
HAL Id: hal-00596000
https://hal.science/hal-00596000v1

Submitted on 26 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reduced graphs for min-cut/max-flow approaches in
image segmentation

Nicolas Lermé, Lucas Létocart, François Malgouyres

To cite this version:
Nicolas Lermé, Lucas Létocart, François Malgouyres. Reduced graphs for min-cut/max-flow ap-
proaches in image segmentation. LAGOS’11 : VI Latin-American Algorithms, Graphs, and Opti-
mization Symposium, Mar 2011, Bariloche, Argentina. 6 p. �hal-00596000�

https://hal.science/hal-00596000v1
https://hal.archives-ouvertes.fr

Reduced graphs for min-cut/max-flow
approaches in image segmentation

Nicolas Lermé,Lucas Létocart,François Malgouyres 1,2,3

LAGA UMR CNRS 7539 and LIPN UMR CNRS 7030
Université Paris 13 –Avenue J.B. Clément

93430 Villetaneuse - France

Abstract

In few years, min-cut/max-flow approach has become a leading method for solving a
wide range of problems in computer vision. However, min-cut/max-flow approaches
involve the construction of huge graphs which sometimes do not fit in memory.
Currently, most of the max-flow algorithms are impracticable to solve such large
scale problems. In this paper, we introduce a new strategy for reducing exactly
graphs in the image segmentation context. During the creation of the graph, we
test if the node is really useful to the max-flow computation. Numerical experiments
validate the relevance of this technique to segment large scale images.

Keywords: image segmentation, min-cut/max-flow, graph reduction.

1 Introduction

Graph cuts provide a global optimization method based on max-flow/min-cut
for solving a wide range of problems encountered in computer vision. Since

1 Email: nicolas.lerme@lipn.univ-paris13.fr
2 Email: lucas.letocart@lipn.univ-paris13.fr
3 Email: malgouy@math.univ-paris13.fr

pioneer work of Greig et al. [5], the graph cuts have recently known a quick
development with the arrival of a fast max-flow algorithm [2].

At the same time, the resolution of images acquired by digital devices
increase constantly. In biomedical imaging, high-resolution data can involve
massive graphs containing millions of nodes, which do not fit in memory. For
these instances, global optimization methods such as graph cuts are imprac-
tical due to memory requirements, even using implicit graph representation.

To overcome this problem, a parallelized max-flow algorithm yielding near-
linear speedup with the number of processors has been proposed [4]. This
algorithm is able to segment large volumes while keeping optimality on so-
lutions but remains less effective than standard graph cuts on small graphs.
On the other side, some authors have also proposed heuristics based on multi-
resolution schemes [8,9]. These algorithms reduce drastically speed and mem-
ory usage but fail to recover thin structures in images. Other heuristics [7,3]
use adjacency graphs. Results highly depend both on the image structure and
the low-level segmentation algorithm.

In the present work, we propose an algorithm for reducing exactly graphs.
In section 2, we review the graph cuts framework. Next, our approach is
detailed in section 3 and compared to standard graph cuts in section 4.

2 Relashionship between images and min-cut/max-flow

problem

An image can be defined by a pair (P , I) consisting of a finite discrete set P ⊂
Z
d (d > 0) of points (pixels in Z

2, voxels in Z
3, etc.) and a function I that maps

each point p ∈ P to a value I(p) in some value space. Usually, P corresponds
to a rectangle. For an image, we can construct the associated directed weighted
graph G = (V , E , c) consisting of a set of nodes V = P ∪ {s, t}, a set of edges
E and a positive weighting function c : V2 → R

+ defining the edge capacity.

We distinguish two special nodes of V : the source node s specifying the
“object” terminal and the sink node t specifying the “background” terminal.
Furthermore, we split the set of edges E in two disjoint sets En and Et denoting
respectively n-links (neighborhood links) and t-links (terminal links). Next,
we associate a neighborhood N (p) to any point p ∈ P . In this setting, we will
use the following neighborhoods:

N0(p) = {q :
∑d

i=1 |qi − pi| = 1} ∀p ∈ P ,

N1(p) = {q : |qi − pi| ≤ 1 ∀1 ≤ i ≤ d} ∀p ∈ P ,

where pi denote the ith coordinate of the point p. For instance, each pixel
has 4 and 8 neighbors in 2D, 6 and 26 neighbors in 3D and finally 8 and 80
neighbors in 4D 4 . In the sequel, the terms “connectivity 0” and “connectivity
1” will correspond respectively to the use of a N0 and N1 neighborhood.

