◦Xn−1

1

)
∈ Qh;

step 2 : compute φnh = redistancing(φ̃nh);

step 3 : compute un
h, p

n
h and λnh from (17).

(A−A0)/A0

(V − V0)/V0

n
150100500

1

10−1

10−2

10−3

10−4

10−5

Figure 2: Without conservation improvement, the vesicle area and perimeter errors diverge: com-
putations for h = 5.3× 10−2, ∆t = 3× 10−2, τ = 0.81 and ε = 2.5h.

In this section we present a numerical simulation to illustrate the features of the
numerical method. We choose Re = 10−3 , Ca = 103 , α = 1/10 , τ = 0.81 and a
viscosity rate β = 50. Fig. 2 plots the evolution of the relative error in vesicle area
and perimeter. Observe that, after few iterations, the error becomes higher than
10% of the reference vesicle area and perimeter: this error completely changes the
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vesicle, that evolves to a circular shape. The algorithm must be modified in order
to improve the area and perimeter conservation. The problem of advection (4a) is
substituted by the equivalent system:

∂φ

∂t
+ [u + (p∗ + λ∗f)n] .∇φ = 0 a.e (t, x) ∈]0,+∞[×Λ , (22)

d

dt

∫

Λ

(1− H (φ)) dx = 0 ∀t ∈]0,+∞[ , (23)

d

dt

∫

∂Ω

ds = 0 ∀t ∈]0,+∞[ , (24)

where p∗ and λ∗ are two global Lagrange multipliers associated to two additional
constraints for area and perimeter preservation. This system leads, after time dis-
cretization, to a modified and more robust scheme, with a modified advection field
u∗ = u + (p∗ + λ∗f)n. The variation of area V (t) at time tn writes:

dV

dt
(tn) =

[
d

dt

∫

Λ

(1− H (φ)) dx

]

t=tn
=
V n − V n−1

∆t
+O(∆t) , (25)

where V n−1 =
∫
Ωn−1 dx is known and we want to impose that V n = V0 the ini-

tial area, in order to avoid the previous area error accumulation. Conversely, the
variation of the perimeter A(t) at time tn expresses:

dA

dt
(tn) =

[
d

dt

∫

∂Ω

ds

]

t=tn
=
An −An−1

∆t
+O(∆t) , (26)

where An−1 =
∫
∂Ωn−1 ds is known and we want to impose that An = A0 the initial

perimeter. Combining (22) and (23), we obtain:

d

dt

∫

Λ

(1− H (φ)) dx = −
∫

Λ

∂φ

∂t
δ(φ) dx = −

∫

∂Ω

1

|∇φ|
∂φ

∂t
ds =

∫

∂Ω

1

|∇φ|u∗.∇φds . (27)

Recall that, for any function ϕ and vector field v, the Reynolds formula on a surface
∂Ω writes:

d

dt

∫

∂Ω

f ds =

∫

∂Ω

d f

dt
+∇.(f u) − f(∇u.n).n ds . (28)

With ϕ = 1 and v = u∗, and using the Green formula (8), we get successively:

d

dt

∫

∂Ω

ds =

∫

∂Ω

divs u∗ ds =

∫

∂Ω

H u∗.n ds. (29)

At time tn, replacing un
∗ by un + (pn∗ + λn∗f)n

n in (25)-(26) and using (27)-(29),
we obtain the following linear system with two unknowns (pn∗ , λ

n
∗ ) ∈ R

2:

p∗
∫

∂Ω

ds + λ∗
∫

∂Ω

f ds =
V0 −

∫
Ωn dx

∆t
−
∫

∂Ω

u.n ds ,

p∗
∫

∂Ω

H ds+ λ∗
∫

∂Ω

H f ds =
A0 −

∫
∂Ωn ds

∆t
−
∫

∂Ω

H u.n ds .

Choosing f a non-constant function ensure that this system is well-posed. In our
simulations, we use f(x1, x2) = 2x21 + x22.

3.3.3. Improvement by mesh adaptation

A way to adapt the mesh to the computation of a governing field is to equi-distribute
its interpolation error, i.e. to make it constant over all triangles and in the directions
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Figure 3: Transformation from the reference element K̂ to any triangle K.

of maximal and minimal stretching and to adjust the maximal and minimal direc-
tions of stretching to others of maximal and minimal error. Our approach bases on
the bidirectional anisotropic mesh generator bamg developed by F. Hecht [17] (see
also [35, 19, 20]), together with the choice of a particular metric, specific to our
time-dependent level set problem.

