A Reilly inequality for the first Steklov eigenvalue
Résumé
Let $M$ be a compact submanifold with boundary immersed in a Euclidean space or a Sphere. In this paper, we derive an upper bound for the first non zero eigenvalue $p_1$ of Steklov problem on $M$ in terms of the $r$-th mean curvatures of its boundary $\partial M$. In the Euclidean case, the obtained upper bound is sharp.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...