Optimized Parameters of Optimized Schwarz Waveform Relaxation Methods for The Heat Equation
Résumé
In \cite{Bennequin:09:AHB} and \cite{Gander:2007:OSW}, D. Bennequin, M. Gander and L. Halpern show that the problem of optimizing the convergence rates is in fact a new class of best approximation problems and suggest a new method to solve this class of problems. The authors consider the model problem of optimizing the convergence factors for advection-diffusion equations. In this report, we use their methods to check the results announced in \cite{Gander:2003:SWR} and then extend the results to optimized Robin and Ventcell transmission conditions for 2 dimensional heat equations.
Domaines
Analyse numérique [math.NA]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...