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Chapter 1

Introduction

The Schwarz domain decomposition methods is a procedure to parallelize and
solve partial differential equations numerically, where each iteration involves
the solutions of the original equations on smaller subdomains. It was original
proposed by H. A. Schwarz [7] in 1870 as a technique to prove the existence
of a solution to the Laplace equation on a domain which is a combination
of a rectangle and a circle. The idea was then used by P. L. Lions [4], [5],
6] as parallel algorithms in solving partial differential equations. Since then,
many kind of domain decomposition methods have been developped, to im-
prove the performance of the classical domain decomposition method. One
of the main streams in this direction is to replace the Dirichlet transmission
condition by Robin and Ventcell transmission conditions and then calculate
the convergence rates. Using different transmissions condition gives different
convergence rates and we need to optimize to get the best transmission con-
ditions, the methods are then called the optimized Schwarz methods. In [1]
and [2], D. Bennequin, M. Gander and L. Halpern show that the problem of
optimizing the convergence rates is in fact a new class of best approximation
problems and suggest a new method to solve this class of problems. The au-
thors consider the model problem of optimizing the convergence factors for
advection-diffusion equations. In this report, we use their methods to check
the results announced in [3] and then extend the results to optimized Robin
and Ventcell transmission conditions for 2 dimensional heat equations.



Chapter 2

Optimized Schwarz Waveform
Relaxation Methods For The
One Dimensional Heat
Equation

2.1 Optimized Schwarz Waveform Relaxation
Methods For The One Dimensional Heat
Equation With Robin Transmission Con-
dition

In this section, we consider the optimized Schwarz waveform relaxation
method. The algorithm is

(0 — VOpz)ul = f in O x (0,7),
{ u¥(z,0) = ug(x) in Q, (2.1.1)
(0 + Z)uk(L,.) = (0s + Z)us~"(L,.) in (0,T),
(0 — VOpe)ub = f in Qy x (0,7),
{@@mmm in €,
(0: = $)ub(0,.) = (9: — £)uy™(0,.) in (0, 7).



Let hy, and ho be given in 0H1(0,T). Let (e1, e2) be the solution in H3 (€ x
(0,T)) x H*3(€y x (0,T)) of the problem

(at — 1/(9“)61 =0 in Ql X (O,T),
e1(z,0) =0 in Qy, (2.1.2)
(am + 2%)61([’7 ) =hy in (0>T)>

(at — 1/(9“)62 =0 in QQ X (O,T),
62($>0) =0 in Q2>
(0z — 2)e2(0,.) = hg in (0,T).
We have
Sei(z,w) = \/42_2 n pShL exp([(x — L)), (2.1.3)
and
oy .
Ses(r,w) = \/élz—%—pgho exp(— \/? ). (2.1.4)

We have also

F(an(hr, ho)) = F((Dues + 2%@2)@, ), (Deer — 2%61)(0, ). (2.1.5)
We have

P I S (N
am3€2(L,W)+ES€2(L,UJ) - 2\/W—V—|—p( V)eXp( \/jL)ShO

2v P w
b Fum
_ Wi —p Xp(—\/?[/)ghg, (2.1.6)

2\/sz +p
and

0,er(0,w) = -Fer(0,w) = ; ¢_+p\ﬁexp “ )Shs

2\/—+p2veXp( \/7 L)Sho

_ Wi —p
= 2\/——|-p exp( \/jL)ShL. (2.1.7)

bt



From (2.1.5), (2.1.6), (2.1.7), we get

S(op(hr, ho)) = Z\/\/:I_i Xp(—L\/?)S(ho,hL)- (2.1.8)
Therefore
2 _ 2Viwv —p., < — iw
B (s, o)) = (32 s o [Z)5in). @19)
Consequently
) ~ 2iwr —p,
|3(9D(hL>h0))|_|(72\/w—y+p) xp(— QL[)IIS(hL,ho)I (2.1.10)

_ eXp(—L @) (\/ 2|w|v—p) +2|W|V|S(hL, h0)|

(V2lwlv+p)?+2Jwlv

Thus for k € N,

20l (/2w = p)* + 2w

[Sa% (he, ho)|(w )—eXp(—k‘L\/ ” (\/mﬂ,)z+2|w|y)k|3(hL’h0)|(w)‘

Therefore

lahill e = / (1 + o)} 3a2 s () P

= / (1 + |w|?)? exp(—2kL 2|:u|)><

(V2lwly — p)* +2Jwlv 2
X )|Fh(w) | dw.
(V2lwly +p)? + 2Jw|v
Using the Lebesgue dominated convergence theorem with the notice that

w|\v— 2 w|v
((V2| pp) 2] )2 < 1, we can see that {||g2%hz|| s
(V/2lwlv+p)2+2|w|v

k tends to co. Similarly, {||g%hol| . s

Him) } converges to 0 when

} converges to 0 when £ tends to oo.

For k € N, i
2w, (V2lwly —p)* + 2w|v .,
hr, ho = exp(—kL hr, ho)l(w).
ot )l () = exp(—hiy 20 (M s o))

6



We define the convergence factor by

- VB4

+1/29)% +2¢°
Put ¢ = o, 2 = p and p(w;p, L) = p(w;p, L), we need to consider the

following min-max problem

plw;p, L) = exp(—Ly/2—) (2.1.11)

h

min  max  p(w;p,
ﬁER we [U_)minyu_)maz]

), (2.1.12)

™

2Aty
(Ip] = vV2w)* + 2w (—|p| — V2@)? + 2w
(Ip] + v2@)2 + 2 (—|p] + V20)? + 20

so the minimum is attained for p > 0, we only need to consider problem
(2.1.12) in the case p > 0, or the following problem

where Omin = 57, Omaz = . Since

exp(—LV2o) < exp(—LV2@)

min  max  p(w;p, L). (2.1.13)

1520 we [U_)minyu_)maz

We have the following theorems for the overlapping case (L > 0)

Theorem 2.1.1. We suppose that L is small and Wyqe 1S large.
a) For L(@maz)1 small (which means L « C(@maz) 17,7 > 0), problem
(2.1.13) has a unique solution

]5* e 2\/§(wmin@mam)%
then

s Wmin | L
||p(w>p*>L)||OOm1_2\/§(f )47
where the asymptotic expansion is based on the scale of (Wmaz)
b) For L(@mas)? large (which means L« C(@maz) 117,y > 0) and L <
10v2-12

-1

v , the problem (2.1.13) has a unique solution

wle

Pe o (4Dmin) 3 (L)75,

then n
_ min \ L 1
||ﬁ(w>p*>L)||OO w1 _4(T)G(L)3>

where the asymptotic expansion is based on the scale of L.

7



Theorem 2.1.2. ) ,
For L = C1Ax, At = CyAx, Ax < min{((lzrg(léf,)ﬁ@)g, W2(01§31)42T},
then problem (2.1.13) has a unique solution

VT Ax~7

N

T (2TCpR)d

Y

then .
2¢/2C5
271

15(@, B, L)oo -~ 1 — Azi 4+ O(Az?).

1l L 1
For L = C1Az, At = CyAz?, Ax < min { (”22Tflcc¥2;” 1)4) 2 ((17?(%?;}?))?) 2 },

then problem (2.1.13) has a unique solution

4
2T011/

Wl

)%Ax_f

Dx ( )
then
rCv!

AT )%Aa?% + O(Ax3).

15(0, Pey L)[]oo - 1 — 4(

Remark 2.1.1.
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Figure 2.1 1s the graph of p with respect to w for some p. In the first cases
of the previous two theorems, we can prove that the solution p. of (2.1.12)
can be obtained by equilibrating the boundary on the right hand side and the
mazimal point of the graph. In the second cases Wy > Wmar, we equilibrate
the two boundaries to get p. (figure 2.2).

For the non-overlapping case, we have the following result

Theorem 2.1.3. Problem (2.1.13) has one and only one solution which is

) ) = (U - ) g ) 7) g ﬁ _l
given by © = Omin and @ = Opaz; P 2(2TV2)% At~1,
32C
minmaxp v 1 — ( 1)iAt%.
P @ T

10



2.1.1 Proof of the Theorems in the Overlapping Case
Putting

hi(p) =  max  p(w,p, L) = ||p(w; D, L)]|oo,

we [(A_)minyu_)maz]

we recall that (p*, hr(p*)) is a strict local minimum of Az (p) if and only if
there exists € positive such that for all p in (p* — €, p* + €), we have hy(p) >

hi(p").

In order to prove the theorems, we need the following lemma as in [1]

Lemma 2.1.1. If (p*, hr(p*)) is a strictly local minimum of hr(p), then it
is the global minimum of hy(p) and p* is the unique solution of (2.1.13).

Proof of Lemma 2.1.1
We denote D(zg,6) = {2 € C,|Z=2| < 6}, and DE = {p|h(p) < 6}.

242z
We first prove that D is a convex set. Let p; and P, be to elements of

D¥ we have that

exp(— Lﬁ%‘zﬁ

Thus Vo € [@mz’m@mamL

D1 2Viw
| exp(— L\/_)p1+2\/_|§5.

exp(—L\fQ P2 ZQ <5

2V/iw @
|p1 +2\/_| < dexp(L \/g)

This means p; € D(2\/ﬁ,6exp(L\/§)).

Hence

Therefore

Similarly, we have also p, € D(2Viw, 5exp(L\/§)).

According to Lemma 2.1 in [1], D(2¢,6) is the interior of the circle with

2 . . .
center at }J_’gz 2o and radius %Vd and the exterior otherwise.

11



If dexp(Ly/%)) < 1, using Lemma 2.1 in [1], we can see that D(2v/iw,
5exp(L\/§)) is convex. Thus for 6 € [0, 1], we have 0p; + (1 — 0)p € DE.
If 5exp(L\/§)) > 1, using Lemma 2.1 in [1], we can see that for pi, ps

>0, 6 € [0,1], we have 0p; + (1 — 0)p2 € D(Q\/ﬁ,éexp(L\/g)). Thus for

6 € [0, 1], we have 6p; + (1 — 0)ps € DE.

Therefore D¥ is convex.

Suppose that (p*, hz(p*)) is a strictly local minimum of hz(p), we prove
that it is a global minimum of Az (p). Suppose the contrary that there ex-
ists (p™*, hr(p™)) such that hr(p*) > hp(p™). Then there exists a convex
neighborhood U of p*, such that V s € U, s # p* and hr(s) > hy(p*). Since
e DﬁL(ﬁ**) C D,LLL(ﬁ*),We have that V0 € [0, 1], 0p* + (1 — 0)p™ € D,LLL@*).
For # small enough, we have that 0p** + (1 — 0)p* € U. This is a contradic-
tion.

Thus p* is the unique solution of (2.1.13).

12



Proof of theorem 2.1.1
Case 1: For L(@mam)% large and L <
Firstly, we will prove that ||p(@, p, L)||cc = max{p(@min, D, L), p(ws,p, L)}
— . _ _ 1 1
when p is closed enough to p. = (4Wpin)3 L7 3.
We have that

10v/2-12

Wmin

16Lw* — 16pw + Lp* + 4p°
(4 + 2¢/20p + p?)?

Do (@,]5, L) = _g eXp(—L\/ﬁ)

We consider the function:
f(@) = 16L&* — 16pw + Lp* + 4p°.

This is a quadratic equation in @. We will prove that A’ = 64p*> —
16L(Lp* + 4p*) = 16p*(4 — 4Lp — L*p?) > 0. Since p is closed to p,, we only
need to prove that 4 — 4Lp, — L?p? > 0, or Lp, < 2v/2 — 2.

Since L < \/10%[#, we have that

1

W=
W=

10v2-14 14)- =2v2 - 2.

Wmin

Thus A" > 0.
Therefore the equation f = 0 has the following solutions:

20— p\/A—ALp— L*p®  2p—p\/4—4Lp — L?p?
e AL - iL

Y

29+ p/A—ALp— L*®  2p+ p\/4—ALp — L*p?
w2 AL - AL ‘
We will prove that in this case Wpqe: > wo(p). In order to do that, we only
need to prove that Wy > wWo (P ).

. _ 3, Nt
Since L(Wpa, )1 is large, then L > (;’a;?;ﬁ)éx, we have
4 Wnin
-3
2wmam
Thus _
w .
_3 min ; —4
Wraw > 5 L.

13



Therefore

(ADmin)SL™5 P @1+ @

(Dmin 1 _4
- L - p— p— p—
J3L oL oL 2

(Dmam > (

This means that in order to prove Wye. > w2(pPs), we only have to prove
that
1607

max

— 16Py@mae + Lp: + 47° > 0.

This inequality is equivalent to

16 Lo?

max

— 16(40min ) L3 @mae + L(ADmin)3 (L) 75 + 16@min L1 > 0,

or

This is true.

Hence Wynap > W2 (ps) and Opae > wo(p) for p closed enough to p..

Therefore ||p(@, p, L)||c = max{p(@min, D, L), p(w2,p, L)}.

Next, we will prove that p, is an asymptotic solution to the equation
P(@min, Py L) = p(we, p, L). Let p is a number closed to p., and suppose that
p has the form p C’(%)_“’, we have that

(v 20min — CL™)% + 20,:n
(V20min + CL™7)2 + 2041,
p 4@mm - 2\/ 2@minCL_ﬁf + CzL_zﬁf
= exp(—L\V20min)— — — ——
4wminV (L 2\/m
(L) — 2By 4

L cz_\y
= eXP(—;\/m) 4@0,7?,1 L2 + 2\/2gmL~, +1

ﬁ(@mznapaL) = exp(_L\/2@min)

4 2imin 16imm
o 1= LD, — Y Emin o DCmin poy
C C?
We also have that

(V2009 — CL™7)2 + 2009
(V205 + CL™)2 + 20y

ﬁ(w2>p> L) = exp(—L\/ﬂ)

14



We have

2p + p\/4 — 4Lp — L2p2)
4L

2pL + pL+/4 — 4Lp — L?p?
RN TR

~ 1= \/2pL ~1—V2CL7,

and
- =2
(V202 — P +2mr 1 - g5t
= 9 — - = S —.
(V20 +P)* + 20, 1+ A+ V202

Moreover, we have that

L C 1—v
S e
\/ng \/2p+p\/4 4Lp—L2j2 \/2+ \/4 4pL — p?L? 2
Therefore
p— = 2 —
(V200 =p)"+ 260y e | o,
(V2o + 9 + 2
Thus

p(@2,p, L) « (1—+v20LT +20L')(1 —v2CL= + CL'™
- 1-2V2CL7T +5CL".

Equilibrate p(ws, p, L) and p(@pmin, P, L), we get p..

Finally, we prove that this p, is a stricly local minimum of ||p(@, p, L)||co-

We have that

0 o) VB CLVVE)

P W2, Px, L = * 4@ I 0’
(%p( 2P L) (P2 + 2V/2y/@avpy + dioov)? p 2) p
and
0 o 1) = Y DLV Goin) 0y
aﬁ min s Pk (pi + Qﬂ\/mp* + 4@min)2 ’ -

15



Thus for p closed to ps, p > Px«, we have that max{p(ws, p, L), p(@min, D, L)} =
P(@min, Py L) > p(Omin, Dx, L) = p(wa, pi, L). And, for p closed to p., p < ps,
we have that max{p(ws, p, L), p(Omin, D, L)} = p(@02, P, L) > p(@min, Ds, L) =
p(wa, Px, L). Thus p, is a stricly local minimum of ||p(w, p, L)||~, then ac-
cording to Lemma 2.1.1 it is also the global minimum. And

Pe o (4pmin)SL73,

=(— = Wmin L .1
||p(w>p*>L)||oom1_4( B )6L3.

3
Case 2: Lopmaz 18 small
In this case, we can see that Wy > Wyee. Thus

||ﬁ(@>p> L)HOO = max{ﬁ(@mm,p, L)> ﬁ(@mamypa L)}

As in the previous case, we will prove that p, is a solution of the equation
ﬁ(@min>p> L) = ﬁ(@mamypy L)
Let p be a number closed enough to p,. We have that

(\/ 2@mm - 25)2 + 2@mm
(\/ 2@mm + ]5)2 + 2@miny

2imin 16imm
(1 = LDy + L2 ) (1 — 40 | 2

P P>

ﬁ(@mmapaL) = eXp(_L\/2@min)

).

NI

é —
Since Lz is small, then L < (523i)

max

, we have that

LV 2o < (55 VB = 28 (22,

QLD?mw Wmaz
and
Wmin Wmin 1 Wmin 1
— AN —_— = —( — ) 4,
p 4\/ WminWmaz 2 Wmaz
Therefore

ﬁ(@min>p> L) wl-—

16



We can suppose that 40, < @maz, then 2((Dmin@mam)% < v/ 20max- Thus

D < /2Wmae. Hence

i — _ (\/ 2wmam - 25) ‘I’ 2wmam
Wmaz, Py L) = ex LA/ 20maz — —
A p, L) p(—Lv )( e + DT 2o
(1——x2=)2+1
= exp(—LvV2W0maz) 2wm“ 5
1- 4 2
= exp(—LvV2W0maz) \/2‘”_’”“ 4wf;“z
1+ =L L
\/2wmaz 4omaz
2p P’

(1= L 20mas + L*20m4:) (1 — .
( w + w )( \/ 2(Dmam _l— @mam)

3
. =3ty
Since L «» CWmaz ', then

_1
LV 2omar < C(5 “’mm VIV 2o @ = C(@in) 125 0mia .

mam

We have also )
p 4\/ WminWmazx o 4 Wimin

wmam wmam wmam

Therefore o
L _ p

Wmaz s 7L “l-— B

p( p, L) TR

Equilibrate the two asymptotic expansion p(Omaz, P, L) and p(ws, p, L) we

have the equation
2p 4/ 20min
Ve P
Thus p « Q(Qmm@mam)i or p, is an asymptotic solution of the equation
(@maz, P, L) = p(iwe,p, L). Using the same argument as in the previous
section we have that this p, is a global minimum of ||p(®, p, L)||~. And

ST

225* 4 (@mm wmam ) @min 1
7imin>7*>L mml_iml—fml—2 27 4,
PG s EMloe 2 1= 52 Vo Y e

17



Proof of Theorem 2.1.2 ) ,
Case 1: L = Ci Az, At = CoAz, Az < min{((17—12\/§)2T02)§ C? }

r2(Ci2)t 7 T x2(Cy%)ter

Firstly, we prove that |[5(@; 5, L)l — max{p(525: p, L), p(sZ5: 5. L) } when
p is closed to p.
We have that

16Lw* — 16pw + Lp* + 4p°
(4 + 2v20p + p?)?

Oup(@;p, L) = —g exp(—LV2w)

The function 16 Lw? — 16pw + Lp* 4+ 4p%, is a quadratic function of @ and
it has A’(p) = 16p*(4 — 4Lp — L*p*). We will prove that A’(p) > 0. Since p
is closed to py, we only need to prove that A’(p.) > 0. We have that

)

(17 — 12¢/2)2TC,

T2 (Cyz)!

Ax<(

This implies
- (V2 —1)3(2TC,)5
(VrCiv3)s

Therefore ) o
EVIVY Api < 2v2 — 9,
(2TCy)7
or
Lp, <2V2 —2.

Hence A'(p.) > 0.
Therefore the equation f = 0 has the following solutions:

B :2p—p\/4—4Lp—L2p2 _ 2p — p\/4 — 4Lp — L2p?

“ AL AL ’
25+ A —ALp— L2225+ p/A— ALp — L
2= AL - AL ‘
We prove that for p closed to p., we also have % > &, which implies
Wy > w—. In fact, we only need to prove that 2= > .