For any triangle K of the mesh Th at time t, let TK be the affine transformation
which maps the reference triangle K̂ into K (see Fig. 3):

TK : K̂ −→ K
x̂ 7−→ x = TK(x̂) =MK x̂+ tK .

where MK is the Jacobian of TK . Notice that MK is unsymmetric and invert-
ible, otherwise K would be flat. Thus, MK admits a singular value decomposition
(for SVD, see [16, p. 69]): MK = RT

KΛKPK , where RK and PK are orthogonal
and where ΛK is diagonal with positive entries. The choice of the reference tri-
angle K̂ is not unique. It is common practice to choose as K̂ the right triangle
{(x1, x2), x1 > 0, x2 > O, x1 + x2 < 1}. For mesh generation and adaption pur-
poses, an equilateral triangle, inscribed in the unit circle, is often preferred [13].
Since x̂ = M−1

K (x− tK), the unit circle equation x̂T x̂ = 1 becomes:

1 = (x− tK)
T
M−T

K M−1
K (x− tK) = (x− tK)

T
RT

KΛ−2
K RK (x− tK)

This is the equation of an ellipse containing K (see Fig. 3).

Following [17], our choice of the metric is based on the hessian tensor of a specific
governing field χ, for which we aim at decreasing the interpolation error. The
interpolation error in the direction v ∈ R

2 is given by:

eK,v = h2K,v

∥∥∥∥
∂2χ

∂v2

∥∥∥∥ on K,

where hK,v denotes the length of K in the direction v and
∂2χ

∂v2
= vT ∇∇χv, and

∇∇χ is the hessian matrix of χ.

By adjusting the directional sizes hK,v of K for each eigenvector of the hessian ma-
trix and each element K, the local directional interpolation errors can be equidis-
tributed on the whole domain. An adaptation loop is required in order to assure the
convergence of both the approximation of χ and its corresponding mesh. In order
to adapt the mesh to the vesicle boundary ∂Ωn at each time step tn, the governing
field χ = δε(φ

n)+δε(φ
n−1) has been chosen for the adaptation loop. For an uniform

mesh, the regularization parameter used for the computation of integrals over ∂Ω is
chosen as proportional to the element size: ε = 2h. This choice is extended to a non-
uniform mesh with a non-constant ε(x), x ∈ Λ, that is proportional to an average
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Figure 4: (left) Zoom on the adapted mesh ; (right) Vesicle tumbling under a linear shear flow for
Re = 10−3, Ca = 104, α = 1/4, β = 20 and γ = 0.89. The shapes are shown for t = kTp/14,
k ∈ {1, 2, 3, 4, 5, 8, 11, 12, 13}, where Tp = 10.3 is the tumbling period.

value of the local mesh size: ε(x) = 2
√
2meas(K)

1

2 , for all x ∈ K. Fig. 4.a shows
a zoom on the adapted mesh at the end of the adaptation loop, where both the
contours of ∂Ωn−1 and ∂Ωn are captured. Fig. 4.b represents the vesicle boundary
evolution, as computed by the present auto-adaptive procedure.

4. Numerical results

4.1. Vesicles in the tumbling mode

Simulations show, in accord with literature, that two flow regimes exist: a steady-
state tank-treading regime where the vesicle assumes a steady-state shape and its
inclination angle remains constant with time, while the fluid membrane treads as
a tank and the internal fluid follows this rotation. The second regime is a periodic
tumbling one, where the vesicle shape rotates. The transition between the two
regimes for a vesicle of fixed reduced area γ happens at a critical viscosity ratio
between the inside and outside fluid, beyond which the vesicle tumbles. The small
Reynolds number case is considered in this paragraph: this is a typical situation in
microfluidic devices and the viscous forces are dominant over the inertial ones: the
flow is almost laminar, and no turbulence can be observed, at least in the absence
of vesicle. The following parameters are chosen: Re = 10−4 , Ca = 103 , β = 20
and a vesicle with a reduced area γ = 0.89 The time step is ∆t = 2.5 × 10−3. In
their experimental tests, Vitkova and al. [37] use vesicles with a diameter 50µm in
a canal with a length 1 mm. This leads to a confinement equal to 1/20: notice that
we use confinements between 1/2 and 1/5 when using an uniform mesh, and up to
1/12, in the case of an adapted mesh. The viscosity ratio β is chosen such that the
vesicle is in a tumbling mode.