In [1], Boykov and Jolly showed that the image segmentation problem can
be efficiently solved by minimizing a Markov Random Field of the form:

E(u) = β ·
∑

p∈P

Ep(up) +
∑

p,q∈P
q∈N (p)

Ep,q(up, uq), (1)

where u ∈ {0, 1}P . As usual, the data fidelity term Ep(.) forces up to fit the
input data while the smoothness term Ep,q(.) penalize neighboring pixels p and
q if they have different labels. According to [6], the minimizer of the energy (1)
corresponds to a min-cut in a graph and can be efficiently computed by the
algorithm described in [2] 5 .

3 Reducing graphs

As we have seen before, the memory usage for segmenting high-resolution data
by graph cuts can be prohibitive. Nevertheless, we can observe that most of
the nodes are useless because they are not traversed by any flow. Clearly,
only a small part of nodes is used during the max-flow computation. When
reducing such a graph, one would like to extract the smallest possible graph
G ′ = (V ′, E ′, c) from G while keeping a solution u′ identical or very close to

u. Ideally, we want to maximize the reduction rate ρ = 1 − |V ′|
|V|

s.t. u ≃ u′.

However, the method for determining G ′ also needs to be fast and this rules out
the resolution of such an optimization problem. Before describing our method
for building G ′, let us introduce some terminology. In accordance with the
graph construction given in [6], we consider (without loss of generality) that
a node is linked to at most one terminal, i.e:

(s, p) ∈ Et ⇒ (p, t) 6∈ Et, ∀p ∈ P .

Also, we summarize the capacities of the t-links at any node p ∈ P by c(p) =

c(s, p)−c(p, t). For any B ⊂ Z
d and p ∈ P , we denote by B̃p the set translation

4 Typically, larger neighborhood systems yield better results but increase running times
and memory consumptions.
5 An implementation of the max-flow algorithm is freely available at
http://www.cs.cornell.edu/People/vnk/software.html

http://www.cs.cornell.edu/People/vnk/software.html

of B by the point p: B̃p = {b+ p | b ∈ B}. Moreover, for Z ⊂ P and B ⊂ Z
d,

we define the dilation of Z by B as:

Z̃B = {z + b | b ∈ B, z ∈ Z} =
⋃

z∈Z

B̃z.

We also define, for any Z ⊂ P , the maximal amount of flow coming in and
out through the n-links by

Pin(Z) =
∑

p 6∈Z,q∈Z

q∈N (p)
c(p, q), Pout(Z) =

∑
p∈Z,q 6∈Z

q∈N (p)
c(p, q).

Finally, we define the maximum amount of flow passing through the t-links
and the flow orientation by

A(Z) =
∑

p∈Z

|c(p)|, O(Z) =
∑

p∈Z

sign(c(p)),

where sign(t) = 1 if t > 0, 0 if t = 0 and −1 otherwise.

Let B ⊂ Z
d, in order to build G ′, we remove from the nodes of G any

Z ⊂ P such that either

O(Z̃B) = +|Z̃B| and A(Z̃B \ Z) ≥ Pout(Z̃B), or

O(Z̃B) = −|Z̃B| and A(Z̃B \ Z) ≥ Pin(Z̃B).
(2)

As an illustration of those conditions, notice for instance that the last condition
implies that all the flow that might come in the region Z̃B comes from its
boundary and can be absorbed by the band Z̃B \ Z. Building such sets Z is
done by testing each individual pixels of Z. In order to do so, we establish (in
a forthcoming paper) that the conjunction of conditions (2) for every z ∈ Z

implies (2) for Z. Considering B, a square window of size (2r + 1) (r > 0)
centered at the origin, a more conservative test for z ∈ Z is

c(q) ≥ +δ ∀q ∈ B̃z or

c(q) ≤ −δ ∀q ∈ B̃z,
(3)

where δ = P (B)
(2r+1)2−1

, with

P (B) = max(|{(p, q), p ∈ Z, q 6∈ Z and p ∈ N (q)}|,

|{(p, q), p ∈ Z, q 6∈ Z and q ∈ N (p)}|).