Since

3

Ax < - ,
m2(Cyv~2)42T

18



we have )
24/ . A[L’_ I
(2TCy) 1 T

20, Az - CoAx’

T

D
or 2L > Atv’
Therefore
T

s
(@, B, L)oo = max{p(5—: 5, L), il 5, L)}
|p(@,p, L)|| max{p(ﬂyp )p(Ath )}

Using the same argument as in Theorem 2.1.1, we have that problem
(2.1.13) has a unique solution

72\/7? - Ax~i
(2TCy)1

Px )

then

2v/2 1 1 1
\/_012 Azt + O(Ax?).
(1)

— 1 1
Case 2: L = C1Aw, At = CyAa?, Az < min { (T2AG0) 2 ((lf(g;f))?) ‘1.
2

Firstly, we prove that ||p(57;, 7, L)lle = max{p(57;,p, L), p(@2, P, L)}
when p is closed to ps.
We have that

1P(@, Ps; L)]loo =1 =

16L&* — 16pw + Lp* + 4p°
(4w + 2¢/20p + p?)?

Osp(w,p, L) = —g exp(—L\/ﬁ)

Similar as in the previous case, we prove that A’(p,) = 16p?(4 — 4Lp, —
L*p%) > 0.
We have that B
(10v/2 — 14)2T\ 1
w(Civ—1)? ) '

Azg(

This leads to (O 112
%Agﬂ <8(5v2 7).

Thus (O 12
%sz <8(5V2—7)=8(vV2—1)°

19



2
Ar(Cv) )%Axg <2V2 -2,

Hence
( 27T

or Lp, < 2v2 —2, and A’ > 0.
We prove that in this case, Wy < 7.

We have
T
Az <
7 < ( AC3
Hence 5 5
T T
T A<
T(Cw 1" = 03
Thus i L )
TV §Al’_§
(arc) < T Az~2,
ClAl’ 02
-

< x> which means @, <

Therefore %
Therefore
™ _ o
maﬂ L)7 p(bdg;p, L)}

[17(w, P, L)loo = max{p(

Equilibrate p(57,p, L) and p(ws,p, L), we get p, and using the same
argument of the previous case, we can conclude that problem (2.1.13) has a

unique solution
2r (1 1
HON 3A -3
Pe (Tcl) a3,
then o
i T 1 1 2
19(@, 72 L)l = 1 = 4(5) P At + O(A)
|

2.1.2 Proof of the Theorems in the Non-Overlapping

Case
Since w € (57, ;] then 2 = Y22 helongs to [y /255, |/ Z7].

Proof of Theorem 2.1.3
(2.1.14)

202 —2x + 1

Thus

20



We have
4(22% — 1)

! = . 2.1.15
fz) (222 + 2x 4 1)? ( )
We have the following cases
Case 1: ,/;2”—27} > %
We have that
2y
max p = f( pzAt)’ (2.1.16)
Since ng”;rT > \1[ we have that 2”” > \1[ > f
Thus
1 2T
minmax p = f(—= ) (2.1.17)
P w

7%

when w = %7 and p = 2

Case 2: 1/7022”& < %

We have that

mgxpzf(“é—?), (2.1.18)

: 2um 1 v 1 At 1
Since SIAL < 75 We have that 1/7% < s\ < 7
Thus

minmax p = f(
p w

1
7 ﬁ)Zf(jﬁ ) (2.1.19)
Whenw:%andp:2

Case 3: ;;Xt > f > p22”27rT.
We can see that if x > y and 2zy > 1, f(z) > f(y); and if x > y and

2zy < 1, f(z) < f(y); and if x > y and Qxy =1, f(x) = f(y).

T

2Ty 2rv

= . 2.1.20
max p max{ f( p22T)’f( p2At)} ( )
Case 3.1: /3537 2 b or \/ 3\ 2 20/ B0 oF /3 2
%(_)4>\/§
2mv
muz}x,o:f( pzAt)' (2.1.21)
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(2.1.22)

Thus
, 2T . 1 [T
L max g = (T(K)‘*) (\/— )
s
when w = andp—Q(AtzT
Case 3.2: /20 /25 < 5,00 (/o5 [ < 31/ 35 or \/ 7T =
5! <%
muz}x,o:f( Z%) (2.1.23)
Thus
1 At : 1 2T . 1 2T
; = f(—(=2)1) = f(—(Z2)2 — ) — 2.1.24
min max p f(\/§(2T)4) f(\/i(At)4)<f(\/§ L )
_ g VT
(AL2T)T

_ T —
when w = % and p
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2.2 Optimized Schwarz Waveform Relaxation
Methods For One Dimensional Heat Equa-
tion With First Order Transmission Con-
dition

In this chapter, we consider the following algorithm

(0 — VOpe)ul = f in Oy x (0,7),
u¥(z,0) = ug(x) in Q,
(00 + £ 4+ 2¢0)uk (L, .) = (0, + L& +2¢0)us"(L,.) in (0,7),
(2.2.1)
(0 — VOpe)ub = f in Qy x (0,7),

ub(z,0) = ug(x) in Qy,

0y — £ —2¢0)ub(0,.) = (9, — £ —2¢d)ub™1(0,.) in (0, 7).

Similar as in the previous chapter, we consider the following problem

Oie1 — V01 =0 in O x (0,7),
e1(x,0) = ug(x) in O,
(On + £ +2¢0)ef (L, .) = (0 + £ +2¢0y)ea(L,.) in (0,T),
(2.2.2)
Oy — VOyp€o = 0 in Qy x (0,7),
ea(z,0) = up(x) in Qo,

(0s — £ — 2q0,)ex(0,.) = (0 — £ — 2¢0))e1(0,.) in (0, 7).
From (2.2.2), we have that

wgFer — v0z5e1 = 0.

Se1r = Cyexp(y/ %x) + Cyexp(—1/ %x),

23
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where Re (/%) > 0.
Since x € (—oo, L) and Fei(z,.) € L*(R), we have Cy = 0. Thus

Se1 = Crexp(y/ %z)

From (2.2.2), we have that
p

O.Fe1(L,w) + gel(L, w) + 2qiwger (L, w) = Fhr(w).
Thus
(Cry/ il Clﬁ + C12quwi) exp(4/ EL) = Fhr(w).
v 2v v
Hence
VAvwi + p + dquri W
Cy Bk = $hrexp(—y/ —L).
2v v
Thus
2v w
Ci = hr exp(—4/ —L).
' Vavwi +p + 4quﬂ/z'S 1 oxpl v )
Therefore
2v w
e = hr expexp(y/ —(x — L)).
Se1 \/M%—p%—élqwm'gL p p( 1/( ))

From (2.2.2), we have that

wFes — V0 5es = 0.

Sea = Dy exp(4/ %z) + Dy exp(—14/ %z),

where Re (/%) > 0.
Since x € (0,00) and Fea(z,.) € L*(R), we have D; = 0. Thus

Fea = Dy exp(—\/?x).
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From (2.2.2), we have that

0.562(0,) — L Fes(0,) — ZLitGea(0,) = bl

Thus
1w )
(D2 —_— — Dgﬁ — D22qwz) = ShO(W)
v 2v
Hence
VAavwi — p — dqwi
D, 2p ok Sho.
Thus 9
v
Dy = Sho.
? Vavwi — p — dquui ’
Therefore

2v w
€y = hoexp(4/ ——x).
§ex \/M—p—élqwm'go p( v )

Similar as in the previous chapter, we can define the convergence factor
as

( L) 2Viwv — p — dqwri ( : L)|2
w,p,q, L) = , - exp(—Viwv—)|".
P 2Viwv + p + 4dquii P v

Put w = 2, p =2 and p(w,p,q, L) = p(w,p,q, L), we need to solve the

problem
min  max  p(w,p,q, L). (2.2.3)

lﬁvqeR we [U_)minyu_)maz

Similar as in the previous chapter, we only need to solve the following
problem
min  max  p(w,p,q, L). (2.2.4)

;5,(]20 U_)e[@minyu_)maz
We have the following theorems for the Overlapping Case

Theorem 2.2.1. If we fix Opmin and Wmae, then for L small satisfying that
L%@mam is small and Liyq, is not small, the problem (2.2.4) has a unique
solution )

3 1
j P \/iaffimwﬁ@am,
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1 _3
gsx \/iwm?nwmgm,
1 _1
I max p(w>p> q, L) ~1- 4w7?1inwmgm‘
pquo U_)e[@minyu_}maz

Theorem 2.2.2.
Case 1: For Ax small enough L = C1Ax, At = CoAx, w € [2Tz/’ CZVA:E_l]
There exists a unique pair (Ps, ¢x) such that ming ;>o MaXpe[ 21| plw,p,q, L) =
maxwe[ZTwAw]p(w Ds, Gx, L). Then
_ \/— m lA _1
Px 2(@)8 T8,
ot 1 s
e V2 “3A 8,
(@.5.0.L) ~ 1~ 4(2)5 A0t + O(Axt),
min  max w,p,q, L) ~1— x x
pq>0w€[2TV’Atu p p q 2T
T Az,

Case 2: For Ax small enough L = C1Ax, At = CyAz?, 0 € [2Tz/’ ot
There exists a unique pair (Ps, ¢x) such that ming ;>o MaX e[ 22| pw,p,q, L) =

maXge[ | (@, Ds, @, L). Then

_ w22 !
p* ( 4T2 (Cll/ ) )SAI 57
2T 1 3
w (16(Cy v~ 1)3 5Axs
4. - (16(Cw =)k,

21 TV
min  max w,p,q, L) ~1—210
min e, p(@,p,q, L) (57)1

ol"‘

(Civ™")5Axs + O(AxH).

Remark 2.2.1.
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Figure 3.1 is the graph of p with respect to w for some p. In the second case
of the previous two theorems, we can prove that the solution (ps, q.) of (2.2.3)
can be obtained by equilibrating the there points on the graph: the boundary
point on the left and the two maximal points (with respect to Wi and the
mazimum point Wy, wy of p) on the graph. In the first case 4 > Omaz, WE
equilibrate the two boundaries and the maximal point Wy to get (Pu, s ).

We have the following theorem for the nonoverlapping case

Theorem 2.2.3. The equation (2.2.4) has a unique solution

B I vl 11
Pe = V207 Dfar = V2( T )e(mv T )EALTE,
and 1 3 unz 1 3 3
G = V2(Winint) "5 (WinagV) 5 = \/i(ﬁ)_g(m/)_gAtE.
Then, we have that
1 1
min ~ max  p(0,p,q) = max  p(&,Px, ) 1 — 4D Omaa
;5,(]20 U_)e[@minyu_}maz] we[@minyu_}maz]
1 1 1
w1 —4(=—)3Ats.
(57)

2.2.1 Proof of the Theorems in the Overlapping Case

In this section, we will consider the problem of optimizing (p, q) in the
overlapping case.

Putting

hi(pg)=__ max  p(@p,q, L) = (@, 7,4, Ll]ee,

we call that (p*,¢*, h(p*,q*)) is a strictly local minimum of hz(p, q) if and
only if there exists €1, €2 positive such that for all (p, q) in (p* — €1, p* + €1) X
(q* —€,q¢" + 62)’ we have hL(pa q) < hL(p*> q*)

In order to prove the theorems, we need the following lemma:

Lemma 2.2.1. If (p*, ¢*, hp(p*, ¢%)) is a strictly local minimum of h(p, q),
then it is the global minimum of hr(p,q) and (p*,q*) is the unique solution
of (2.2.4).

28



Proof of Lemma 2.2.1
We denote D(z, 6) = {z € C, |=22| < 0}, and DE=1{(p,q)|hi(p,q) < d}.
We first prove that DI is a convex set. Let (p1,q1) and (P2, g2) be to

elements of D¥, we have that

2V/iw — D — qwi
I (Vi o < V5

Thus Vo € [@mz’n,@mamL

2o~ p— g xp(—\/§L>|<¢5.

2Viw + D+ qwi -
Hence
9 —
e [ SR
2Viw + p+ qwi 2
Therefore V5
2 D — quwi w
< \/Sexp \/
| /i@ + p + qwi | (L 2 )

This means p; + qwi € D(2Viw, \/gexp(L\/g)).
Similarly, we have also Py + qowi € D(2V/iw, \/gexp(L\/g)).
If \/gexp(L\/g) < 1, using Lemma 2.1 in [1], we can see that D(2V/iw,

\/gexp(L\/g)) is convex. Thus for 6 € [0, 1], we have 6(p1, ¢2)+(1—0)(p2, ¢2)
€ DL

If \/gexp(L\/%) > 1, using Lemma 2.1 in [1], we can see that for

p1, P2y @1, ¢2 > 0, 6 € [0,1], we have 0(p1 + qiwi) + (1 — 0)(p2 + qowi)
€ D(%/ﬁ,\/gexp(L\/g)). Thus for 6 € [0,1], we have 0(p1,q1) + (1 —

9)(2527(]2) € D(%

Therefore D¥ is convex.

Suppose that (p*, ¢*, hr(p*,q")) is a strictly local minimum of h(p, q),
we prove that it is a global minimum of hz(p, q). Suppose the contrary that
there exists (p**, ¢**, hy(p**)) such that hp(p*, ¢*) > hr(p*™, ¢**). Then there
exists a convex neighborhood U of (p*,¢*), such that V s € U, s # (p*, q%)

and hr(s) > hr(p*,q*). Since (p**,q¢**) € DE C DE ,we have

h (5**,4**) hr (P*,q%)°
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that V6 € [0, 1], 6(p*, ¢*) + (1 — 0)(p*™, ¢™) € DFLLL@W*). For 6 small enough,
we have that 0(p**, ¢**) + (1 — 0)(p*, ¢*) € U. This is a contradiction.
Thus (p*, ¢*) is the unique solution of (2.2.4).
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Proof of theorem 2.2.1 We put ¢’ = 4q, and we have that

o 20w —p— qwi .
w,p,q,L) = exp(—ViwL)|?
p(@,p,q, L) |2\/ﬁ+p+qm p( )|
(V20 —p)? + (V20 — ¢w)? exp(—v25L)
(V20 4+ D)% + (V2w + ¢'w)?
4w — 2V/2p\/ w0 — 2v/2¢' V3 + ¢*? + p?
_ A V2DV — 2v/2¢'Vi? + ¢%0% + p exp(—v25L).

4D + 2v2pV© + 2V2¢' V@3 + ¢%0? + PP

Step 1: We consider the behavior of the function p with some particular
values of p and gq.

Suppose that p= C, L™ and ¢ = CJ*, 7 <7y < 1, v + 7, < 1.

We have that

@ exp(—v2wL)
2 (40 +2V2pV0 + 2V20V6P + ¢70? + 1?)
X (—=16pw + Lp* + 16Lo?* + 4p° + 2L¢"*p*0* + 160%¢' — 12p¢"* 0+
+12¢'p*0 — 4¢"*@° + Lq*o* — 16Lo*pq’).

ﬁ@(aj?paq?[’):_ 2><

G(w) = —16pw+ Lp* + 16Lo* + 4p° + 2Lg*p*®* + 160°¢' —
_12pq/2@2 _I_ 12q/p2@ _ 4q/3@3 _I_ Lq/4@4 _ 16L@2pq/
= Lg"o" — 44”0 + (16L + 2Lg"F* + 164 — 125¢"* — 16Lpq )&*
+(12¢'p* — 16p)w + Lp* + 4p°.

In order to consider the behavior of p, we will consider the sign of G.
Consider @ of the form C,L™7. We have the following remarks.
Remark 1: If 1+, > v > 2, then G(L™) < 0 for L small

enough.

We have that 4¢”w* = 4C3C3L*a737, thus the order of L in 4¢”%° is
374 — 3.

We have Lg"'@* = CC LM% and 1+ 4y, — 4y > 37, — 3 since
L4+ >17.

We have 16Lw? = 16C2L""27; and 1 — 2y > 37, — 37 since 7 > 27, >
3y, — 1.

We have 2Lg"*p*w? = 2C2C2C2L 29 =2w=27: and 1 + 27, — 27, — 27 >

w=qTp
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3vq — 3y since ¥ > 29, > v, + 279, — 1.

We have 16¢'w? = 16C2C,L"~%7; and v, — 2y > 37, — 37 since 7 > 27,.

We have 12¢'p’0 = 12C,C,C2L7 %7 and v, — 2y, — v > 37, — 3y
since v > 29, > Yp + Vg

We have Lp* = C)L'~"7; and 1—4y, > 3, — 37 since 1437 > 37y, +47,.

We have 45 = 4C3L™%"; and —37, > 3, — 37 since vy > 7, + 7.

Thus, among the coefficients of G, the order of L in —4¢®3@? is smaller
than the orders of L in other positive coeficients. This means that for L
small enough, we have that G(L™7) < 0.

Remark 2: If v, +v, > v > 27,, then G(L™7) < 0 for L small
enough.

We have that 16pw = 16C,C,L~777  thus the order of L in 16pw is
=7 — Yp-

We have L¢"'w* = CLCIL™™ ™ and 1 + 4y, — 4y > —y — 7, since
144y, +vp > 3.

We have 16Lw?* = 16C2L'27; and 1 — 2y > —v — 7, since 1+, > 7.

We have 2Lq"?p*w* = 2vC2C2C2 LM a7~ and 1 + 2y, — 27, — 27 >
—y — p since 1 + 2y, — v, > 7.

We have 16¢'@w? = 16C%Cy"1727; and 7, — 2y > —7—, since v, +7,4 > 7.

We have 12¢'p*@ = 12C,C,C; A% 77 and v, — 2y, —y > —v —, since
Ya > Vp-

We have Lp* = v=1C,L'="": and 1 — 4, > —v — v, since 7 > 3, — 1.

We have 4p° = 4C3L~7; and —37, > —y — 1, since 7 > 27,

Thus, among the coefficients of GG, the order of L in 16pw is smaller than
the orders of L in other positive coeficients. This means that for L small
enough, we have that G(L™7) < 0.

Remark 3: If 7, + 79, < v < 27,, then G(L™7) > 0 for L small
enough.

The order of L in 16¢'@w? is v, — 2.

The order of L in 4¢"3w3 is 3, — 3~; and 37, — 3y > 7, — 27 since 2, > 7.

The order of L in 12pq?0? is —7,+ 27, — 27; and —7,+ 27, — 27 > v, — 27
since vq > Vp-

The order of L in 16 Lpg'w? is 1+, —7,—27; and 14+, —7p—27 > 7,—27
since 1 > .

The order of L in 16pw is —v, —7; and —7,—7 > v, — 27 since v > v, +7,-

Thus, among the coefficients of G, the order of L in 16¢'@? is smaller than
the orders of L in other negative coeficients. This means that for L small
enough, we have that G(L™7) > 0.
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Combining results 1,2,3 and the facts that G(0) > 0 and lim,_, G(w) =
+o00 we can conclude that G has four positive solutions w; < Wy < W3 < Wy.

We can see that @, and w4 are the two maximum values of p.

We compute wy. From G(w,) = 0, we can see that

4q'3@2 ~ qu4wi.

Hence
B 4

We compute ws. From G(w,) = 0, we can see that
16¢' @3 ~ 16pws.