First, let us check the improvement of the area and perimeter conservation, as intro-
duced in the procedure of the previous section. Computations are first performed
with α = 1/9 and Fig. 5 plots the evolution of relative mass errors (V −V0)/V0 and
(A − A0)/A0. Observe that, over a duration equivalent to 80 periods of tumbling,
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Figure 5: With conservation improvement, area and perimeter errors remains bounded: (a) the
vesicle area error; (b) the vesicle perimeter error.

both the area and perimeter relative errors remains bounded by 10−3. The im-
provement of the conservation, based on Lagrange multipliers, is clearly shown by
a comparison with the previous Fig. 2, where the errors diverge after the equivalent
of two periods of the vesicle tumbling.

Figure 6: Adapted meshes used for the study of the effect of the confinement α: from left to right:
α = 1/2, 1/5 and 1/9.

Let us now investigate the effect of the confinement α on the tumbling regime of
the vesicle. Adapted meshes, that capture the vesicle boundary (in red) are shown
in Fig. 6 for different confinements. Fig. 7 plots the evolution of the tumbling
dimensionless period, denoted as Tp, versus 1/α. As it could be expected, these
results show that when the confinement α decreases, the tumbling period becomes
independent of α. In the simulations presented in the rest of the paper, α = 1/4
was chosen, since the solution it sufficiently independent of the confinement.

Let us denote by θ(t) the inclination angle measured counterclockwise from the
positive x1 semi-axis. The numerical computation of the inclination angle θ(t) for
an arbitrary shape Ω(t) is reported in appendix Appendix C. The vesicle reaches
a periodic regime after about 10 periods of tumbling: the inclination angle θ(t)
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Figure 7: Tumbling regime: period Tp vs 1/α for Re = 10−4, Ca = 103, β = 20 and γ = 0.82.

becomes periodic. Let us observe on Fig. 8 some Lissajous representations, suitable
for periodic phenomenas. The solution is represented, during the 10th period, where
the periodic regime is well established. Fig. 8.a the angular velocity dθ

dt versus θ:
observe that the angular velocity is minimal when θ = 0, i.e. when the vesicle is
aligned with the horizontal axis, while its maximal when the vesicle is aligned ver-
tically (θ = ±π/2). Fig. 8.b the evolution of the Canham-Helfrich energy versus θ:
this energy reaches a global maximum when the vesicle is roughly aligned horizon-
tally and, conversely, reaches a minimum when its roughly aligned vertically. Here,
there is a small phase shift: the extrema of the energy are slightly in advance with
the corresponding extrema of the angular velocity.

In order to study analytically the dynamics of vesicles, a rough analytical model
was proposed in 1982 by Keller and Skalak [22]. This model incorporates a quasi-
inextensible membrane, but vesicles were treated as undeformable liquid ellipsoids.
Nevertheless, this model was able to reproduce tumbling regime notably for reduced
area γ near 1 (i.e. quasi-spherical shapes), for which the distance to inextensibility
is weak. Keller and Skalak [22] showed that the ellipsoid motion is described by:

dθ

dt
= −1

2
+ c(γ , β)cos(2θ),

where c(γ , β) is a coefficient depending on the aspect ratio γ and the viscosity ratio
β. Fig. 9 plots dθ

dt versus cos(2θ). Observe the good correspondence with the affine
behavior, as predicted by the Keller and Skalak theory. A linear regression on the
numerical simulation data leads to the slope coefficient c = 0.33.

Let us turn to the effect of the reduced area γ on the period of tumbling Tp. We
consider a vesicle with a viscosity ratio β = 50 in a shear flow with a Reynolds
number Re = 10−4 and a Capillarity number Ca = 103. Observe on Fig. 10 a
quasi-linear dependence of Tp upon γ.
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Figure 8: Tumbling regime: Lissajous curves: (a) the angular velocity dθ
dt

vs θ and (b) the Canham-

Helfrich energy vs θ. (Re = 10−4, Ca = 103, α = 1/4, β = 20 and γ = 0.82).

4.2. The tank-treading regime

When the viscosity contrast tends to the critical value of viscosity, a transition
to the tank-treading regime occurs. When the viscosity contrast β is small, the
fluid inside the vesicle is highly deformed and rotated, and the vesicle adopts a
stationary boundary ∂Ω ; its orientation θ(t) reaches rapidly a stationary value θ∗

(see Fig. 11.a) Notice that the velocity is not vanishing along ∂Ω: the membrane
continue to tread like a tank and the internal fluid follows this rotation. Fig. 11.b
plots the dependence of θ∗ upon γ. Observe that θ∗ increases versus γ.

