Reduced graphs for min-cut/max-flow approaches in image segmentation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Reduced graphs for min-cut/max-flow approaches in image segmentation

Résumé

In few years, min-cut/max-flow approach has become a leading method for solving a wide range of problems in computer vision. However, min-cut/max-flow approaches involve the construction of huge graphs which sometimes do not fit in memory. Currently, most of the max-flow algorithms are impracticable to solve such large scale problems. In this paper, we introduce a new strategy for reducing exactly graphs in the image segmentation context. During the creation of the graph, we test if the node is really useful to the max-flow computation. Numerical experiments validate the relevance of this technique to segment large scale images.
Fichier principal
Vignette du fichier
Letocart_LAGOS2011.pdf (254.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00596000 , version 1 (26-05-2011)

Identifiants

  • HAL Id : hal-00596000 , version 1

Citer

Nicolas Lermé, Lucas Létocart, François Malgouyres. Reduced graphs for min-cut/max-flow approaches in image segmentation. LAGOS'11 : VI Latin-American Algorithms, Graphs, and Optimization Symposium, Mar 2011, Bariloche, Argentina. 6 p. ⟨hal-00596000⟩
174 Consultations
390 Téléchargements

Partager

More