Thus
@2 ~ ?
Since L is small and @y, is fixed, we have that w4(p) > @Wmax(p). Hence

max ﬁ(@>p> L) = {ﬁ(@mimﬁ, q, L)> ﬁ(@27p7 q, L)> ﬁ(ajm&x>p> q, L)}

we [‘Dminyu_)maz

Step 2: We find an approximated solution (px, ¢.) satisfying the assump-
tions of (p, ¢) of the equation p(&min, P, ¢, L) = p(@2, P, ¢, L) = p(@maz, P, q, L).
We have the extension of p(@min, p, q, L)

Amin = 2V2Pmin = 2V/20'\/ @rin)? + 4 (©in)* + P*

Amin + 2V 2D\ Bmin + 2324/ (©Omin)? + ¢ (©min)? + P°

X eXp(— \% 2@mmL)

40min _ 2\/5\/m _ 2\/511/ @3 £72
p’ p 72 p2 min -

N u— o exp(—v/2min L)
W n '\ @3 /

4wﬁn§in + 2v2 ﬁwmm + 2v/2q min | qzwz '

P2 P2

ﬁ(wminap7 q, L) =

X

4 2imin —
(1= YEIminy (2o L)
p
A/

p

“- 1-—
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We have the extension of p(ws, p, q, L)

4oy — 2\/525\/@2 — 2\/§q'\/ CT123 + ¢"*(09)? + p?

ﬁ(@%paq’[’) = eXp(—\/ 2@2[/)
A + 2V 2P\ @ + 2V 2/ Br® + q2(@:)? + p?
1_q/ @_I_QIZ‘DZ_ Lp_l_i
2 4 2009

40
— — = o = ;522 exp(—v/2ws L)
1+q\/72+T+ ﬁp%—@

2
o L=q'V2 =\ /=
2

~ 1-2y2pq.

We have the extension of p(@pax, D, ¢, L)

—— _ 4wmam - 2\/525\/ @mam - 2\/§q/ V @mam 3 ‘I’ qlz @mam 2 ‘I’ 252
p(wmam,p,q,L) = ( ) ( ) X

4wmam ‘I’ 2\/525\/ @mam ‘I’ 2\/§q/ V ((Dmam)s + q/2 ((Ijmam)z _I— p2
X exp(—v2WmazL).

We have that
ﬁ(@mamapy q, L) w1l— \/ﬁq’_l(@mazy)_%.

We need to solve the following equations

4 2imin — _1/— _1
2V Emin _ o /25q" = V2q' " (@maz’) 3.
p

Thus
1600min = 4]53(]/ = q/—2p2 (@mar)_l
We get that
p3q/ = 4wmin>
and .
I -1
pq 4(wmcm)
Hence
_ 1, 3, 1
b= 22 (wmin)s (wmam)s = ]5*,



5

q = 272 (@min)_é(@mam)_%

=: (4.
Step 3: We prove that (p, ¢) is a strictly local minimum of maxge(,,,, @masl
p(w,p,q, L), then according to Lemma 2.2.1, (p, ¢) is also a global minimum.
The pair (p,q) is a strictly local minimum if there exists no variation
(0p, 6q) such that p(w, p+0p,q+0q, L) < p(@,p,q, L) for @ = Omin, @2, Omaz-
By the Taylor formula, it suffices to prove that there is no variation (dp, d¢),
such that 6pZ2(@, P, G, L) + 6¢52(@, P, G, L) > 0 for @ = i, @2, @pmaa-
Suppose that there exists (0p,dq) such that 5]52—; (0, Ps, ¢, L) + 0q g—z
(@, P, g+, L) > 0.
We have that

0p  dexp(—V2VBL)(4w — p* + ¢*0” — 2pqw)

0 (Ao + 2V2Vop + B2+ 2V @ + ¢2?)?
0p  dwexp(—v2VWL)(—40 — P + ¢*@? + 2pqw)
94 (40 +2V2VEp + R + 2V2Vogw + uw?)?

We have 5]52—; (Ormins Des Gx, L) +5qg—§(@mm,]§*, Qx, L)~ Mip?(0p—0q@min) >
0. Hence dp — 0q@min > 0. Moreover, 5pg—g (W2, Ds, g+, L)+ 5qg—g(@2,]§*,q*,L)
e My (—0pAv2 (@min)"F (@maz)® +0¢64v2 (Gmin)¥ (@maz)®) > 0. Thus
—dpdV2 (@mm)_% (@mam)g —I—M%ﬂ (@min)_é (@mam)_% > 0. Hence 6p, dq
> 0. We have also that op g—’;(@mam s Dy G, L)+ 5qg—§(@mam,]§*, ¢, L) «~ M3p?
(_5P4\/§(@min)_% (@mar)g _5(]%\/5 (@mm)é (@mar)%)
diction with the fact that ép and dq > 0.

Using Lemma 2.2.1 and the same argument as in the previous section we
can easily see that the solution (p.,q.) that (p,q) approximates is a local
minimum of p(w, p, q, L). Thus

> (). This is a contra-

min max ﬁ(@>p>q>L) 1= 4(@mm)§(@mam)
;5,(]20 G)e[@minya)maz
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Proof of theorem 2.2.2
Case 1: L = C1Ax, At = CoAz, & € [, CZVAx‘l].
Put ¢’ = 4¢q, we suppose that p = C,Az"", ¢ = C,Az", and 1 > v, > 7,
and v, +7, < 1.
2V'iw — p — ¢'wi — 2
o(w,p,q, L) = exp(—VioL
p(@,p,q, L) |2\/5+p+qu' p( )|
2% — D 2 2% — d'& 2
(V20 -p)* + (V © qag) exp(—vIDL)
(V20 +p)* + (V20 + ¢'w)?
40 — 2V2pV0 - 22 (B + ¢*(@)° + P
= 20L
40 + 2v2pV@ + 2v2¢' /(@) + ¢2(@)% + b ; exp(-V2L).

Hence
exp(—v2wL) "
(4 + 2V2pV/5 + 2V2¢'\/(0) + ¢(@)* + p*)?
X (—16pw + Lp* + 16L(w)* + +4p° + 2Lq"*p*(w0) + 16(w)*q
—12pq"*(@)* + 12¢'p*w — 4¢° (@) + Lp*(©0)* — 16 L(©0)*pq’).

Using the same argument as in the previous theorem, we can see that

o5

8@,5(@,]5,%[/) = -

1, 7TV 1 1
D, = 22 sA 78,
ot 1 s
q* = (2T023) 8A$87
C
min | max, p(@,p,q, L) =1— 25(%)%9jé +O(AxT),
A=V WelaTr A

Case 2: L = C1Ax, At = CoAa?, @ € [5F-, CZVA:E‘z].

We put ¢ = 4¢ and suppose that p = C,Az"", ¢ = C,Az" and 1 >
Vg > Yp and 7y, + 7, < 1. We suppose that v, — 7, <1 — “”’2&

Using the same argument as in the previous case, we can see that p has
two maximum values at @y and @;,.

4
CiC,

Az~

Wq ~

36



and

@2 ~ %A_“/p_“/q .
q

In this case, we can see that Wy < Wy < Wpax for Az small enough. Thus

max ﬁ(@,ﬁ, q, L) = maX{ﬁ((Dg,ﬁ, q, L)> ﬁ(@47p7 q, L)> ﬁ(@mm,ﬁ, q, L)}

we [‘Dminyu_)maz

Next, we will find a solution of p(@ws, p, q, L) = p(w4, p, q, L) = p(@min, D, q, L)
asymptotically.
We have the extension of p(@min, P, q, L)

A/ 2W0mmin,

AP Ax2r).
c, % + O(Az7)

ﬁ(wmin>paq>L) =1-

We have the extension of p(@ws, p, q, L)

ﬁ(@2apaq> _1_2\/ 2COA':E

We have the extension of p(wy, p, q, L)

I 40y — 20/2p\/04 — 22/ \/0F + w3 + p* —
p(W4,p,q,L) = — — = . /-3 12— p(_ 2(4}4[/)
4w4+2\/§p\/w4+2\/_q\/ + q%0F + P2
4q T 92y2pq 2 —2v/2¢' 1 L+ p2g 2052
B 2pq 7wy 207wy Pa e

dq' 2wy +2\/§ﬁq’*2\/w4 +2v2¢ oyt + 14 p2g 2wy
x exp(—v/2w, L)

= (1—-4vV2q "ot + O(Az ™)) (1 — V25, L + O(Axt™))
= (1- 420, /IO TCAT = + O(Az')(1 -

J8CTLCA T AT 4 O(Ar 7))

= 1—-4vV2,/Civ- 1C; 1Ag T Y+ O(AztT),

Alﬁq Tp )

We will solve the equation

4 2imin Yqg—p 1*%1
7%"&%:2\/2@0@:5 7 = 4V2,[C O A
p
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Hence
_ Yae— Vo _ 1=

2 2
From
_ e = p
T = 5
we have that
Vg = 3Vp-
From
_ 1=
T = 5

we have that
29 =1=7v=1-=3.
Thus

p

Hence

ot W o]

Yq

We have the equation

W 9\ /30,C, = 3Oy
p

or
2\/ 7mz'n _ _
) =0, Cy =2,/Cv 1Cq L
or Ao
C:Zm =C,Cp = 401,/—1011—1.
p
Thus
Cng = 4011/_1,

and

CPCy = Armin.
We have that
CICY = 64(Crv 1)’
Thus
C® =16(Civ 13w 1

q min’
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Hence
Cy = (16(Crv1)’w,,,)5.
From

2
Cqu = dWminl,

we have that

Cp(16(Crv @, t,) = 4(Crv )
Thus )
Cp=4Cv~ (256 1z fnm (Cly_l)_ﬁ)g.
Hence )
Cp = (402, (Crv™)71)5.
Thus ) )
p ( mm(cl) )5A$57
q= i(16(011/ ) 7;LG ) Al’d‘

Using Lemma 2.2.1 and the same argument as in the previous section we
can easily see that the solution (p.,q.) that (p,q) approximates is a local
minimum of p(w, p, q, L). Thus

P = (42, A(Crr ) N5 Ags,

1

qx = 1(16(011/_1) 7;LG

min = max _ p(w,p,q, L) =1 —2/2C,C, Az~

p,q20 WG[ZTV Atu

Hs A:Eo

Alﬁ/q Tp )

= 1= 2y/2(402, 2(Cr) )R (I6(Cr Yt v ) E AT + O(Ax?)

mzn

— 1 2B, L (Chv™ )%AI% + O(Aa:%)

mwn

=1 —200( )™ (Crv )5 Azs + O(Ax?).
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2.2.2 Proof of the Theorems in the Nonoverlapping
Case
Proof of Theorem 2.2.3

We can see that

max  p(w,p,q) = ma)j({ﬁ@mm), P(@maz), p(@i) },

‘De[‘:}minyu_}maz] w; €

where I = {&;|0;p(w;i, p, q) = 0}.
Taking the derivative of p with respect to w, we have that

V(=P — 40%q — 3qwp? + ¢*@® + 40P + 3pgD?)
(40 4 2V20p + P2 + 2V 2wqw + ¢2?)2w

We will try to solve the equation dg;p = 0 or the following equation

a@ﬁ(@, pa q)

0= —p° — 4@%q — 3qwp® + ¢*0° + 4wp + 3pge?,

or
0 = ¢°0® + ©*(3pg® — 4q) + w(4p — 3qp*) — p°.

Suppose that pg and ¢ is small, and p is large, we can deduce from the
above equation that

0 = ¢*w® — 4qw* + 4pw — p°.
This equation is equivalent to
0= (g2 - p)(¢°®" + (pg — DY + 7).

We can see that the first solution is w; =
The equation

3

¢’ + (pg — Hw + p* =0,

has the following solutions

S

A= pg+ /3PP —8pg+ 16 4
B 2¢° ¢

and

_4-pg— /30> —8pg + 16 _lpq—l

S
2 242 2
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Thus the second solution of our equation is Wy v 4q~2
Therefore

Qe[@ma}é ] ﬁ(aj> D, Q) = max{ﬁ(@mm), p(@mam), ﬁ(@1)> ﬁ(aj?)}
For p(@min, P, q), we have
minsy s ( /_2(sz'n + p)z ( Qa}min + q@min)z
4@mm 2 V 2wmmp + p - 2qwmm \/ w + q min
252 —2 V 2@mmp 1 4 V 2ajmm

N A | —

]52 ‘l‘ 2\/ 2wmmp p
For p(wy, p, q), we have
I (V2P —p)* + (V/2pg~t — qﬁq‘1)2
pl@r,p.q) « = - D
(v2pq™' +p)* + (v/2pq~* + qpg~?)
(V2pq ' —p)* + (V2pg " —p)* _ 2pg' +p* —2¢/2pq'p?
(V2pg~ ' +p)* + (V2pq ! +p)? 2pq—1 + 0% + 2/2pq 1P
“ 1—2v/2pq

For p(@ws, p, q), we have

P2, p: q) (V842 =)+ (V8472 —q4q™®)* 8+ (2v2—4)
S (VBT (VBT e 8 (V247

Thus

max p(@, P, q) = max{p(@mazx ), 1 —

we [(A_)minyu_)maz]

We have that

4 2imin —
V2t 1 2\/2bq).
p

P(Omaz, D, q) = ( 25,}7”” — D) + (V2maz — 0mas)”
(V20maz + D)? + (V20maz + @@max)?

A0maz = 2v/20mazP + P* = 20@maz\20maz + Oy
4@mam + 2v/20mazD + P* + 20@maz vV 20mae + *02,4,
= ;nam — 2v/20mas@Wmazq -1 4\/§(Qmam)_%q_1-

@ Wiar T 2V 20mazWmazq
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Similar as in the previous sections, we will solve the following equilibrating

equation
4\/ 2imin — _ 1
fw = 2y/2pq = 4\/§(wmam) éq L
p

We have that

pgq = 4Wmin,
and
pq” = 4(@mar)_1'
Therefore ) )
Pq = 2(Ormin) T (Omaz) 7
Hence
P = V2(@min) ¥ (@mas) ¥ = V25 )¥ (m )FALE,
2Tv
and

4= V2wmint) ¥ @maev) ¥ = V2(2)F () SAL,

Using the same argument as in the prevlious sectio3n, we can see that
3 1 . .
(Ps, @) = (V2(Wmin?) 5 (Wimaz?) 5 V2(WiminV) "5 (Wmazv) ") is the unique so-
lution of (2.2.4) and we have that

min _max  pw.pg) = max  pw,peg) o 1= 4(wmin) ¥ (@nasr)
p,q>0 We[wminywmaz we [Wminywmaz]
1 1 1
w1 —4(—)8Ats.
(57)
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2.3 Numerical Results

In this section, we perform a series of one dimensional numerical exper-
iments to verify our theoretical results on the optimized parameters for the
optimized Schwarz methods obtained in the previous sections. In this set
of experiments, we chose for the problem parameters v = 1, in the domain
[0,1], T'= 2. We use homogeneous boundary conditions. We discretize the
problem with Euler backward scheme and use random initial conditions.

2.3.1 Test 1

First, we would like to compare the behavior of the classical Schwarz method
and optimized Schwarz methods with Robin and Ventcell tranmission con-
ditions in both overlapping and nonoverlapping cases. We choose 300 grid
points on both the time interval and the space interval, the overlapping
length for the overlapping algorithms is 2 grid points. We choose the param-
eter p for the Robin transmission condition to be our computed optimal p
and the parameter (p, q) for the first order transmission condition to be our
computed optimal (p,q) and plot the error with respect to the number of
interations. We can see that the optimized Schwarz methods converge much
faster than the classical one and the optimized Schwarz with the optimal first
order transmission condition converges faster than the optimal Robin one as
in Figure 2.3.1: The optimized Schwarz methods need only a few iterations
to get the errors of 0.01, while classical Schwarz methods need around 100
iterations.

43



errar

Owerlap Classical H

\l‘q} — - — Overlap R |
'\.\‘:ﬂj N — — Owerlap ¥
-\ Yoy . +  MN-Owerlap R
) "\ ot O N-Cverlap v u
‘.\ e ++ 4
I + 4 .
- +
o
| o T+
S o 7]
R .,
1‘; \'\ o +
'\\ n, o] + 4
. o] + +
\L * o ++
| ) “ +
1 1 1 1 1
5 10 15 20 25 30
lteration
Figure 2.3.1

44



2.3.2 Test 2

Now, we would like to test the accuracy of our asymptotics analysis for the
optimized Robin parameters. We choose 10 grid points in space and 100 grid
points in time and the overlapping length is 2 grid points. On the figures,
we let p vary from 0 to 35, the theoretical optimal p is the star % on the
curve. The test corresponds to the case dt = dz?. Plotting the errors after 8
interations, we can see that the theoretical optimal p (the ™*” on the curve)
is quite close to the numerical one in Figure 2.3.2.
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2.3.3 Test 3

Now, we again test the accuracy of our computation for the optimized Robin
parameters, but for the nonoverlapping case. Since we would like also test
the effect of different numbers of iterations on the optimized parameters, we
plot the errors after 5, 8, 11, 14, 17, 20 interations. On the figures, we let p
vary from 0 to 35, the theoretical optimal p is the star * on the curve. The
test corresponds to the case dt = dx. As we can see in Figure 2.3.3 that the
optimized parameter does not depend on the number of iterations and this
verifies our theoretical results.
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2.3.4 Test 4

In this test, we test our theoretical parameters for Ventcell transmission
conditions. We choose the overlapping length to be 2 grid points. We plot
the errors respect to p varying from 0 to 5 and ¢ varying from 0 to 1.4 after 5
iterations. The the following two tests, we would like to test our theoretical
results for both cases dt = Cdx and dt = Cdz?.

In the first case (Figure 2.3.4.A.), we choose 500 grid points on the time
interval and 300 on the space interval, dt = 0.01, dx = 0.01 = dt.

In the second case (Figure 2.3.4.B), we choose 500 grid points on the time
interval and 30 on the space interval, dt = 0.1, dz = 0.01 = dt?.
We can see that in both cases the theoretical optimal (p,q) (the
curve) is quite close to the numerical one.

7 on the
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2.3.5 Test 5

Since, according to our theoretical results, the optimized parameters depend
on the overlapping length, we consider our problems with different overlap-
ping lengths in the tests.

In this test, we consider again the heat equation in 1D, v = 1, with Euler
backward scheme, and Ventcell transmission conditions, for the domain [0, 1],
T =1, 10 iterations. We choose 100 grid points on the time interval and 100
on the space interval. We plot the errors respect to p varying from 0 to 10
and ¢ varying from 0 to 0.5.

In the first case (Figure 2.3.5.A.), we choose the overlapping length to be 4
grid points.

In the second case (Figure 2.3.5.B.), we choose the overlapping length to be
3 grid points.

In the third case (Figure 2.3.5.C.), we choose the overlapping length to be 2
grid points.

In the forth case (Figure 2.3.5.D.), we choose the overlapping length to be 1
grid points. We can see that the theoretical optimal (p, ¢q) (the stars in the
pictures) work quite well.
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2.3.6 Test 6

According to our theoretical results, the optimized parameters have the as-
symptotic behavior of Cdz~/'3 and Cdx~'/*. In this test, we want to verify
this.

We consider 100 grid points in the space interval and 200 grid points in
the time interval, then dx = dt = 0.01 and fixed the overlapping length to be
2 grid points. We repeat this experiment by dividing dz and dt by 2, 3, 4, 5.
We plot the practical optimized parameters according to each mesh size and
the line p = dz—'/*. We can see on Figure 2.3.6A that the practical optimized
line and the line p = dz~/* are parallel. Which means that the asymptotic
analysis predicts very well the behavior of the optimized algorithm.