Fig. 12 plots the streamlines and the velocity fields on the vesicle membrane. Re-
mark that, when the stationary regime is reached, the velocity is tangential to the
membrane.

23



dθ

dt

cos(2θ)

10-1

0

-0.5

-1

Figure 9: Tumbling regime: dθ
dt

vs cos(2θ) for Re = 10−4, Ca = 104, α = 1/9, β = 50 and

γ = 0.84. A linear regression leads to dθ
dt

= 0.33 cos(2θ)− 0.5, as indicated by the continuous line.
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Figure 10: Tumbling regime: period Tp vs the reduced area γ, for Re = 10−4, Ca = 103, α = 1/4
and β = 50.
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Figure 11: Tank-treading regime for Re = 10−4, Ca = 104, β = 1 and γ = 0.84: (a) evolution of
θ(t) for α = 1/2 and 1/4. (b) the stationary angle θ∗ = limt→+∞ θ(t) vs the reduced area γ for
α = 1/4.

Figure 12: Tank-treading regime vs time for Re = 10−4, Ca = 104, α = 1/2, β = 1 and γ = 0.84:
streamlines lines and velocity field on the vesicle membrane ∂Ω. Figures are, from left to right, at
t = k∆t, k ∈ {60, 120, 1000} and ∆t = 2× 10−2.
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4.3. Effect of inertia

An exhaustive study of the rheology of a vesicle in the presence of inertia has been
carried out in this section. Although the basic behaviors had already been observed,
the results shown in this part were nontrivial and not completely understood yet.
For red blood cells in an blood vessel, the Reynolds number Re is not always very
small so the Stokes limit is not always available: R0 is about 3 × 10−6 m η0 is
about 10−3 Pa.s and ρ is about 103 kg.m−3. For a mean velocity in the blood
vessel about 1 m.s−1, the Reynolds number Re ≈ 3. In laboratory experiments,
with experimental vesicles, R0 is about 5× 10−5 m while we can supervise vesicles
using rapid cameras that can reach a velocity of about 0.1 m.s−1. In that case, the
Reynolds numbers Re ≈ 5. In both cases, the inertia effect can no more be neglected
and the prediction of vesicle behaviors for these magnitude of the Reynolds number
is of major importance. Moreover, we show in this paragraph, that inertia effects
change dramatically the vesicle behavior for the simple shear flow.

Fig. 13 plots the evolution of the vesicle for Re = 0.4. Observe that the behavior,
is dramatically different to the corresponding one for small Reynolds numbers, as
shown previously on Fig. 4.b. Especially, deformations are more important when
the inclination angle is close to π/2.

Above a critical value of the Reynolds number, the tumbling regime disappears: a
new tank-treading regime occurs and the vesicle keeps a constant angle. Figs. 14.a
and 14.b plot the angle θ(t) for γ = 0.82: observe that the period Tp increases with
Re until a critical Reynolds number between 3.5 and 4. For Re > 4, the angle
θ(t) becomes constant: the vesicle switch from a tumbling regime to a tumbling
one. More developments on the effect of the inertia will appear in a forthcoming
paper [27].

5. Conclusion

The new level method presented in this paper for the simulation of the vesicle
dynamics exactly satisfies locally and at the discrete level both the inextensibility
membrane condition and the volume conservation. We show that the proposed
method, based on Lagrange multipliers, solves a lack of precision problem when
dealing with the inextensibility constraints and the level set method. Moreover,
an automatic adaptive method, used at each time step, enhance the prediction of
the vesicle motion. With this procedure, we are able to accurately reproduce the
change of regime, from tank-treading to tumbling, as observed when the viscosity
ratio varies.

For the first time to our knowledge, we show the apparition of a new change of
regime when the Reynolds number is below a critical value. Moreover, the critical
Reynolds number of this order of magnitude for both red blood cells in arteries and
vesicles used in laboratory experiments. In the future, new experiments on vesicle
would be necessary to infirm or confirm your numerical predictions.
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Figure 13: Inertia effects: streamlines lines and velocity field on the vesicle membrane for Re = 0.4,
Ca = 104, α = 1/2, β = 10 and γ = 0.62. Figure are shown, from left to right and top to bottom,
at t = kTp/24, k ∈ {2, 4, 6, 8, 13, 18, 20, 22, 24}, where Tp = 29.1 is the tumbling period.
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Figure 14: Inertia effect: influence of Re on the vesicle inclination θ(t) for Ca = 104, α = 1/2,
β = 10 and γ = 0.82. (a) tumbling regime when Re ≤ 3/5; (b) tank-treading regime when Re ≥ 4.
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Appendix A. Remark on the spontaneous curvature