If all the capacities of the n-links are smaller than 1 (which is true for most in-
teresting energies) and (3) holds, the inegality (2) holds for Z = {z}. Then, G ′

is determined by the set of nodes V ′ = {p ∈ P not satisfying (3)}∪{s, t}. We
have theoretical and empirical evidence suggesting that this graph reduction
provides an exact solution. Morever, the condition (3) is simple and a straight-
forward implementation has a worst-case complexity of O(|B|). Decomposing
this test along the d dimensions yields an algorithm with complexity O(1),
except for image borders.

4 Experimental results

This section compares the performance of standard graph cuts and our method
in terms of speed and memory with the Boykov/Jolly [1] energy model. Exper-
iments are performed on an Athlon Dual Core 6000+ 3GHz with 2GB RAM
for segmenting 2D/ 3D images in connectivity 1. Times are averaged over 10
runs.

Introduced in [1], this model has quickly become a standard in applications.
From a user viewpoint, it consists of marking some parts of the image as
“object” and “background”. For more information, we refer the reader to [1].

Text – 3072× 2304 CT thorax – 358× 358× 221 Cells – 358× 358× 88

Standard graph cuts Our method

Image Time Memory Time Memory

Text 7.59 1.23 Gb 4.69 154 Mb

CT thorax / 14.35 Gb 45.67 1.52 Gb

Cells / 5.69 Gb 21.29 1.48 Gb

These results compare time and memory usage between standard graph cuts
and our method for segmenting 3 real images. The second image represents
an abdominal CT with a pulmonary tumor while the third image shows brain

cells.

In these experiments, the model’s parameters are optimized for better visu-
alization. The window radius is chosen such that memory usage is minimized.
For all images, the amount of allocated memory for the graph is reduced by
a factor ranging from 3.8x to 9.4x. For the first image, our algorithm is 1.6x
faster and require 8x less memory while getting exactly the same result. More-
over, altough the graphs induced by the volumes “ct-thorax” and “cells” do
not fit in memory (estimated values) when no reduction is performed, we ob-
serve that our algorithm is able to segment them in less than 1 minute. We
can notice that we obtain the same conclusions for all the images tested (more
than 100).

References

[1] Boykov, Y. and Jolly, M-P., Interactive Graph Cuts for Optimal Boundary and
Region Segmentation of Objects in N-D Images, ICCV 1 (2001), 105–112.

[2] Boykov, Y. and Kolmogorov, V., An Experimental Comparison of
Min-cut/Max-flow Algorithms for Energy Minimization in Vision, IEEE
Transactions on PAMI 26 (9) (2004), 1124–1137.

[3] Cigla, C. and Alatan, A.A., Region-based image segmentation via graph cuts,
ICIP (2008), 2272–2275.

[4] Delong, A. and Boykov, Y., A Scalable Graph-Cut Algorithm for N-D Grids,
CVPR (2008), 1–8.

[5] Greig, D. M. and Porteous, B. T. and Seheult, A. H., Exact Maximum A
Posteriori Estimation for Binary Images, Journal of the Royal Statistical
Society 51 (2) (1989), 271–279.

[6] Kolmogorov, V. and Zabih, R., What Energy Functions Can Be Minimized Via
Graph Cuts?, IEEE Transactions on PAMI 26 (2) (2004), 147–159.

[7] Li, Yin. and Sun, Jian. and Tang, Chi-Keung. and Shum, Heung-Yeung., Lazy
Snapping, ACM Transactions on Graphics 23 (3) (2004), 303–308.

[8] Lombaert, H. and Sun, Y.Y. and Grady, L. and Xu, C.Y., A Multilevel Banded
Graph Cuts Method for Fast Image Segmentation, ICCV 1 (2005), 259–265.

[9] Sinop, A.K. and Grady, L., Accurate Banded Graph Cut Segmentation of Thin
Structures Using Laplacian Pyramids, MICCAI 9 (2) (2006), 896–903.

	Introduction
	Relashionship between images and min-cut/max-flow problem
	Reducing graphs
	Experimental results
	References