We consider the same experiment but with 10 grid points in the space
interval and 200 on the time interval, then dt = dxz? = 0.01, the overlapping
length is again 2 grid points. We repeat this experiment by dividing dr and
dt by 2, 3, 4, 5. We plot the practical optimized parameters according to each
mesh size and the line p = dz~/3. The asymptotic analysis again predicts
very well the behavior of the optimized algorithm in this case.
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2.3.7 Test 7

As predicted in our theoretical results, the performance of the optimized
Schwarz methods depend on the lengths of the time intervals, we now do
some tests on this. We will increase the length of the time intervals, but
keep the same dt, and look at the behavior of the methods at each case.

In 2.3.7.A, we consider 10 grid points in the space interval and 100 grid
points in the time interval, then dz? = dt = 0.01 and fixed the overlapping
length to be 2 grid points. Then we plot the errors of the methods with
respect to the number of iteration. We increase the time interval from [0, 1]
to [0, 10] and choose 1000 grid points on the time interval and plot the second
curve. We increase the time interval from [0, 1] to [0, 20] and choose 2000 grid
points on the time interval. We can see that the behavior of the methods
depend on the length of the time interval and plot the third curve. We can see
that the behavior of the methods depend on the length of the time interval.

In 2.3.7.B, we increase the time interval from [0, 1] to [0, 16] and choose
1600 grid points on the time interval and plot the errors of the methods with
respect to the Robin parameters. We plot 3 curves with respect to the 5,
8, 11 iterations. We can see that our theoretical p (the "*’ in the picture)
predicts well the practical optimized parameter.
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2.3.8 Test 8

As predicted in our theoretical results, the performance of the optimized
Schwarz methods depend on the parameter v also, we now do some tests on
this.

In picture 2.3.8.A, we consider 10 grid points in the space interval and 10
grid points in the time interval, then dz = dt = 0.1 and fixed the overlapping
length to be 2 grid points. Then we plot the errors of the methods with
respect to the number of iteration for three cases v = 0.1, v =1, v = 10. We
can see that the performance of the algorithm really depends on the viscosity
parameter.
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2.4 Optimization of The Convergence Factor:
A Theoretical Attempt

2.4.1 The results

We define the convergence factor by

o 1) = (VLD exp(21, ) 24.1)

g 2 (VI ) 4 2l
= exp(— 5 :
v (V2w +p)? + 2wl

We have

2|w| pT\2 22w

olw| (Ly/ 7 — £L)* + L*=+
o, T) = exp(— 1y 2 S 4y

v (L M+3L)2+L2M

And we have to solve the following min-max problem

2wl _ pry2 22w

[2w (L) =7 = SL)° + L°=7

min  max__{ exp(—L _w) }. (2.4.3)
TFL] 1% (L @‘I—%L)z—l—[zz@

P |wl€lF A7

Without loss of generality, we can assume that w > 0

Put z = L\/22. Since w € [Z, L], we have x € [Ly/ 22, L,/ ZX].

T At Tv? Atv
Then ( 2 )
r—a)+ux
plw,p, L) = eXP(—ZE)m (2.4.4)
( )2x2 — 2za + a®
= exp(— .
XPATE 222 + 2zxa + a?
We define

L
Oé(]:\/g—l, a:p—,
14

[ 27 | 2 I}
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For a € R, x € R, we define:

222 — 2xa + a?
222 4 2xa + a?

R(a,z) = exp(—x)

Instead of solving the problem (2.4.3), we will solve the following min-max
problem:

min max R(a,x). (2.4.5)
“ me[L\/%’L\/AZZ/

Suppose that o <1, # < 1 we define

hi=—1+VI—a2+(2+a®—2VI—a?)z,

=

hy=—1—V1—a2+ (2+a*+2V1 —a?)
k= —14+1- 32+ 2+ 62 =21 - ?)z,

ko =—1—+/1—32+ (24 3>+ 21— 3?)z.
Suppose that 0 < a < 22 — 2, we define

Y

N

N

2a — a4 — 4a — a?
Xl(a) = 9 5
2a + a4 — 4a — a?
X2(a) = 9 5

and 21 = v X7 and x9 = v/ Xo.
We define B; and B; to be the solutions of R(ki,x2) = R(ki, By) and
R(k‘g,l’g) = R(k‘g, Bg) (see Lemma 2416)

Theorem 2.4.1. We denote S to be the solution of

R(S1, @) = R(Sy, ) in [vV2a,V27).

And Sy is the solution of

R(Sa, @) = R(Ss, x3) in [V2a, 00),

(see Lemma 2.4.17).
The problem (2.4.5) has a unique solution which depends on the following
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cases
Case 1: a < 8 <1 we have the following disjoint cases

. —_ 2— .

Case 1.1 If o < min{ 15 ln(z;gzﬁ (3+2v/2)), 2\/24(1111 Dy min max R(a,z) =
R(Sl,a).

Case 1.2 If a < min{%,Bg,MO, \/1 - (\/4 —(1—=4/1-p32)2-1)?} mainmng(a,x) =
R(Sg,a).

Case 1.3 If By < a < min{%,MO,\/ \/4 V1-7532)2-1)?}
minmax R(a,z) = R(S51, ).

Case 1.4 Otherwise min max R(a, ) = R(v2a, a).

Case 2: a <1<f :
Case 2.1 If « < Mp minmax R(a,z) = R(S,, «v).

Case 2.2 If a > My minmax R(a,r) = R(v2a, a).
Case 3: 1 < a < f minmax R(a,z) = R(v2a, ).

Remark 2.4.1. Actually, for a < 8 < 1, we have the following cases with
their figures

*If a < min{ 2 ln(ii;ﬁiﬁ (3 +2v2)), 2\/,3(;?51_1)}, n}“in max R(a,r) =
R(S1,«) (see figure 1).

*IFB < V2V2 -2 and o < By minmaXR(a,x) = R(Ss, a) (see figure 2)

and if By < a < min{%, \/ \/4 V1 —?2)2—1)2} minmax R(a,z) =
R(S1,«) (see figure 3).

*If3 > \/2V2— 2 anda < min{ %, By, M, \/1 S (- (- T2 1)
mainmjx R(a,z) = R(Sy, ) (see figure 4) and if 3 > V/2v/2 —2 and By <

a < min{%, My, \/ \/4 V1 — 32?2 —1)2} minmax R(a,z) = R(S), @)
(see figure 4).
* Otherwise minmax R(a, ) = R(v/2a, ).

a
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. . . . k2—/2k
Figure 2.4.1. The domain in the first case: = In (k2+fkj: (3 +2v/2))
(asterisk), 2\/1;(1]11_1 (line), B € [0,v/2v2 —2].
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Figure 2.4.2. The domain in the second case: the function in the figure

is By, B €[0,V2v2 - 2].
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Figure 2.4.4. The domain in the forth and fifth cases: By (asterisk), %
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2.4.2 Proofs of the results

We need the following Lemmas:

Lemma 2.4.1. If a < 1 we have that hy > he. And if 3 < 1 we have that
ki > ko

Proof.
We prove that hy > hy (k1 > ko can be proven similarly.)
We have

22T —a2+2VI—a2(2+a® —2V1—a2)2 > 0.

This can be written as

(VI—aZ+(2+a®—2V/1—a?)2)? > 1.

Take the square root on both sides of this and multify the result by

V1 — a2, we have
l—a?—VI—a2+VI—a2(2+a?—2VI—a?)z > 0.

This can be developed into
2VI—a?+(2+a®—2vV1—a2)2)? > 2+ a” + 2V1 — o2
Take the square root on both sides of this, we have that

I VI— 2+ 242 —2VT—a?)r > -1 —VI—-a?+ 2+ +2V1 — a?)z.

Lemma 2.4.2. Fory > 0, we put Fy(z) = x*+42° —8yr+4y*. If0 <y <1
then the equation Fy(x) = 0 has two positive solutions. If 0 <y < 1, then
Fy(x) > 0 for all x > 0. Ify = 1, the equation has one positive solution

[L’:\/g—l:IOéo.
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Proof. Put apg = v/3 — 1, we have o + 6a2 + 6ay — 8 = 0.
3 2
Let y; be the unique positive solution of y = % We have F'y(x) =
423 + 122 — 8y = 4(2® + 322 — 2y), and we have the following table

a Y1
Fl - 0 -
Fy N /!
Fy(yl)

Case 1: If 0 <y < 1, then y < % We can see that y; < .
We have that

Fy(y1) = yi + 498 — 8yry + 4y* = yi(y3 + 6y} + 6y, — 8)

Since y1 < ap, we have Fy(y1) < 0.

Thus, the equation has two positive solutions.

Case 2: If y > 1, then y > &32&2‘1 We can see that y; > ayp.
We have that

Fy(y1) = yi + 4y} — 8yry + 4y = 13 (5} + 6% + 61 — 8)

Since y1 > g, we have Fy,(y1) > 0.
Thus, the equation has no positive solution.
Case 3: If y = 1, the equation has one postive solution y; = ag = v/3—1.

|
Lemma 2.4.3. Suppose that x is in Ry and f(x) = glgiiiz Then f de-
creases in [0,v/2] and increases in [v/2,00).
Proof. We have At — )
/ o r~ —
f(l’)— (1’2—|—2[L’—|—2)2’
which means that f’ < 0 if x € [0,v/2] and f' > 0 if z € [V/2, 00).
|
Lemma 2.4.4. Let My = 0.481033790 be the solution of R(v/2My, xo(v/2My)) =

R(V2My, My).
If a < My, then R(\2a, 2(v2a)) > R(V2a, a).
If 1> a > My, then R(vV2a, 25(v/2a)) < R(V2a, a).

71



0g -

D.ﬁ—I'L

0.4 N,

02 - -

-0z 4

04

-0a —

Figure 2.4.5. The graph of R(v2a, z5()) (dash), R(v2a,a) (line), and
the substraction (long dash,).
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Lemma 2.4.5. ky < V2a < ky iff a < 2\/2511121_1)'

Proof. We have that ky < v2a < ky is equivalent to
(V20)" + 4(v20)* — 83*V2a + 43 <0,
or
(vV20)* + 4(v2a)? — 8k*v203 + 4k*a* < 0.

This means
4o+ 8V2 — 8V2k* + 4k'a < 0,

or )
Y < 2v/2(k —1)‘
- k41

Lemma 2.4.6. If l,f—illn(kz_\@“’1 (34+2v2)) < a, we have R(v2a, ) <

k24+v/2k+1

R(V2a, ).

Ifo < 25 In(E=YZktL (3 4 2\/9)), we have R(v2a, 3) > R(V2a, ).

k2+v/2k+1
Proof. We have that

232 — 2B+2a + 202

R(V2a,3) = eXp(_ﬁ)Qﬁz + 26v2a + 2a2

B o V241
e e a1

Moreover
R(V2a,a) = exp(—a)(3 — 2V/2).
Thus
R(V2a,8) < R(V2a, )
iff
kK —V2k+1 _

B+2vV2) e S

exp((k — 1)a).
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This is equivalent to

—V2k+1

((3+2f) VLT

T ) <

Thus we get the result.

Lemma 2.4.7. For k > 1, we always have

2V2(k* = 1) 1
TRl SR

2V2(k* - 1) 1) /7
k*+1 2v2 -

—\/§k+1)<2\/§(k2—1
- k* 41

and

2
((3+2f) ) iff k < M, = 2.065883380.

k2 +2k+1

1
k—1

Proof. Since
0< (k*—V2k—1)
we have
0 < k*—2v2k3 + 2V2k + 1.
This implies
2V2(k* = 1) ) _1

T k:

We have that

\/\/2f—2\/\/2f—2+2\/§>\/§.
Thus

V2V2 = 2k (1 2V2 — 2+2V2) > 2\/\/2f - 2\/\/2\/5 — 24+ 2V2k” > 2V2k,
Hence
\V2v2 —2(k* +1) > 2v2(k* - 1).

The rest of the proof can be easily seen on Figure 5.6.
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Figure 2.4.6. The two functions -1 In((3 +2v/2) B _v2kily and 2va(k?1)

E2+/2k+1 k141
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Lemma 2.4.8. For 0 < 8 < 1, we have that 3? > k».
For V/2v2 -2 < 3 < 1, we have that 32 > ki; and for 0 < 3 <
V2v2 — 2, we have that 3% < k.

Proof.
*For 0 < 8 < 1, we have that

0 < 28%/1— 32+ gL
Thus

24 7+ 21— <1+ 8 +1 -2 +282+2¢/1 - 32+ 25%/1 - B2
Which implies

V2+ B 12/T- B <145 +/1- 7

This means (32 > k.

*For 1 > 3 > v/2v/2 — 2, we have

64_'_462_4209

or
3> 21 -2

Thus
Blal4+1-3+282—2/1-32-28°/1-2>2+ 3> —2/1- 3,

or
(B2+1—/1-32)° =243 —2¢/1— 3
Hence 32 > k;.

*For 0 < 3 < v/2v2 — 2, by a similar way, we can prove that 5% < k.
|

Lemma 2.4.9. h; < 2v2 —2 and k; < 2v/2 — 2.
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Proof.
We prove for the case h; < 22 — 2, the other case is similar.
This is equivalent to

I+ VI a2+ 2+ —2V1—a2)2 <2V2-2.
We develop this

1+v1—a? 1+v1—-a?
%Jr %)2)%§\/§,

(1—(

We put y = @, y € [0,1]. Then this can be rewritten into
y+ (11— < V2.

This is equivalent to

14 2y(1 — )% <2,

which is obviously true.

Lemma 2.4.10. We have that hy < vV2a? and ky < +/2032.

or

or

or

or

Proof
We prove for the case hy < v2a?2, the other case is similar.
Put x = v/1 — a2, we have to prove that for all z in [0, 1]

142+ (3—22—22)2 < /2(1 - 22),

142+ (B+2)(1—2))2 < /2(1—2?),

V3+ax—V1—12<+2(1+2),

34+z+1—2—-2vV3+zvl—2x<2(1+2),

N[=
N[=

(1—2)2 < (3+x)2.

The last one is obviuous.
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Lemma 2.4.11. f(a) = R(V2V2 —2,a) is a decreasing function. If o <
VoV2 -2 we have R(Q\/§ —2,a) > R(2\/_ —2,19), and if a > 22 —2
we have R(2v/2 —2,a) < R(2v/2 — 2, 13).

Proof. We have that

Ty = 2f—2+(2\[_2)\/4_4(2\2[_2)_(2\/5_2)2: 2v/2 — 2.

We have

B 207 —20(2v2-2) + (2v2 - 2)°
fla) = R(2V2 — 2,a) = — exp( a)2a2 2a(2VE—2) § (V2 22

Therefore

fla) = —exp(—a)—— M ZGVEZAF
(202 +2024/2v/2 — 2 4+ 2¢/2 — 2)2

From this we get the result.

Lemma 2.4.12. Fora< (<1 and 0 < a < 2v/2 — 2, we have:
a<f<z <a iff BSV2V2 -2 and ky < a <2V2—2.

<z <a<fiffa<hy and hy <a<2v2—2 for\/2v2—-2< a;
and a < hy for a < V2V2 = 2.

Proof.

The condition of a < < x1 < 5.

a < f < xp < xg is equivalent to

or
0> B,
{ a* +4a3 — 8aB? + 43* > 0.
This is equivalent to
a> (3,
{ a>kyora<ks.
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According to Lemma 2.4.8, we have that 5% > k,. Thus, we only have
the case

Since a < 2v/2 — 2, we have that 3 < v/2v/2 — 2. Again, from Lemma 2.4.8,
we have 3% < k;. Thus, the condition is now changed into

ki <a<2v2-—2.

The condition of v1 < 2o < a < [3.
r1 < 29 < a < 3 is equivalent to

a4 — 4a — a?
a—+ 5 <«

Y

or

a<a?,
a* + 4a® — 8aa? + 4a* > 0.

This is equivalent to

a<a?,
{ a> hy or a < hs.
Combining with Lemma 2.4.8, we have
h <a<o?
[ a < hs.

This means

for > V2v2—-2:2¢/2—2>a>hy or a < hy,
for o < V/2v/2 —=2:a < h.

Lemma 2.4.13. For 0 < a < 2v/2 — 2, we have that the following function
222 — 2z9a + a?
223 + 2x0a + a?

G(a) = R(a,z2(a)) = exp(—x2)

1s a decreasing function.
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Figure 2.4.7. The graph of G(a).
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Lemma 2.4.14. For 3 € [\/2v/2 — 2,1], the function k\(B) is a decreasing
function. For 3 € [0,1], the function ko([3) is an increasing function.

Proof.
For 3 € [V/2V2 — 2, 1], the function k() is a decreasing function.
We have that

=1+ VI P42+ 02 -2/1- B
ki:_ﬁ(\/2+ﬁ2_2\/1_62_\/1_62_1),
V2B -2 /T BT P
For 8 > v/2v/2 — 2, we have

Br+43% —4>0.
52> 21—
2421 -2 <2+ 622132

Which means
Thus

or
(V1I-p32+1)2 <2+ 6%-2¢/1— 2
Therefore k1(8) < 0 and k; is a decreasing function.
For 5 €0, 1], the function ko(3) is an increasing function.
We have that

kg =—1— 1—ﬁ2+\/2+ﬁ2+2\/ﬁ.

Then

_ﬁ(\/2+ﬁ2+2\/1—ﬁ2+\/1—ﬁ2—1)
\/2+ﬁ2+2\/1—ﬁ2\/1—ﬁ2

Thus ks is an increasing function.

> 0.

k5 (B)
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Lemma 2.4.15. For 3 > \/2v/2 — 2, we have that R(ki, %) > R(ky, ().
And for B < \/2v/2 — 2, we have that R(ks, %) < R(kq, 3).

0.10 ——

009 - /_/_/—/

0.03

0.07
0.048 —-
0as —-
0.04—-
003 —_

0.02 4

0.01

T T T T T T T T 1
09z 093 084 093 0% 097 092 000 100

Figure 2.4.8. The graphs of R(k;, %) (dash), R(ky,3) (line) and their
subtraction (long dash,).
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£
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—0.4 o «?
—0E “
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Figure 2.4.9. The graphs of R(ks, %) (line), R(ky,3) (dash) and their
subtraction (dot).
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Lemma 2.4.16. For a > 2v/2 — 2, there exists a unique solution B(a) of
R(a,B(a)) = R(a,z3(a)). Then B(a) < xs(a) and R(a,z) > R(a, B(a)) iff
x < B(a).

Proof. We have that
4z* — 8az? + a* + 4a® (22 — X1) (22 — Xo)

Hz(a, z) = —exp(=7) (222 + 2ax 4 a®)2 exp(=7) (222 + 2ax + a?)?
Thus the function R(a,.) decreases in [0, z1] and [z2, +00) and increases
in [x1,x9). Since R(a,0) = 1 and R(a,x2) < 1, there exists B(a) such that
R(a,B(a)) = R(a,z2(a)). In addition, we know that R(a,.) decreases in
[, +00); which implies that B(a) < zs(a).
From the increasing and decreasing property of R, we can see that R(a,x) >
R(a, B(a)) iff x < B(a).
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Figure 2.4.10. B(a) and x2(a).
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Remark 2.4.2. Lemma 2.4.16 deduces the existence of By and Bs.
Lemma 2.4.17. For a > 0, the equation
R(a, o) = R(a, 8) in [V2a,v24].

has at most one solution. If the solution exists, we will call it S.
The equation

R(a,a) = R(a,x3) in [V2a, 00).
has at most one solution. If the solution exists, we will call it Ss.