Let denote by V0 the area and by A0 the perimeter of the vesicle Ω. Using as a
characteristic length the radius R0 of the circle having the same perimeter as ∂Ω,

the relation between the Lagrangian L and its dimensionless counterpart L̃ writes:

L̃ (Ω̃; λ̃, p̃) =
2R0

kc
L (Ω;λ, p) =

∫

∂Ω̃

H̃2 ds̃+ λ̃

(∫

∂Ω̃

ds̃− Ã0

)
+ p̃

(∫

Ω̃

dx̃− Ṽ0

)
.

where λ̃ =
2

kc
λR2

0 and p̃ =
2

kc
pR3

0. denote the dimensionless Lagrange multipliers.

Recall that the reduced area γ =
V0
π

×
(
2π

A0

)2

=
V0
πR2

0

. Then, for the dimension-

less problem, the volume and area express Ṽ0 =
V0
R2

0

= π γ and Ã0 =
A0

R0
= 2π. As

a consequence, the reduced area γ is the unique dimensionless number of this prob-
lem, that characterizes the stationary shape of the vesicle: others parameters, such
as kc, has no effects.

Let us turn to the effect of the spontaneous curvature H0 ≥ 0: The Lagrangian
writes:

L (Ω;λ, p) =
kc
2

∫

∂Ω

(H −H0)
2 ds+ λ

(∫

∂Ω

ds−A0

)
+ p

(∫

Ω

dx− V0

)
. (A.1)

From (H−H0)
2 = H2−2HH0+H

2
0 , notice first that the lastH

2
0 term is constant and

thus, has no effects in the minimization problem. The only term that depend upon
H0 is the second one, involving H0

∫
∂Ω
H ds. Using the general shape derivative

analysis framework [25] with f(H) = H , we get, for any vector field u:

∂

∂Ω

(∫

∂Ω

H ds

)
(Ω).(u) =

∫

∂Ω

2K u.n ds. (A.2)

where K is the Gauss curvature of ∂Ω. As K = 0 for two dimensional problems,
the bidimensional vesicle equilibrium shape is independent of H0 and depends only
of the reduced area γ. The spontaneous curvature H0 is only pertinent for three-
dimensional problems.

Appendix B. Remark on the redistanciation procedure

Let us consider the transport equation: Dtφ = ∂tφ+ u.∇φ = 0.
Using the summation of repeated indices convention, we
get: ∂iφ ∂i∂tφ+ ∂iφ ∂i (uj∂jφ) = 0 that writes also equivalently:
(1/2) ∂t

(
|∇φ|2

)
+ |∇φ|2(n⊗ n) : u+ ∂iφ.∂i (uj∂jφ). Remark that:
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∂iφ.∂i (uj∂jφ) = (1/2) uj.∂j

(
(∂iφ)

2
)
= (1/2) u.∇

(
|∇φ|2

)
= |∇φ|u.∇(|∇φ|).

Then, we obtain: Dt(|∇φ|) = |∇φ| (divs u− divu). The density of the fluid is
supposed to be constant, and the mass conservation leads to divu = 0. Moreover,
in the context of vesicles, divs u since the membrane is supposed to be inextensible.
Thus Dt(|∇φ|) = 0. When |∇φ| = 1 at t = 0, i.e. when φ is initially a distance
function, this property is then preserved for all t > 0. When using the finite element
approximation, we observe that this property is only approximately preserved, and
thus, the redistancing procedure described in this paper is applied.

Appendix C. Computation of the vesicle inclination

This appendix presents the computation of the angle θ of the shape Ω. Let (x1, x2)
be the coordinate system for R

2, containing the shape Ω and dx = dx1dx2. The
center of the vesicle is denoted by (x̄1, x̄2), where x̄1 =

(∫
Ω x1dx

)
/meas(Ω) and

x̄2 =
(∫

Ω
x2dx

)
/meas(Ω). Let I be the inertia matrix of the vesicle relative to the

vertical axis in (x̄1, x̄2):

IO =

( ∫
Ω (x1 − x̄1)

2
dx

∫
Ω (x1 − x̄1) (x2 − x̄1) dx∫

Ω
(x1 − x̄1) (x2 − x̄1) dx

∫
Ω
(x2 − x̄1)

2
dx

)
.

This symmetric matrix has two real eigenvalues and orthogonal eigenvectors. The
inclination angle θ is defined as the angle between the eigenvector associated to the
largest eigenvalue, and the x1 axis.
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