Proof.
According to Lemma 2.4.3, the function R(., «) increases in [v/2a, 00) and
the function R(., 3) decreases in (—oo, v/2]. Thus

R(a, ) = R(a, 8) in [v20,V273).

has at most one solution.
According to Lemmas 2.4.3 and 2.4.13, the function R(.,«a) increases in
[v/2a, 00) and the function R(a,z(a)) decreases. Thus
R(a, o) = R(a, x5) in [vV2a, 00).

has at most one solution.

Lemma 2.4.18. For 0 < < v/ 2v/2 — 2, we have that

\/1— \/4 VI— 32212 > B,

85



0s - kN

08+ ¢

0.4+

024

-02 4

04

-0

-0E

Figure 2.4.11. The graphs of R(ks, \/1 — (\/4 —(1—-+/1-05%)2-1)?)
(line), R(kq, 3) (dot), and their substraction (dash).
|
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Proof of Theorem 2.4.1. We have

222 — 2xa + a?

222 + 2zxa + a? = f(@).

R(a,z) = exp(—x)

Differentiate f, we get

4x* — 8ax? + a* + 4a®

2.4.6
(222 4 2ax + a?)? ( )

f'(x) = — exp(—z)

We have

A = 16a* — 4a* — 166> = 4a*(4 — 4a — a®) = 4a*(a + 2+ 2V2)(2V2 — 2 —a).
(2.4.7)
*1If a > 2v/2 — 2. Since A’ < 0, f/ < 0. Since x € [Ly/Z, L,/ 2], we

Ty
have that

2 p 2 22w
o [on (L\/77 — 2L+ L%

f(x) < f(L ﬁ) = exp(—L ﬁ) = _ (2.4.8)
(L\/ 2% +BL)* + L*2%

* If a < 2¢/2 — 2. Notice that ag < 2v/2 — 2.
We have

4a* — 8az?® + a* + 4a® ( )(:1:2—X1)(z2 - X>)
= —exp(—=
(222 + 2ax + a?)? P (222 + 2ax + a?)? '

f'(x) = — exp(—x)

(2.4.9)
where
2% — av/i—da — a2
X =21 5 e (2.4.10)
and
2 + av/i — da — a2
X, = 22t > i (2.4.11)

We have the following table
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Since a = L\/%, f =L/ 2%, then € [a, ]
Case 1: a< <1
We put
h(a) = a* + 4a® — 8c’a + 4a*, (2.4.12)
and
k(a) = a* + 4a® — 83%a + 45" (2.4.13)

Step 1: The properties of h and k
By Lemma 2.4.1, we can see that h has the following two positive solutions

hi=—-1+vVI—a2+ (2+a®—2V1—a2)?, (2.4.14)
and )
hy = —1—+V1—a2+ 2+ a®+2V1 —a?)?. (2.4.15)
And k has the following two positive solutions (can be coincided)
b =—14++1- 3+ 2+ —2/1-p2)s3, (2.4.16)
and )
ko =—1—+/1—32+ (24 3*+2y/1—3?)2. (2.4.17)

We have the following two tables according to Lemma 2.4.2,

a|l 0 «a (1 a0 22 -2
noo- 0 +

h | 1\, /!

and

a|l0 a; (1 a0 2V/2 -2
K -0 +
El1l N\, /
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where 2a = o3 + 3a? and 28 = 53 + 353
Therefore, if a € [hg, h1], we have that a* + 4a® — 8a?a + 4a* < 0. Which
leads to
1 < a < 2. (2.4.18)

Similarly, if a € [kz, k1], we have that a* + 4a® — 83%a + 44* < 0. Which
leads to

Step 2: We will prove that ke > ho
We have that ky > hsy is equivalent to

—1—/1 =B+ 2482+2/1 = B2)2 > —1—V1 — a2+ (2+2+2V1 — a?)z.
(2.4.20)
This is equivalent to

A s

2 2 2

1-+1 —a2+(1_(1 - \/21 —oﬂ)g);

(2.4.21)
We put sin 8y = " and sind, = 1=vl=e® " Then (2.4.21) is equiva-

2
lent to 0 < 6, < 0 < 7 and

(SIS
Y

sin @, + cos 7 > sin @y + cos 0. (2.4.22)

And (2.4.22) is equivalent to

.n91—92C 91+92+7T

si 5 os( 5 Z) > 0. (2.4.23)
And (2.4.23) is now equivalent to
% <0 ;r b2 | % < g (2.4.24)
And this is again equivalent to
0< 0+, < g (2.4.25)
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or

sin Ay < cos 6, (2.4.26)
or
— — 2 1— 1 — 32
1=vizo V;O‘ <(l- (v V25)2)%. (2.4.27)
(2.4.27) is correct because from
—a?—2V/1—a?2—-p%—-2y/1-32<0, (2.4.28)
we can get

(= V21_”32)2+(1_ ”21_0‘2)2§ 1. (2.4.29)

Step 3: We prove that

If —a® +21 —a?2 < 82 —24/1— 32, then hy > k.

If—a?+2yT=a% > 32— 23 /1= B, then hy < k.

Suppose that —a?+2v/1 — a2 < 32 —24/1 — 32 (the other case is proven
similarly). He have

(14+V1—a?)?<4—(1++/1-p2)% (2.4.30)
Thus
1++v1—0a2 1+4/1—732
% <(1- (%6)2)%, (2.4.31)
We put sin; = 1+7v21—a2 and cosfy = (1 — (1+ ”21_62)2)%, where 0 < 4, <
0 < 3.
We have -
sinf; < sin(§ — ). (2.4.32)
This implies
T
0<bi+6:< 2. (2.4.33)
Hence 60— 6y 6 +0
— T
sin — 5 2 cos(— 5 2 + Z) > 0. (2.4.34)
Therefore:
sin @, + cos 6 > sin @y + cos 0. (2.4.35)
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Thus hl 2 k‘l.
Step 4: We will prove that
If —o? + 21 — a2 < 2+ 2y/1 — 32, we have ky < hy.
If =02 + 21— a > 82+ 24/1 — 32, we have ko > h,.
Suppose that —a? + 2v/1 — a? < 2 + 24/1 — 32, we prove that ko < Iy

(the other case is proven similarly). We have

A e '21_62)2 <1z '21_0‘2)2. (2.4.36)

_ A2
Put sinf, = V; 7 and sinf, = Hv1=a? \,21—042’ where 0 < 6 < 6, < I
Therefore

sin @, + cos 6; < sinfy + cos 0. (2.4.37)

From (2.4.37), we can get that ky < h;.
Step 5: The cases

Case la o > V/2v2 -2

From Lemma 2.4.12, we have that for hy < a < 2v/2 — 2 and a < hs,
11 < 29 < a < B or max R(a,z) = R(a,a). Moreover for a > 2v/2 — 2,
max R(a,z) = R(a,a). Thus for a > hy or a < hy, max R(a,x) = R(a, ).
Moreover we always have that max R(a,z) > R(a,a). According to Lemma

2.4.3 R(a,a) > R(v/2a, a) and according to Lemma 2.4.10 h; < v/2a. Hence
mainmjx R(a,z) = R(V2a, a).

Case 1b a < V/2v2 — 2

Case 1bl —a* +2/1—a?2 < 2 —-2y/1 -3 or (V1—a?2+1)*+(1+
VI— )R <

This condition leads to hy < ky < k1 < hy.

Since a < 3, we have that (1 + /1 — 32)?> < 2. Which implies § >

V2V2 = 2.

We have the following tables

a | hy ko ki
hi+ 0 - 0 +
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a‘ hy ko ki M
k| + 0 - 0 +

If a > 2v/2 — 2, we have that max R(a,z) = R(a, ).

If hy < a < 2v/2 — 2, we have k(a) > 0 and h(a) > 0. Thus a < 27 <
x92 < (3. Hence max R(a, x) = max{R(a,a), R(a,x2)}.

If k&, < a < hy, we have h(a) < 0 and k(a) > 0. Thus 7y < a < 29 < .
Hence max R(a,x) = R(a, z3).

If ko < a < ki, we have h(a) < 0 and k(a) < 0. Thus z; < a < 3 < xs.
Hence max R(a,x) = R(a, [3).

If hy < a < kg, we have h(a) < 0 and k(a) > 0. Thus 7y < a < 29 < .
Hence max R(a,x) = R(a, z3).

If @ < hy, we have 71 < 29 < o < 3. Hence max R(a,x) = R(a, ).

We consider two cases

If « > M,. From Lemma 2.4.10 we get h1 < V2a. If V2a < 2V2 —
2, according to Lemma 2.4.4 we have R(v2a,z3) < R(v2a,a). Thus
m?XR(\/ﬁa,x) = R(V2a,a) for vV2a < 2v/2 — 2 and v2a > 22 — 2.

Moreover max R(a,z) > R(a,a) > R(v/2a,a). Thus minmax R(a,z) =
R(V2a, ).
If a < My, from (V1 —a?+1)*+ (1+ /1 — 3?)? < 4, we have that
(W1—-MZ+1)*4+ (141 - p2)? <4
Thus
(141 —=062)2<4—(y/1—M2+1)>%

However, we have that 4 — (/1 — M2+ 1)? <4 — (V1 -0.492 +1)? =
0.496655 < 1. Which implies

(1++1-32) <1

This is a contradiction. Thus this case does not occur.
Case 1b2: (2 +2/1 -2 > —a? + 21 —a? > 32— 2,/1— 32 or
(14+V1i—-a?)?P+(1-1=-02)2<4<(1+V1I—-a?)*+(1++/1- 52>~
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This condition leads to hy < ky < hy < k7.

Ifa<pf<vV2V/2-2

If a > 2v/2 — 2, we have that max R(a,z) = R(a, ).

If by <a<2vV2 -2, a< <2 <2y Hence max R(a,z) = R(a,a).

If hy < a < ki, we have h(a) > 0 and k(a) < 0. Thus a < x; < 3 < xs.
Hence max R(a, x) = max{R(a,a), R(a,3)}.

If ko < a < hy, we have h(a) < 0 and k(a) < 0. Thus r; < a < 3 < xs.
Hence max R(a,x) = R(a, [3).

If hy < a < kg, we have h(a) < 0 and k(a) > 0. Thus 7y < a < 29 < .
Hence max R(a,x) = R(a, z3).

If @ < hy, we have 71 < 29 < o < . Hence max R(a,x) = R(a, a).

According to Lemma 2.4.10: h; < v/2a.. We consider the following cases

*If hy < v2a < kyq, then according to Lemma 2.4.5, a < 2‘/1351131_1).

According to Lemma 2.4.6, if = ln(z;?zﬁ (3+2v/2)) < a, we have that

R(V2a,3) < R(v2a,a). Then mlnmaXR(a,a:) R(v2a,a). Since 8 < 1,

we have a < % According to Lemma 2.4.7, we have that 2\/131121_1) < %

2— . . .

and ln(iir?ij: (3 +2v2) < 2\/3(1'11 U if k < M;. Which means if
2

E < M1 and 15 ln('lz;?'gﬁ(?) +2v2)) < a < 2\/,3(1'11_1), we have that

mmmaxR(a,a:) = R(V2a,a).

2
fIfa < k%l (zz+§zﬁ(3+2\/_)) and £k < M; or £k > M; and a <
2 (k—l

, then R(v2a,) > R(V2a, ). Moreover, when a = ki, we have
that a —|—4a —83%a+43* = 0. Thus 3 = x1(k1) or x2(k;). From Lemma 2.4.8,
we have that 2 < k;. Thus 8 = x1(k;), which means R(k;,a) > R(ky, 3).
Therefore there exists a solution S; in [v/2a, k1] of R(S1,a) = R(S1,3) and
minmax R(a,z) = R(S1, ).

Ik < V20 < 22 — 2, then according to Lemma 2.4.5, o > 2‘/13511121_1).
We can easily see that min max R(a,z) = R(v/2a, a).

Ifa<vV2V2-2<p

If a > 2y/2 — 2, we have that max R(a,z) = R(a, ).

Ifk <a<2/2-2, a <z, < 2y < 3. Hence maxR(a,z) =
max{ R(a, o), R(a,x2)}.
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If hy < a < ki, we have h(a) > 0 and k(a) < 0. Thus a < x; < 3 < 9.
Hence max R(a, x) = max{R(a,a), R(a,3)}.

If ko < a < hy, we have h(a) < 0 and k(a) < 0. Thus r; < a < 3 < xs.
Hence max R(a,x) = R(a, [3).

If hy < a < kg, we have h(a) < 0 and k(a) > 0. Thus 7y < a < 29 < .
Hence max R(a,x) = R(a, z3).

If @ < hy, we have 71 < 29 < o < 3. Hence max R(a,x) = R(a, ).

According to Lemma 2.4.10: h; < v/2c.. We consider the following cases

*If by < v2a < kyq, then according to Lemma 2.4.5, a < 2‘/1351131_1).

According to Lemma 2.4.6, if — ln(',z;?ﬁi (34+2v/2)) < a, we have that

R(V2a, 3) < R(V2a, ). Then malnmng(a,x) R(V2a, ). Since § < 1,

we have a < % According to Lemma 2.4.7, we have that VAR L

Ml = k&

2— . . .

and ln(iir?ij: (3 +2v?2)) < Qﬁil U if k < M;. Which means if
E < M1 and = ln('lz;?'gﬁ(?) +2v2)) < a < 2\/,;(1111_1), we have that

mmmaxR(a :E) = R(V2a, a).

Ifa < = ln(',z;?ﬁi (34+2v/2)) and k < M or k > M, then R(\/2a, 3) >

R(V2a, a). Moreover, when a = k;, we have that a* + 4a® — 83%a +43* = 0.
Thus 5 = z1(k1) or xo(ky). From Lemma 2.4.8, we have that 3% > k;. Thus
B = x(ky). From Lemma 2.4.15, we have that R(k;, & ) > R(ky,3). Hence
B; > % > « according to Lemma 2.4.16, which means R(k‘l, a) > R(ky, B).

Therefore there exists a solution S; in [v/2a, k1] of R(S1,a) = R(S,3) and
minmax R(a,z) = R(S, ).

*If ki < V2, then according to Lemma 2.4.14, o > % > ki/(%) =

=L > M. Using Lemma 2.4.3, we can easily see that minmax R(a, ) =
R(\V2a, ).
Case 1b3: 2 +2/1— 2 < —a’+2V1 -2, or (1+V1—a?)*+ (1 —

\/1_752)2>40ra< \/1—(\/4—(1_\/@)2_1)2.
This condition leads to hy < hy < ko < k.

Ifa<pf<vV2V/2-2
If a > 2v/2 — 2, we have that max R(a,z) = R(a, ).
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If by <a<2v2—-2 a< B <z <z Hence max R(a,z) = R(a, ).

If ko < a < ki, we have h(a) > 0 and k(a) < 0. Thus a < x; < 3 < xs.
Hence max R(a, x) = max{R(a,a), R(a,3)}.

If hy < a < kg, we have h(a) > 0 and k(a) > 0. Thus a < x; < 29 < .
Hence max R(a, x) = max{R(a, ), R(a,x2)}.

If hy < a < hy, we have h(a) < 0 and k(a) > 0. Thus z; < a < 25 < .
Hence max R(a,x) = R(a, z3).

If @ < hy, we have 71 < 29 < o < 3. Hence max R(a,x) = R(a, a).

According to Lemma 2.4.10: h; < v/2a, we consider the following three
cases:
*If v/2a > Ky, we have that max R(a, ) = R(a, ). Thus minmax R(a, z) =

R(V2a,a). t

*If k‘g < \/EOZ < kla or o < 2\/13(1]3—21_1)'

If ﬁln(zzlg‘zﬁ (3 + 2\/5) <a< 2‘/13511121_1) and k < M;, we have that

R(V2a,8) < R(V2a, ). Thus mainmjx R(a,z) = R(V2a, a).

If a < ﬁln(zz;gﬁ: (34 2\/5) and k < M; or k > M, we have that

R(V2a, 3) > R(v2a, «). When a = ki, we can see that 32 < k; from Lemma
2.4.8. Thus f = x1(k1) and R(ky, ) > R(k1,3). Hence there is a solution S}
in [v2a, k1] of R(S;,a) = R(S;, 3) and we have min max R(a, r) = R(S;, a).

*If \/50( < k‘g
If o > My, then according to Lemma 2.4.4, we can see that R(v/2a, o) >
R(v/2a, z5). Which implies min max R(a, z) = R(v/2a, a).

If & < My then according to Lemma 2.4.4, we can see that R(v/2a,a) <
R(v2a, x3). When a = ks, we have that 8 = z because of Lemma 2.4.8. If
a < By, using Lemma 2.4.16, we have R(ko, ) < R(ks,«). Thus there exists
a solution Sy of R(Ss, ) = R(Sz, r2) and rrzin max R(a,z) = R(Ss, ). Ifa >
By, then R(ks,3) > R(ks, ). When a = ki, from Lemma 2.4.8, we can see
that 32 < k;. Thus 8 = z1(k;). Therefore R(ki,3) < R(ki, ). Hence there
exists a solution S; of R(S1,3) = R(S1,«) and mainmjx R(a,z) = R(51, a).

Ifa<vV2V2-2<p

If a > 2y/2 — 2, we have that max R(a,z) = R(a, ).
Ifk <a<2/2-2, a <z, < 2y < 3. Hence maxR(a,z) =
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max{ R(a, ), R(a,x2)}.
If ko < a < ki, we have h(a) > 0 and k(a) < 0. Thus a < x; < 3 < xs.
Hence max R(a, x) = max{R(a,a), R(a,3)}.

If hy < a < kg, we have h(a) > 0 and k(a) > 0. Thus a < x; < 29 < .
Hence max R(a, x) = max{R(a, ), R(a,x2)}.

If ho < a < hy, we have h(a) < 0 and k(a) > 0. Thus z; < a < x5 < .
Hence max R(a,x) = R(a, z3).

If @ < hy, we have 71 < 29 < o < 3. Hence max R(a,x) = R(a, ).

According to Lemma 2.4.10: hy < /2, we consider the following cases:
*If v/2a > 24/2—2, we have that max R(a, z) = R(a, «). Thus min max R(a,z) =

R(V2a, ).

1 ky < V20 < by, or @ < 22D,

If ﬁln(:zlgﬁi (3+2V2) <a< 2‘/13511121_1) and k < M,;, we have that

R(V2a, 8) < R(V2a, ). Thus mainmjx R(a,z) = R(V2a, a).

If a < ﬁln(zz;gﬁ: (34 2v2) and k < M; or k > M, we have

that R(v2a,3) > R(V2a,a). When a = ki, we can see that 5% > k
from Lemma 2.4.8, thus § = x2(k1). From Lemma 2.4.15 we have that
R(k, %) > R(ky,3), which means % < Bj according to Lemma 2.4.16.
Thus a < By, then R(ky,«) > R(ky,x2(k1)). Hence there is a solution S; in
[vV2a, k1] of R(Sy,a) = R(S1,3) and we have mainmjx R(a,z) = R(S1, ).

*If 20 < kg or V2a > Ky
If o > My, then according to Lemma 2.4.4, we can see that R(v/2a, o) >
R(V2a, x3). Which implies min max R(a, r) = R(V2a, a).

If & < My (in this case we cannot have the condition v2a > k; be-

cause from Lemma 2.4.14, we have k; > ki (1) = v/3 — 1 and \/\?:/%1 > My).
When a = ks, we have that § = x5 because of Lemma 2.4.8. If a < B,
using Lemma 2.4.16, we have R(ks,3) < R(ks,«). Thus there exists a

solution Sy of R(Sy, ) = R(S2,72) and minmax R(a,x) = R(Sy,«). If

a > By, then R(ky, () > R(ks,a). When a = k;, from Lemma 2.4.8, we
can see that % > k;. Thus 8 = w2(k1). From Lemma 2.4.15 we have that
R(k, %) > R(ky,3), which means % < Bj according to Lemma 2.4.16.
Thus a < By, then R(ky,«) > R(ky,x2(k1)). Hence there is a solution S; in

[V2a, k1] of R(Sy,a) = R(S1,3) and we have minmax R(a,z) = R(S), ).

96



Combining all of the cases above, we have that

If « < 8 <1 we have the following disjoint cases

*Ifa < min{v/2v2 -2, 1 ln(%(?)—l—%/@), 2\/24(1'?51_1)}, nzin max R(a,x) =
R(Sy, ).

According to Lemma 2.4.7, we have that 2‘/13511121_1) <V2V2 — 2, thus: If

o < min{ 77 In(EY2HL (3 4 2v/2)), 2E 1)y minmax R(a,z) = R(Sy, ).

If o < \/1—(\/4—(1—\/1—52)2—1)2, B < V2v2—-2and a <
min{%,Bg,MO} minmax R(a,x) = R(S, a).

According to Lemma 2.4.15, 2.4.16 and 2.4.18, we can see that By < %
and By < \/1 — (\/4 — (1 —+/1—?)2 —1)2. Moreover from Lemma 2.4.14,

we have that £ < 20V — 3521934495 < My thus: If § < /22 2
and a < By minmax R(a,x) = R(Ss, a).

*Ifa < \/1—(\/4—(1—\/1—52)2—1)2,5g V22 =2 and B, <

a < min{kT?,MO} minmaXR(a x) = R(S1, a).

From Lemma 2.4.14, we have that kQ < ka(V2v2=2) 2\/_ 2 — 0.3521934495 < My

thus: If 3 < V2v2 —2and B, < « <m1n{\/§,\/1— \/4 1—62) —1)%}
minmax R(a,z) = R(S, ).

“I66 > V2v2 - 2and a < min{ %, By, M, \/1 S (- (- VTR 1)

minmax R(a,z) = R(Sy, ).

*Ifﬁ>\/2\/5—2and32§Oz<min{%,MO,\/ \/4 1_52) 1)2}
minmax R(a,z) = R(S1, ).
* Otherwise min max R(a, z) = R(v2a, a).

a

Case 2: a <1<

o > /2 — 2v/2, thenfora > V/2v2 — 2, V22— 2> a > hyand a <
hy we have that max R(a, z) = R(a, ). Thus minmax R(a,z) = R(v2a, ).

o < V2 — 2V2.
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We can see that in this case k(a) > 0 for all positive a.

For a > 2v/2 — 2 max R(a,z) = R(a, ).

Fora§2\/§—2<1<ﬁ. Ifa< hy, 21 < 29 < a < 3. Thus
max R(a,z) = R(a,«a). If a > hy, we have that o < x; < 25 < 3, then
max R(a,r) = max{R(a, a), R(a, xs)}.

We consider two cases:

If « > My, using Lemma 2.4.4, we have that minmax R(a, z) = R(v/2a, a).

If @« < My, using Lemmas 2.4.4, 2.4.11, the equation R(a,«) = R(a, )
has a solution S5 in [\/ia, 22 — 2] and minmax R(a,x) = R(Ss, a).

Case 3: 1 <a<f

fa > /2 —2v/2, thenfora > V/2v2 —2,V/2v2—-2>a > hyand a <
hs we have that max R(a,z) = R(a,a). Thus minmax R(a, r) = R(v2a, a).

o < V2 — 2V2.

We can see that in this case k(a) > 0 and h(a) > 0 for all postive a.
For a > 2v/2 — 2 max R(a,z) = R(a, a).

For a < 2v2—-2 <1 < o® < 3. Thus 21 < 22 < a < f3, then

max R(a,z) = R(a, ).

T

minmax p = exp(—v/a@)(3 — 2v2)

a w

when (w,a) is (a?5%, V2a).
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Chapter 3

Optimized Schwarz Waveform
Relaxation Methods For The
Two Dimensional Heat
Equation

3.1 Optimized Schwarz Waveform Relaxation
Methods For The Two Dimensional Heat
Equation With Robin Transmission Con-
dition

In this section, we are interested in the following heat equation:

{ Lu = 0 — v0yu — voyu = f in Qx (0,7), (3.1.1)
u(z,0) = up(x) in Q,
We consider the following algorithm
Luk = f in (—oo, L) x R x (0,7,
{ uk(x,y,0) = ug(z,y) in (—oo, L) X R,
(0x + Z)uN(L,.,.) = (0s + %)US_I(L, . inRx(0,7), ( |
3.1.2
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Lub = f in (0,00) x R x (0,7,

uz(,y,0) = uo(x, y) in (0,00) xR,
(0: = $)uz(0,.,.) = (% — $)uy 7' (0,.,.)  in R x (0,7).

We consider the algorithm (3.1.2) and put ef = uf —u, e§ = u5 —u where

u is the solution of the equation (3.1.1), then we have that

((Leh =0 in (—oo, L) x R x (0,7,
ek(x,y,0) =0 in (—oo, L) X R,
[ O+ gp)ei(Ly ) = (0o + F)es (L, ) = hit iR x(0,T),
(3.1.3)
( Lk =0 in (0,00) x R x (0,7,
ek (z,y,0) =0 in (0,00) x R,
[ (Ox = £)e5(0,.,.) = (0 = £)e1™'(0,,.) =hg' InRx (0,T).

Taking the Fourier transform on the equation on e} in (3.1.3), we have
that

—vOpFer* (2, k,w) + (iw+ vk Fe*(z, k,w) =0 in (0,00) x R,
(0 — £)Fer (L, k,w) = Fh in R x (0, 7).

Thus

Fert (e k. w) = Crexp(y] = + k) + Choxp(—y /= + k2a),
v v
where Re(y/% + k?) > 0.

Since x € (—oo, L) and Fek(x,.,.) € L*(R?), we can deduce that Cy = 0.

Then
i w
Se1"(x, k,w) = Cy exp( ~ + k2x).

Combine this equation with the boundary condition, we have that:

r k — E 2 P E 27 k—1
(az+2y)361 (L, k,w) 01(\/ » +k —|—2y)exp(v » +k2L) = Sh" .
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Thus

Feil"(x, k,w) = (1/ % + k2 + ;;V)_I(Shlz_l) exp(4/ % + k2(x — L)).

Similarly, we have that

Fea (o w) = (1 ==+ k2 = )7 (§ho' ) exp(—y | = + k).

Thus

2w TR —
(§ha, §hi') = 2\/%+§exp(—\/m P

Then we define the convergence factor as

2 k2 2 __ L
plwp, ) = |2 R Y 2P (o + k2022 2 (3.1.4)
2vViwy + k20?2 4+ p v

4 2,2 4 44 2_9 2 2,2 4 A4 4 9k2y2 L
_ WVWT R RV A D PV2VPV? 4 KT+ 2k exp(—\/2\/w21/2+k4y4+2k2y2—),
ANV T KA+ p2 4 20V 2V 02 + Kt + 2k202 v

where w € [37, %7], k € (57, 7, ]-
We need to solve the problem

min max plw,p, k).
PER we(5F, 7L kE 7y Ry

In fact, we only need to solve the problem

min max plw.p.k) = min|[p(w.p. K)o (3.L.5)
p=

P20 wel g, kel 2]
Put w) = 55, wo = %5, k1 = 5y, ko =
We have the following Theorems for the overlapping case

Theorem 3.1.1. Suppose that L is small.
When wyL is not large (or wy «~~ CL™', C' > 0,6 > 0) and koL is not small
(o1 ky ~ C'671F C" > 0,0 > 0) we have

. 5 1 _1
min max w,p, k) ~1—-21X2w,*
p>0 we[wl,wg],ke[kl,kg] p( T ) 1 20
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where the asymptotic expansions are due to the scale of L.
And there is only one value of p, let say p., which is the solution of this
min-max problem

,\)|,_.

1
1
Wy

p u'\24X

where X1 = \/2 wiv? + kvt + 2k302.
When wyL? is not small (or wy «» CL™*%.C,§ > 0) and koL is not small
(o1 kg« C'671F O > 0,8 > 0), we have

LX
min max p(w,p, k) 1 — (3272 )%

P20 welwy,wa] k€ [k1,k2] v
where the asymptotic expansions are due to the scale of L.
And there is only one value of p, let say p., which is the solution of this
min-max problem
2X2y
L

W=

ps o ( )>

where X1 = \/2 wiv? + kvt + 2k302.

Theorem 3.1.2. For Ax small enough
For Ay = C1Az, At = CyAx, L = C3Ax, we have

min max plw,p, k)
pZO we[wl,wg],ke[kl,kg]

1

_% 122 T 4 224 1 1
1 2(\/(2T)1/—|—(2Y)1/—|—2(2Y) Yim™ 1Az~ o

and there is only one value of p, let say p., which is the solution of the
min-max problem

min max plw,p, k) = max p(w, ps, k),

p=0 WG[ZT’At]ke[ZY’Ay we[ZT’At]ke[ZY’Ay

and p, has the form

P 25 [ (W2 + () 4 2 et A,
2T
For Ay = C1Az, At = CyAx?, L = C3Az, we have

min max p(w,p, k) «~
p>0 we[wl,wg],ke[kl,kg] T
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=1- M(W (5707 + (552) + 450" (G A,

and there is only one value of p, let say p., which is the solution of the
min-max problem

=
*

S
—~
—~

—

E

S~—
(Y]
[N}

+
—~
|
S
<
N
+
N
—~
SN—
(Y]
<
(Y]
S~—
—~
)
<
o
SN—
o

SN—

W=

>
H|
W=

Remark 3.1.1.
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The Convergence Factor rho

ormega K

Figure 3.1.1.

02

gag o

The Convergence Factor rho

ormega K

Figure 3.1.2.
Figure 3.1.1 is the graph of p with respect to w for some p. In the first cases

of the previous two theorems, we can prove that the solution p. of (3.1.5)
can be obtained by equilibrating on the edge k = k. the two points: the
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first boundary and the maximal point (with respect to (Wmin, kmin) and the

mazimum point (wa, kmin) of p) on the graph. In the second cases we > Winax,
we equilibrate the two boundaries to get p. (figure 3.1.2).

We have the following Theorem for the nonoverlapping case

Theorem 3.1.3. For Ax small enough, we have that
For Ay = C1Az, At = CyAx, we have

min max w,p, k) =1—
P20 welwr,wa),ke[k1,k2] p( b )

2(2\/(%)%2 + (%)@4 (I )22) i

2/m205 %2 + O A + 2m207 02
« (min{v2L, \/ VT, - L ))IAx? + O(Ax).
v Vr2C 2  miCT A

and there is only one value of p, let say p., which is the solution of the
min-max problem

Px
T T T 1
2(2 2,2 44 49 2,21
(2 (e + (Gt + 2 )

C \/2 w205 %2 + miCT WA + 2202 L

x (min{v2—2, Ve, . ! ) 2AxT2.
v V2072  miCT A

For Ay = C1 Az, At = CoAz?, we have

min max plw,p, k) =1—
>0 welwr,wa],k€[k1,k2]

2(2\/(27;)2,/2 + (%)4,/2 _|_2(1)2V2)%><

c, 20, \/2\/7T2C’2_21/2 + miCT A + 2m2C 2
X (mln{ﬁ_> >
TV

1Az +O(Ax ,
v Vm2CTH2  miCT A 2 (8e)

and there is only one value of p, let say p., which is the solution of the
min-max problem

Px
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X (min{\/gﬁ,
v

2(2\/( T

20, \/2\/7T2C’2_21/2 + O A + 21207202

2T

P+ () + 2(55) )

)
vm

V202w e
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Remark 3.1.2.
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Figure 3.1.3
Figure 3.1.3 is the graph of p with respect to w for some p. We equilibrate
the two of the four corners to get the optimal parameters.

3.1.1 Proof of the Theorems in the Overlapping Case
Putting

h'L(p) = max ,O(w,p, k) = ||p(w>p> L)||OO>

welE, ) kel ]

we call that (p*, h(p*)) is a strictly local minimum of hy(p) iff there exists
e positive such that for all p in (p* — €, p* + €), we have hp(p) < hr(p*).
In order to prove those theorems, we need the following lemma:

Lemma 3.1.1. If (p*, hr(p*)) is a strictly local minimum of hy(p), then it
is the global minimum of hy(p) and p* is the unique solution of (3.1.5).
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Proof of Lemma 3.1.1
We denote D(z0,0) = {z € C,[Z22[ < d}, and DE = {p|h.(p) < 6}.
We first prove that D} is a convex set. Let p; and py be two elements of

D¥ we have that

2 ; k2 2
VY RV =Py oo § R =)o
2Viwr + k2% + py

Thus Vw € [wi,ws], k € [k1, k2],

2Viwy + k202 — py
exp(—Viwyr + k22=2)| < V6.
i 4y 2l

Hence

Vw?u? + k:41/4 + k202 L 2v/iwv + k202 —
exp(— =) | < Ve,
v 2viwr + k20 + py

Therefore

|2\/z'wl/+k:2 2—p1 5ex Vw 1/2—|—k:41/4—|—k:21/2L
2viwy + k22 + p1 v

ThlS means p; c D(2\/ZWV _I_ ka2y2’ \/gexp(\/\/w2y2+k24y4+k2y2 %))

Accordlng to Lemma 2.1 in [1], D(zp, ) is the interior of the circle with

center at 1+52 2o and radius = 52| |z0| and the exterior otherwise.

\/\/w 1/2+k41/4+k21/2 L))

=)

Similarly, we have also py € D(2V/iwr + k22, 1/6 exp(
If \/gexp(\/“ﬂ”uk;”“k%ﬂ%)) < 1, using Lemma 2.1 in [1], we can

see that D(2v/iw + k2, \/gexp(\/V“’2”2Jrk;”‘“r'@”2 LY) is convex. Thus for 6 €
[0, 1], we have Op; + (1 — 0)py € DE.

If \/gexp(%\/ w?v? —|—k:41/4—|—k:21/2%) > 1, using Lemma 2.1 in [1], we
can see that for p;, p» > 0, 6 € [0, 1], we have

w?v? 4+ kvt 4+ k202 L

=)

2 v

Opr + (1 — 0)py € D(2Viwr + k212, \/gexp(\/
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Thus for § € [0, 1], we have 0p; + (1 — 0)py € DE.

Therefore D¥ is convex.

Suppose that (p*, hz(p*)) is a strictly local minimum of hy(p), we prove
that it is a unique global minimum of A (p). Suppose the contrary that there
exists (p**, hy(p™)) such that hp(p*) > hr(p™). Then there exists a convex
neighborhood U of p*, such that V s € U, s # p* and hr(s) > hy(p*). Since
P e DﬁL(p**) C D,LLL(p*),We have that V0 € [0,1], 6p* + (1 — 0)p™ € D,LLL(p*).
For # small enough, we have that 0p** + (1 — 0)p* € U. This is a contradic-
tion.

Thus p* is the unique solution of (3.1.5).
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Proof of Theorem 3.1.1

In order to solve the problem (3.1.5), we will try to find one strictly lo-
cal minimum of MaxX,e(w, w)] kefk1, ko] AW, P, k), then according to Lemma 3.1.1
this local minimum is also a global minimum.

We can put S = %; then all of the asumptions: wyL? not small, wy L3
small and koL not small are corrected for S in the place of L since v is a
constant.

Step 1: Finding maxXuew, ws] ket ko] AW, P, k) according to some partic-
ular values of p.

We consider the problem of finding the maximum for p. According to the
Maximum Principle, the maximum values of p attains on the boundary of
the domain. Thus, we only need to consider the maximum problem on the
four edges.

Step 1.1: On the edge w = w;.

wiv? + kWt + p? — Qp\/Q wiv? + kvt + 2k212

4/ Wi + kWt + p? + Qp\/2\/w%1/2 + k44 4 2k2p2

L
X exp(—\/%/cu%l/2 + kvt + 2k20%—)
v
We put X = \/2\/w%1/2 + k*vt + 2k202 then

€ [\/2\/(4}%1/2 + kivt + 2k202 \/2 wiv? + kvt + 2k30%) = [ X, X

Then

X

plw,p, k) =

.f(X) = p(w>p> k) (X N ) N 4w%u2 (_XS)
p X2
We will consider the behavior of f instead of p.
We put a = 4w?v?, we have that
(X —p’+ %
f(X) = pw,p,k) = = exp(—X5)
(X + p) + X2



exp(—SX)
f(X) = (0T 2pX L X202 | o) (—SX® +25X%p* — 25X a — SX'p" —
—28X?p*a — Sa* + 4X% — 4X*p* — 12X?pa)
_ exp(—5X) 8 6 2
- WX X a)z(_SX + X°(2Sp* + 4p) —

—X*(2Sa + Sp* + 4p*) — X?(2Sp*a + 12pa) — Sa?).

We put Z = X2, then

7 € [24/wiv? + kvt 4+ 2kT02 ) 24 Jwiv? 4 kjuvd 4 2k50%) = [ Z., Z).

We denote
F(Z) = —-SZ*+ Z?(2Sp* +4p) — Z*(2Sa+ Sp* +4p®) — Z(2Sp*a+12pa) — Sa’.

In order to consider the sign of f/(X), we consider the sign of F.
Put Z = pK, we have that

F(Z) = —=S(pK)'+ (pK)*(2Sp* + 4p) — (pK)*(25a + Sp* + 4p*) —
—(pK)(2Sp*a + 12pa) — Sa?
= —SP*K*+2Sp° K + 4p* K? — 2aSp* K? — SpPK? — 4p° K* —
25p*ak — 12p*aK — Sa®.

We have that F'(Z) = 0 is equivalent to

S S 12 . Sa?
CSK 4 2SpK3+AK? —2a 2 K2~ SprK? —dpK?—2 oK — —ak — 2% = 0.
p? p p? p*

Suppose that p is large, we have
—SK* 4 (2Sp + 4)K? — Sp’ K* — 4pK* = 0.

Thus
—SK?+ (2Sp +4)K — Sp* — 4p = 0.

Hence
(K —p)(4—SK + Sp) =0.
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Therefore
K =p,
and

4
K=t
S

Suppose that Sp is small, then we have two solutions of F'(Z) =0

Zlmpz’
or 4 4
D 2 D
Loy o~ — “ =
? S+p S’

. 4p - .
since gp is the dominated term.

We have proved that F'(Z) = 0 has two positive solutions. We can see that
there are only two cases for the equation F'(Z) = 0: it has two solutions or it
has four solutions. If F'(Z) = 0 has four solution, using Viete’s Theorem, we
can see that F'(Z) = 0 has two positive solutions and two negative solutions.
So, in any cases, we only need to consider the two positive solutions Z; and
Zy. Suppose that Zy € [Z,, Z..] or \/% is dominated by ks, from the sign of
F'| we can conclude that

max p(wi, p, k) = max{p(wy, p, k1), p(wi, p, ke)},
kelky, k2]
where X (ke) v 2,/Z.
Step 1.2: On the edge k = ko, since ks S is not small:

p(w>p> k‘i2) S eXp(_\/2\/ w2y2 + k§7/4 + 2]{?%1/25)

< exp(—2kovS) < 1.

Therefore, the global minimum cannot be reached on this edge.

Step 1.3: On the edges w = w and k = k; we separate the problem into
two cases

Case 1 of Step 1.3: wyS? is not small
* On the edge k = ki:

dy/w2? + kvt + p? — Qp\/Q w22 + kvt + 2kIv?
p(w>p> kl) = X
4/ W2 + kvt + p? + Qp\/Q w2? + kvt + 2k3v?
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X exp(—\/Q\/qul/zi—l—k:ill/4 + 2k3128).
We put M = \/2\/m—l— 2k312, then
M e [\/2 W2 + kivt + 2k32, \/2\/w§1/2 + kivt 4 2k302) = [M,, M..].
Thus 2\/u121/27—|—k{11/4 = M? — 2k}

We have that

2M? — 4k2V% + p? — 2pM

M = k: =
g( ) p((‘U?p? 1) 2M2—4k%V2 +p2+2pM

exp(—MS).

Put b = —4k}v?, we get

2M? + b+ p* — 2pM
M) = k) = —MS).

We will consider the behavior of g instead of p.
We have

g (M) = exp(—SM)

(2M?2 + 2pM + p? + b)
We put

G(M) = —4SM* + M?(8p — 4Sb) — 4p* — 4pb — Sp* — 2Sp*b — Sb?.
We have that

N = (4p —25b)*> — 4S(4p® + 4pb + Sp* + 25p°b + Sb?)
= 16p* — 16pSb + 45%b* — 16Sp> — 16pSb — 45?p* — 85%p*b — 4521°.

(8pM? — 4p® — 4pb — 4SM* — 4SM?b — Sp* — 25p*b — Sb?).

Here, we put an asumption on the largest solution of G(M) = 0

dp — 2 A/ /
Mlz\/p ig_l—\/_m i—g<\/2\/w§1/2—|—kf1/4—|—2k%1/2:]\/[**,

since wyS? is not small and pS is small.
From this we can see the sign of G and the behavior of ¢, and we can
conclude that

max p(w>p> kl) = {p(w1>p7 kl)ap(whpa kl)}a

w€[w1,ws)
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where M (w,) « \/%’.

* On the edge w = wy, since wyS? is not small

plwz,p. k) < eXp(—\/2 wiv? + kvt + 2k2028)
< exp(—v2worS) < 1.

Thus the global maximum cannot be attained on this edge, which means

max p(w>p7 k) = max{p(w1>p7 kl)a p(w1>p7 ke), p(whp7 kl)}

AL el

|

we|

)

S
>

Case 2 of Step 1.3: w9S is not large
* On the edge k = k1, we use exactly the same argument as in the previous
case but with the following asumption

dp — 2 N /
Mlz\/p ig_l—\/_m j—g>\/2\/w§1/2—|—k:f1/4—|—2k%1/2:]\/[**.

From this we can see the sign of G' and the behavior of ¢, and we can
conclude that

max p(w>p7 kl) = {p(w1>p7 k1)>p(w2>p7 kl)}

w€[w1,ws)

* On the edge w = ws

dy/w2? + kvt + p? — 2p\/2\/w21/2 + kvt + 2k3v?
X
4/ wv? + kvt + p? + 2p\/2 w2v? + kvt + 2k? 12

X exp(—\/2\/w21/2 + kivt 4 2k30289).

Put T = \/2 wiv? + kvt + 2k302.

p(w>p7 kl) =

Then o2
(T —p)* + =7

f(T) = p(w,p, k) = 7 p(=T9).
(T +p)* + —F—
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We put ¢ = 4w3v?, we have that

(T—-pP’+ 7
MT) = p(w, p, k) = mexp( Ts).
T2
Thus
-ST
W(T) = exp(=5T) (—ST® + 2ST%p* — 2ST4c — ST*p* — 25T*p?c —

(T4 + 2pT3 + T2p2 + 0)2
—Sc? + 4TS — AT*p® — 127%pc)
exp(—ST) g 5 ) . . 5
= T+ 2915 £ T2 + )2 (=ST® +T°(2Sp” + 4p) — T*(2Sc + Lp* + 4p°) —

—T?(2Sp’c + 12pc) — Sc?).

Weput U = T2, then U € [2y/wiv? + kivt 4 2k31% 2\ /w?V? + kvt + 2k3517]
= [Us, Uss].
We denote
H(U) = —=SU*4U?3(2Sp* +4p) —U?(2Sc+ Sp* +4p*) — U (2Sp*c+12pc) — Sc2.
Put U = pV, we have that
H(U) = —Sp*V*428p°V3+4p* V3 —-2Scp? V2 — SpS V2 —4p° V2 —2SpicV —12p*cV — Sc2.

Hence H(U) = 0 means

25 Se?
— SV 25pVE 44V - 252 LGPV gpV 25V — 12V — 2 —,
P’ p P p
We put V = %,
Wis Wis Wi 285¢ Wy oW W qeW, e W S
~S(g ) + 28 ) + G - () - SP () — apl(g P - 285(5) — 125(g) - 0
Hence
S 53 52 254
WA 2p ST AT 2 . 2 WS ap SR — 267W 12Cp—W—Cp—4:0.

Suppose that pS and S are small, we have that
W 4W3 = 0.
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Hence U - %p. We can see form this way of calculating U that U is the
largest solution of H(U) = 0.

There are two cases for the equation H(U) = 0. If H(U) = 0 has four
solutions, using the Viete Theorem, we can see that two of them are negative
and the others are positive. If H(U) = 0 has two solutions, they are all
positive. From this remark, we can deduce the sign of H and the fact that

max p(bdg,p, k) = max{p(w2>p7 kfl),ﬂ(bdg,p, kf)}
ke[kl,kg]

Where T'(kyg) -~ 2,/Z.
Thus

max p(bdg,p, k) = max{p(wbp) k1)7 P(Wlal% k6)7 p(w2>p> k1)7 p(bdg,p, kf)}

we[wl,wg],ke[kl,kg]

Step 2: Using the results in Step 1, we will find a striclty minimum of
MaXy,efwy,wsl,kek1,k2] p(w> b, k)

In this step, we have two cases corresponding to the two cases in Step 1.

Case 1 of Step 2: w2S? is not small.

Firstly, we compute the assymptotical expansions of p(wy, p, k1), p(w1, p, ke)
and p(wT>p7 kl)

Put X; = \/2 wiv? + kivt + 2k212) we have that

( k‘) (Xl—p)z‘l—xif ( XS)
w1, P, = o eXp(—
pW1, s K1 (X1+p)2+X—1z % 1
X4~ 2pX?P 4 X2 4 a
= - X35
Xi 1 2pX3 1 p2X2 +a exp(=X15)
X4 -2 _ 2 —1X3 X2 —2
= ip 2 - 1 é_l— 12+ap 2exp(—XlS)
Xip2+2p7 1 X7 + X7 +ap~
X2 —2_2 —lX 1 —2X—2
_ 1P 14 1+ 1+ap 1_2 exp(—X,S5)
X2p=2+ 201X +1+ap2X]
= (1- 4Xp~ '+ O(p‘z)) exp(—X1.5)
= (1-4X1p ' 4+ 0(p )1 - X15+ 0(5?))

“w 11— 4X1p_1.
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And

p(whp7 kl) =

We have also

2M (w, )2 2 — M (w,
(wr)*+b+p°—2p (w)exp(_MS)

2M(wr)2 Fb+p2+ 2pM(w,)

2 exp(—+/2pS)

1+%+%5+—V2;’5

1—2/2pS.

(Xe _p)2_|_ )?2
wi, P, ke) = < exp(—X,.S
p( 1, D ) (Xe—l-p)z—l-)?g p( )
CVE-p’+ 4 m
= p T exp(—24/%5)
2vs+p)?+ 4 S
S
LA+ L D
= = exp(—2 ES)
24/ E+pP+ L
P
1—\/p5—|—%+%
N 1+\/p5+%+1%e}{p(_2 p8)
P
w1 —44/pS.
Thus
||p(w>p> k)HOO = max{p(w1>p7 kl)ap(whpa kl)} (316)

Secondly, We find the solution p, of the following equation approximately

We solve

We have

p(w1>p7 kl) = p(whp7 kl)
4Xp;t =24/2p.S.
2X7p.% = p.S.
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Thus
22

1
5
Next, we will check the conditions that we have used to archive p..
Firstly, we can easily see that p.S is small and \/% < ks.
Secondly, we will verify the condition

4dp, — 25b+ VA 2D
Mlz\/ 15 m’/s <\/2\/w§+k:f+2k:§.

Which is equivalent to

(255)3
SS < 2y/w3 + ki + 2k3,
2
25XF S5 < 2y/wd + ki + 22,

This is right because (.4}25% is not small.
Finally, we prove that this p, is a strictly local minimum of p.
We have that

p*m(

or

4exp(—L\/2\/w%1/2 + kivt + 2]{:%1/2)\/2\/w%1/2 + kvt + 2k 02
X
(4\/wiv? + kvt + p? + Qp\/2 wiv? + kvt + 2k312)?
X(p? — 4y Jwiv? + kivt).

For p closed to p, %p(wl,p, ki) > 0.

4exp(—L\/2\/wT21/2 + kivt + 2k%y2)\/2\/w31/2 + kvt + 2k30?
X

(4/ W22 + kivt + p? + Qp\/2 w2v? + kvt + 2k3v?)?

X 85;; (p* — 44/ w22 + kivh).

Since 88—“;; “ 1/‘1(2X12)‘%, then for p closed to p, a%p(wf,p, ki) < 0.
For p closed to ps«, p > ps«, we have that max{p(wy, p, k1), p(wr, p, k1)} =

0
8_pp(w1’p’ k‘l) =

0
a_pp(wT7p7 kl) =
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plwi,p, k1) > plwi, ps, k1) = p(wr, ps, k1). And, for p closed to p., p > ps,
we have that max{p(w1,p, k1), p(wr,p, k1)} = plwr,p, k1) > plwi, ps, k1) =
p(wh D, kl)

Hence the value p,, where p(wy, ps, k1) = p(wr, D, k1) is a strictly local
minimum of MaxXye(w, wol ket ko] AW, P, k).

And
4X
max p(w>p>k) o 1_—1
welT A7l keEly 3y p
A
= — ]
20

= 1-—(325X;)%.

Hence, when w»S? is not small and kS is not small, we have

2X2 .
A 3
p* ( S ) )

and

WI»—‘

min max plw,p, k) ~1—(325X,)3,

where X; = \/2\/% + ki + 2k2.
Case 2 of Step 2: wsS is not large.
Similar as in Case 1 of Step 2, we have that

p((UQ,p,kf) w1 _4\/

p(w2>p> kl) b \\;_—p \/ES

P(W1>P>k1) e 1—4X1P
plwi,p, ke) 1 —44/pS.

Using the same argument as in the previous case, we have that our solu-
tion p, is the solution of the following system of asymptotic equations

p(bdg,p, kl) = p(whpa kl)

We have ) )
Dy N 28 Xlwzz.
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We can verify that this p, with the conditions that we have assumed.
Hence, when w»S? small, and kS not small, we have

and

where X = \/2\/w%1/2 + kvt + 2k32.
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Proof of Theorem 3.1.2
Case 1: Ay = C1Az, At = CoAx, L = C5Ax.
Similar as in the previous theorem, we get

3

Px 21(\/(%)27/2 + (l)47/4 + 2(1)21/2)%7T%A:17_i

Hence

min max plw,p, k) =
P20 wel & kel E 2]

1- ﬁM (G722 + ()Wt + 25 W) e kA,
Case 2: Ay = C1Ax, At = Cy,Az?, L = C3Ax.

We put S = (Csv1)Aux.

Similar as in the proof of Theorem 3.1.1, we find that

e o (4 /wiv? + kvt + 41{:%1/2)(031/_1)_1)

Wl
W=

Azx~3,

3.1.2 Proof of the Theorems in the Nonoverlapping
Case
Proof of Theorem 3.1.3
Step 1: Similar as in the proof of Theorems 3.1.1 and 3.1.2, we will first
consider the problem of finding max,cu, w.]kefki ko) p and we only consider
this problem on the four edges.

Step 1.1:
On the edge w = wy.

dy/wiv? + kvt + p? — Zp\/2\/w%1/2 + kivA 4 2k2p2
4/W?P? + Kt + p? + Qp\/2 W2 + kvt + 2k20?
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We put X = \/2\/w%1/2 + k*vt + 2k202 then
X € [\/2\ [WPv? + kvt + 2k302, \/2\/w%1/2 + kivt 4 2k302) = [ X, X

Then

w2V2
(X —p)2 + %

(X +p)+ 55
We will consider the behavior of f instead of p.

4X2p( Xt — p? X2 — 120207%)
(X4 +2pX3 + X2p? + dwiv?)?

f(X) =p(w,p, k) =

f1(X) =

Since the equation X* — p?X? — 12wf1?> = 0 has one positive solution
20 /oA 4822 . 244/ pt+48w3p2?
which is %, then in both cases X, > \/ % or Xy <
21/t A8w202
%, we always have that maxx¢(x, x,.] f(X) = max{f(X,), f(Xu)}.

2
Thus

max p(wlap7 k) = max{p(w1>p7 k1)>p(w1>p7 kQ)}
ke(k,k2]

Step 1.2: On the edge w = wy. Similarly, we also have that

max p(w%p? k) = max{p(w2>p7 k1)>p(w2>p7 kQ)}
ke(k1,k2]

Step 1.3: On the edge k = k;. We have that

dy/w2? + kvt + p? — 2p\/2 w22 + kivt + 2k3v?
/w2 + kvt + p? + Qp\/Z\/wzyz + kivt + 2k3v?
We put M = \/2\/w21/2 + kivt + 2k?12) then

M e [\/2\/w%1/2 + kivt + 2k202, \/2\/w§1ﬁ + kfvt + 28202 = [M., M..].

Thus 2/w?v? + kjvt = M? — 2k{12.
We have that

g(M) = p(w,p, k1) =

p(w>p7 kl) =

2M? — Ak21% + p* — 2pM
2M? — Ak2v? + p? + 2pM
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g/(M) = 2M? — p? + 4k3?
(2M? — 4k212% + p? + 2pM )2’

In this case, we have also that

max p(w>p7 kl) = max{p(w1>p7 k‘1),p(wz,p, kl)}

W€ [w1,ws)

Step 1.4: On the edge k = ks, we have also that

max p(w>p7 k2) = max{p(w17p7 kQ)ap(w%p) kQ)}

W€ [w1,ws)

Combining those four cases, we have that

max p(w>p7 k:) = max{p(w17p7 kl)a p(bdg,p, kl)) p(wlap7 k2)7 p(w27p7 kQ)}
w€[w1,ws], k€ [k1,k2]

Suppose that p = C,A™"7 where 0 < 7, < %, we will consider the asymp-
totic behavior of the four points p(wy, p, k1), p(wa, p, k1), p(w1, p, k2), p(we, p, k2).

Step 2: We equilibrate the equations to get the solutions.

We will consider the following two cases:

Case 1: Ay = C1 Az and At = CoAx?

We have that

4/ wi? + kvt + p? — 2p\/2\/w%1/2 + kvt + 2k3v?
dy/Wiv? + kvt + p? + 2]9\/2\/(4}%1/2 + kvt + 2k3v?
Ay wiv? + kjvt + CZ Az~ — 2C, Az \/2\/w%1/2 + kivt + 2k20?

4y/wiv? + kvt 4+ C2Ax=2w 4 20, A= \/2 wiv? + kivt + 2k302
= [4y/wir? + EAC P AP + 1 — 20, Ax \/2\/w%1/2 + kvt + 2k30?] x
X [4yJwiv? + k{rtCo 2 Ac®P + 14 20, Ax \/2 wiv? + kvt + 2k3v2) !
= 1- 40;1Aa?7p\/2\/w%l/2 + kvt + 2k202 + O(Ax™?),

P(Whp» k‘l) =
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dy/wi? + kvt + p? — Zp\/Z\/wfyz + kvt + 2k30?
4y/wiv? + kvt + p? — Zp\/Z\/w%Iﬁ + kjvt + 2k202

= [4\/w%y2 + O Ar— vt + Co A —

P(Wbp» k‘z) =

—2C,Ax~" \/2\/w%1/2 + TACT Ar 4t 4 27202 Ar—?] x

X [4\/w%y2 + O Ar— vt + Co Az +

+2C, Az~ \/2\/w%1/2 + AT Ar—tvt 4 2m2C 2 Axr—202] !
C,Ch

= 1 -2 Az"" 4+ O(Az*"?P),
vm

dy/wiv? + kvt + p? — Zp\/Z\/wgyz + kvt + 2k3v?

4/ Wi + kvt + p? + Qp\/2 war? + kivt + 2k3v?

P(W2>p> k‘l) =

= [4\/7r202_2Ax—41/2 + kfvt + Co Az~ —

—2C, Az~ \/2\/%202_2Ax‘41/2 + kvt + 2k30?) X

X [4\/%202_2Ax—41/2 + kvt + C2 Az +

+2C,Ax™? \/2\/%202_2Ax—41/2 + kvt + 2k202) 7!

= 1220 Art w4 O(ARE ),

vTm
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and

dy/wiv? + kvt + p? — Zp\/Z\/wgyz + kvt + 2k3v2

4/ Wi + kvt + p? + Qp\/2 wav? + kvt + 2k3v?

P(W2>p> k‘z) =

= [/ 7202 Ax—12 + 7ACT Ax 404 + C?Ax= 2P —
2 1 P

—2C, Az~ \/2\/772022A:c41/2 + O AN + 2720 22 A2 X

X [4\/%202_2Ax—41/2 + O Ar— vt + CO AP +

+2C, Az~ \/2\/772022A:c41/2 + O AN 4 2020 22 A2

Cp\/2\/7720221/2 + 7T4Cf4l/4 + ZWQCfQVQ

= 1 Az'™ + O(Ax?~ 7).

\/WQC;2V2 + mi O

Using Lemma 3.1.1 and the same argument as in the previous section, we

will try to find a strictly local minimum p, by equilibrating these asymptotic
expansions. First, we can equilibrate the orders v, and 1 —, to get v, = %,

then we can equilibrate the coefficients

/ NG NG
4020_1\/2 wiv? + kvt + 2k320% = C, m1n{27r—;, QW—i,

\/2\/7T2C’2_21/2 + miCT WA + 2m2C 2
V205202 4w v '

Thus

Cp = 2(2\/(%)2’/2 + (%)41/4 + 2(%)21/2)% X

0 20, \/2\/7T202_21/2 + O A + 2m2C 2
X (min{2—, , 1
TV v \V/m2Cy 2 iCT A
Using the same argument as in the previous section, we can see that this

p is the solution of our problem.
Then

N

min max plw,p, k) =
PER wewy,wa],kE[k1,k2] T
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= 202y + () 2 )

C, [20, \/2\/7T202_21/2 + O A + 2m2C A2
X (min{2—, - 1)

’ —2 —1
TV V2072 4+ T

[SIE

+ O(Ax).

Case 2: Ay = C1Ax and At = CyAx, similar as in the previous cases, we
have the following results

plwi,p, k1) = 1— 40;1A177P\/2\/w% + ki + 2k + O(Az™7),

p(w17p7 k2) =1 —2%A1’1_%’ _I_O(Al,2—2~/p)’

2
P(W2>P, k‘1) = 1- \/?C Agyr“fp —I—O(A 2— 2%)’

Cp\/2\/7r20221/2 + 7T4C'f41/4 + ZWQCfQVQ

Az'™ + O(Ax?~ 7).

plwe,p, ko) = 1-

\/WQC;2V2 + mi O

Using Lemma 3.1.1 and the same argument as in the previous section, we
will try to find a strictly local minimum p, by equilibrating these asymptotic
expansions. First, we can equilibrate the orders v, and 1 —, to get v, = %,
then we can equilibrate the coefficients

4C,; \/2\/(.«) v2 + kjvt +2k32 = C, mln{2—

\/\/71'20 I/2+7T4C 1/4—1-271'20 22

I3
\/71'202 v2+ Oy 44

Thus
Cp = 224/ (o) 212 + (o) 10+ 2( ) 21)E
P oT 2y 2y
2/ 720522 + w0 A 4 2m2C %2
><(mln{2ﬁ \/ v R

2 - 1
v V202 + miCT
Using the same argument as in the previous section, we can see that this

p is the solution of our problem.
Then
min max w,p, k)=
pER we[wl,wg],ke[kl,kg] p( p )
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22y x

= 202y + ()4

Cy \/2\/7T202_21/2 + O A + 2m2C %02
oSt
x (min{2—, N T

}ZAzT + O(Ax).
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3.2 Optimized Schwarz Waveform Relaxation
Methods For The Two Dimensional Heat
Equation With Ventcell Transmission Con-
dition

In this section, we are interested in the following heat equation:

Lu = 0w — v0yu — voyu=f in Qx (0,7),
(3.2.1)
u(x,0) = ug(x) in €,
We consider the following algorithm
Lulb = f in (—oo, L) x R x (0,7,
wh(2,9,0) = uo(, y) in (00, L) x R, (3.2.2)

Bruh(L,.,.)=Bub*(L,.,.) inRx(0,T),

Lub = f in (0,00) x R x (0,7,
uz(z,y,0) = uo(z,y) in (0,00) x R,
Boub(0,.,.) = Boub1(0,.,.) in R x (0,T),

where .
B, =0,+—6,

2v

1
By, =0, — —6,

2v

S =p+4qu(0, — vA,).

Using the same Fourier technique as in the previous section, we can define
the convergence factor as

2Viwy + k202 — p — qliwv + k*?) , L. ,
w,p, k) = exp(—Viwr + k2v2—
Pl poK) |2\/iw1/—|—k:21/2 +p + qliwy + k2v?) p( V)|
(3.2.3)
= &p&
P2
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where
p1 = 4V w22 + kvt + p? + (WP + B 4 2pgkti?

—2(p+ ql{:zyz)\/Q\/ w?v? + kvt + 2k20% — 2qw1/\/2\/ w?v? + kvt — 2k%02,
P2 = 4V w22 + kvt + p? + AW+ K 4 2pgkti?

+2(p + ql{:zyz)\/Q\/ w?v? + kvt + 2k20% + quy\/Q w?v? + kvt — 2k202

L
p3 = exp(—\/Q w2? + kvt + 2]{:21/2;).

We need to consider the following min-max problem:

min max plw, k,p,q).
pvqeR ke [kmzn 7kmaz]7we [Wminywmaz]

Which is equivalent to the following min-max problem:

min max plw, k,p,q).

pquo ke [kmzn 7kmaz] Wwe [Wminywmaz]

We have the following Theorems

Theorem 3.2.1. When k.. L is not small and wyae L is not small and not
large we have

1
min max plw,k,p,q) ~1— Q%X%m([/y_l)%’

pquo we [Wminywmaz]yke [kminykmaz]

where the asymptotic expansions are due to the scale of L.
And there is only one value of (p, q), let say (p«, qs), which is the solution
of the equation

min max p(w> k>p7 q) = max p(w> k>p*>q*)>

p,q>0 we [Wminywmaz] 7k€ [kminykmaz] we [Wminywmaz]yke [kminykmaz]

and p, has the form
_2
g~ 25 (v )5 X T

and .
_1 —1\—L1 -3
D+« 2 S(LV ) stzzn
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where X, pin = \/2\/w,2nm1/2 + kot 4 2k

min mzn

When kyar L is not small and wye:L? is not small we have

min max w,k,p,q) ~1—4X> (Lv™! %,
p,q>0 We[wminywmaz]yke[kminykmaz] p( p ) mln( )
where the asymptotic expansions are due to the scale of L.
And there is only one value of (p, q), let say (p«, qs), which is the solution
of the equation

min max p(w> k>p7 q) = max p(w> k>p*>q*)>

pquo we [Wminywmaz] 7k€ [kminykmaz] we [Wminywmaz]yke [kminykmaz]

and p, has the form
2L ) EXCE
Therefore
poo (L) HX L,

where X pin = \/ 2 \/ w2 v2+ kLo vt 2k2 . 12

Using this theorem, we can have the following results for the overlapping
case

Theorem 3.2.2. If Ay = C1 Az, At = CyAzx and L = C3Ax we have

min max plw,k,p,q) ~1— 22 X5 (Ll/_l)%.

min
p,q>0 we [Wminywmaz]yke [kminykmaz]

And there is only one value of (p, q), let say (p«, qs), which is the solution
of this min-max problem

_2
g~ 25 (L Y)3X, 7,

and .
_1 _1\—L =
Psx 275 (LV ) 5X7f@m

where Xmin = \/2\/ 2 ov2 4+ kLt 4 2k2

min mzn

If Ay = C1Ax, At = CoAx? and L = CsAx we have

=

min max plw,k,p,q) ~ 1 — X3 (Lv~h)s.

min
p,q>0 we [Wminywmaz] 7k€ [kminykmaz]
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And there is only one value of (p, q), let say (p«, qs), which is the solution
of this min-max problem
3 _2
G 2(Lv H5X 3.
Therefore
—1y—1 2
pe o (L™ ) 75X

man*

whefr’e szn — \/2\/“172an2 _l_ k;lniny4 _l_ 2]{,‘72)%'”]/2.

Remark 3.2.1.
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Figure 3.2.2.
Figures 3.2.1 and 3.2.2 are the graphs of p with respect to w for some (p,q).
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In the first cases of the previous two theorems, we can prove that the solution
(s, q«) of (3.2.3) can be obtained by equilibrating on the edge k = kyn the
three points: the first boundary and the two mazimal points (with respect
t0 (Wmin, kmin) and the maximum point (wa, kmin), (W4, kmin) of p) on the
graph. In the second cases wo > Wmae, we equilibrate the two boundaries and
(wa, kmin) to get (Px, qs).

We have the following Theorem for the nonoverlapping case

Theorem 3.2.3. For Ax small enough
For At = C1Axz?, Ay = CyAx, we have

_3 mv 11 1
min max w, k ~1-21X T8 ATAx
p,q>0 We[wminywmaz]yke[kminykmaz] p( T p’ ) mm( 02 ) ’
where
A=
max \/2 \/(")numcy2 + k?naxy4 + 2k12naxy + wmaxl/\/2 \/(")7naacy2 + k?naac - 2k72nax
min{v/2,

(w?naxVQ + kilnax )\/ WmazxV

vi+2k2 . 12, There is only one value of

and Xpin = \/2\/ 2l + kL

(p,q), let say (p«,qs«), which is the solution of this min-maz problem
Px = 24X7¢Lm(w7nary) A 4 = 24X7§Lm(gy) A_ZA:E 4
1
and 1 -1 3 .3 1 ,—-1 MV _3 .3, 3
x = QZXmeiL(wmam)_EAZ = 21men(6)_§AZAzz‘
1
For At = ChAzx, Ay = CyAx, we have
unz 1 1
i k w1-—4X: T1Axt
1;212% we[wminywmﬁl]?‘k}é[kminykmaz] p(w’ ’p’ q) mln(02) v

There is only one value of (p,q), let say (p«, q«), which is the solution of this
min-max problem

X;)lv,zn maml/4 =1 _X}mn(ﬂ)%A[If—%
Co
Therefore
qx = 2)(_i k‘;u%ml/_% — 2X_i (E)_%A{L’%
mn mn 02
Remark 3.2.2.
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Figures 3.2.3 and 3.2.4 are the graphs of p with respect to w for some (p, q)
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for the nonoverlapping case. Similarly, the solution (ps«,q.) of (3.2.3) can
be obtained by equilibrating on the edge k = ky,in the three points: the first

boundary and the two mazimal points (figure 3.2.3) or the two boundaries
the maximal point (figure 3.2.4).
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3.2.1 Proof of the Theorems in the Overlapping Case
Putting

hL(p,Q) = . ‘;HaX P p(w,k‘,p,q) = ||p(w>k>paq)||007
we[ﬁ,m],ke[W,A—y]
we call that hrz(p*, ¢*) is a strictly local minimum of hr(p, q) iff there exists
e positive such that for all (p,q) in (p* —€,p* +€) X (¢* — €, ¢* + €), we have
h'L(p7 q) < hL(p*> q*)
In order to prove those theorems, we need the following lemma, whose
proof is similar with the previous ones.

Lemma 3.2.1. If hp(p*, ¢*) is a strictly local minimum of hr(p,q), then it
is the global minimum of hy(p,q).
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Proof of Theorem 3.2.1

Case 1: kL is not small and w,,.,L? is not small

Step 1 of Case 1: Similar as in the previous sections, we will consider
the max problem:

el A, plw, k,p,q),
where p = CpS™%, ¢ = CgS™%, and || + [7g] <1, % > 02 74, 29 + 74 <
1, |7 > |l- According to the maximum principle, we can see that the
maximum can only be archived on the four edges of the domain. We denote
by S the value %
Step 1.1 of Case 1: On the edge k = k42, we have that

L
P < p3 = eXp(_\/2\/w2V2 + k;lnamy4 + 2k72nam7/2;)

L
< exp(—2knapv—) = exp(—2kna. L) < Cy < 1,
v

where (] is a constant, since k4. L is not small.
Step 1.2 of Case 1: On the edge w = wyaz, We have that

L
p<p3= exp(—\/2\/u172mm1/2 + kvt 4 21{:21/2;)

L
< exp(—V2wWmav—) < Cy < 1,
v

where (5 is a constant, since wyqeL? is not small.

Step 1.3 of Case 1: On the edge w = wyin, we put X = \/2\/w2 v? + kvt 4 2k20?

man

and @ = Wi, Thus X € [Xoin, Xoaa] = [\ 20/@207% + Kot 4+ 252,02,
\/ 2/ w2 v + kb vt + 2k2,,.1v2]. We have also

a? X2
2 2 4 s —
V min?™ T RVE=

and

Put these values into the formula of p, we have that
P1
p=—ps = [1(X),
P2
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where

po= %+X2+p2+q2(;(—22+72)2+2pq(%2— ;(—22) -
2fp+ g~ L)) — 200

pr = %+X2+p2+q2(;(—22+%2)2+2pq(%2— ;(—22)+
s2(p+ a4 )X — 200,

ps = exp(=X5).
We consider now the behavior of f;. We have

f{(X) :gl(X)hl(X)>

where

g1(X) = —exp(—X9)(16X° + 64a®X? + 16p° X' + ¢ X® + 8¢°X'a® + 16¢%a” +
+32pX° + 8¢ X7 + 32¢a’X> + 8pg X6 — 32pqX?a?)7?,

and

hi(X) = —4096X*Sapq+ 64X S¢*pa® — 2048 X°® Spga® +

+1536 X1 S¢%a’p? — 1024 X p + 256 X2 q — 16¢° X ™ + 1024p° X® +
256 X12S + 3072¢%a*pX? — 3584¢* X ®pa® — T168¢a* X °p* —
—128X1%¢2a% + 512X°%S¢%a* — 256X '2Spq + 2048 X6 Sa’p® +
+2048X2%Sa’%¢* + 96 X2 Sp?¢* + 16X12S¢%a® + 96 X% Sqtat +
+16 X1 S¢p + 256 X1Sqa’ + 256 X0Sp3q + 2565 a® +
+2048 X8 ga? + 12288a* X®p + 4096a* X*q — 64¢° X 2p +
+64¢> X %% 4+ 1280¢%a X + 3072¢%a® X? + 2564 X' +
+2048X8Sa® — 512X195p? — 32X 5¢% + 4096 X* Sa* +

+X18¢" — 256 X5SqPatp — 1024 X2 S¢3a’p + 256 X8 Sp* —
—256 X% Sp*¢*a® — 1024 X5 Sp>qa®.

We can see that

max X € [Xmm>Xmam]f1(X) - maX{fI(Xmin)> fl(Xmam)> fl(Xz)}>
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where f'(X;) = 0.

Thus, we will look for the solutions of the equation h;(X) = 0 in the
interval [Xoin, Ximaz]. Suppose that X « CxS™% where Cx,vyx > 0, we
will solve the equation hi(X) = 0 asymptotically. We have that

hi(X) = pq(—4096X*Sa* — 2048 X% Sa? — 256 X12S)
+¢*p(64X1°Sa? + 16X S — 256 X°Sa* — 1024X2Sa®)
+¢*p* (1536 X% Sa* + 96X 'S — 256 X% Sa?)
+p(—1024X"° 4 122884 X %)
+q(256 X" + 2048 X®a? + 4096a* X *)
+¢*(—16 XM + 64 X% 4+ 1280a* X© + 3072a° X?)
+p3(1024X3)
+¢*p(3072a* X* — 3584 X%a? — 64X1?)
+qp*(—7168a* X5 + 256 X'°)
+¢*(—128X"Sa? + 512X°%Sa* + 2048 X2 Sa® — 32X 9)
+p? (2048 X6 Sa? — 512X 9)
+¢"(16X"2Sa® + 96 X°Sa* + 256 X' Sa® + 2565a® + X'09)
+p°q(256 X105 — 1024X°Sa?)
+p*(256X89)
+4096X*Sa* 4 256 X125 + 2048 X% Sa’.

We can consider the equation h;(X) = 0 as an equation of L. Here, we

care about the highest order of % in the equation, thus from the formula
above, we can have the following equation

0 = —pg256X*2S + ¢*pl6 XS + p?*96 X128 — p1024X ™ + ¢256 X% —
—P16 XM 4 p?1024X° — ¢*p64 X2 + @p?256 X0 — ¢*32X 1S —
—p?512X108 + ¢* X108 4+ p3¢256 X108 + p256 X85 + 256 X129,

or we have

0 = ¢*SX' 4+ X"(¢®pS16 — ¢°16 — ¢?325) + X'2(—pg256S + p*¢*96S +
44256 — ¢*p64 + 2565) + X (—p1024 + ¢p*256 — p*512S + p*¢256S5) +
+X3(p*1024 + p*25659)
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Since we care only about the highest order of % in the equation, we can
reduce the equation into

¢*SX™ — X116 + X12256¢ — X%p1024 + X®p®1024 = 0.

Using the same argument as in the previouslsec?on, we can see that
this equation has four solutions X; v p, Xy « 2p2¢™2, X3 v~ 4¢72572 and
X, « 4¢7'. And we can see that X, Xs, X3, X4 € [Xmin, Ximaz]. Thus

max  fi(X) = max{ fi(Xmin), [1(Xmaz), [1(X1), /1(Xa), [1(X3), f1(Xa)}-

Xe[Xminmeaz]

* For fi(Xomin), we have that

) 2 a2
o 2 mwn _ _2 Xmin,
p1 P~ + 2pq( 4 Xiim) P
X2, a?
2 min
“ 2pq(—2% — 2p X min,
p2 P~ + 2pq( 1 e ) +2p

man

Thus
2 X2, a?
T 2pg(Yh — (E) — X
fl(szn) = —pP3 X2 . 02 (1 — sznS)
“w 11— .
p

* For f(Xi), we have that

p2 2

proo AT 4P P (T ) 2pq(% —a’p™?)
2
—2(p + q(% —a’p™?))p — da’qp”!
¢°p'
16
2 2
pr o Ad’p 4 pP PP+ P ap T+ %)2 + 2pq(% —a’p?) +
2
+2(p + q(% —a?p7?))p+ da’qp™!
wAp?
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and

ps 1 —pS.
Thus - ) o
qap pq
X1) v =—.
HiX) 64p2 64

* For fi1(X3), we have that

prow 4d2(2p7q ) 24 (27072 + 00+ (¥ (2p7q ) 4 pg )P + 2pg(pg ! —
1
—a®(2p7q %) %) = 2p+ qlpg " — d*(2p7q 7)) 2p3q T — 4a2q§p‘%q%
 Apg T PP+ PP+ 297 — 8pig
w ApgTt 4 4p? — 8prq3,

1 Lo

pr v 4d2(2p7q ) 24 (2702 + 00+ (¥ (2p7q ) 2+ pg )P + 2pg(pg ! —
11 _ _ 11 11 1 12
—a®(2p2q72) %)+ 2(p + q(pg~" + a*(2p2q2)7?))2p2q 2 +4a2q§p 2q?
o Apg Tt + PP+ PP+ 20— 8pg e

w ApgTt 4+ Ap? 4+ 8prq,

and o
ps 1 —2p2q285.
Thus
3 1
p1 dpg—" +4p* — 8p2q2 11
P2 4pg~t +4p* + 8p2q 2
w1 —dp2ge.

* For f1(X3), we have that

4a* a1, 2, 2,07 —1g-1)2 g @
p1 —6q5—|—16q ST +p —I—q(ﬁqS—l—élq ST+ 2pq(4q~'S —EqS)

1
e a’ 11 4d’q 1
—2(p+q(4¢7'S 1—EqS))Zlq 27— — =257

~ 16g71S T+ p? + 16572 + 8pST! — 8pgTESTE — 32¢7557E,
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2

2
a5+ 160757+ p* +¢*(35aS + 4q7 ST+ 2pa(dg™' ST — T-aS)

4a?

16
2
+2(p+q(dg 5 = i—GqS))Zlq‘%S‘% +

p2

2
1074 3 53

~ 16718 4 p? + 16572 + 8pSTt + 8pg 2STF 4+ 3207252,

and o
ps~1—4q 2852,
Thus
160~ 51 211652 -1 _ —Lo-1 2 —1go-3
Fi(X5) o 6= S™ +p°+1657° + 8pS 8pqg~2572 —32¢7 285 2(1—4q_%5%)

16¢=15~1 + p® + 1652 + 8pS~—1 + 8pg~ 2577 + 3207252
16572 — 3247253

“ T2 (1 —4q755%)

1652+ 32¢ 252

~ 1-—8¢7 287,

* For f1(X4), we have that

4a” 116072 4+ 2 + 2( a? 14 —2)2_|_2 (4 -2 a? )
pl 16(]_2 q p q 16(]_2 q pa(=q 16(]_2
a® 4a’q
-2 4972 — -1
w1672+ 16072+ p* +8pg !t — 8pgt — 32¢7% « p?,
4a? a? a?
N 16 —2 2 2 4 —2\2 2 4 -2
P2 Tog2 T10a +pta (—16q_2 +497°)" + 2pq(4q 16q_2)
a® 4a’q
2 4q72 47— —=

w 16¢7% 4 167> + p® + 8pg " +8pg ™! 4+ 32¢7 « 642,

and
p3 1 —4g7'S.
Thus )
p-q
X4) v ——.
f1(X4) 61

142



*For f1(Xmaz): we do not need to consider this case, because in this case
k = ke and we have considered it.
Hence
4X,

max fl(X) = maX{fI(Xmam)> 1 ) 1 - 4P%q%, 1 - 8S%q_%}
Xe[Xminmeaz] p

Step 1.4 of Case 1: On the edge k = k,in, we put K = \/2\/w21/2 + k. v 4 2k2 . V2
and a = k2. 1%, then

min

min

K € [Koin, Kmae] = [\/ 2\ Kt 22, 02, \/ 2\ ? + 1t 202,02,

Thus 2
and
2,,2 2.2 K2 N2 2
wl/\/Q [P T — % — 2w _ 2wy :2[( 5 —a)? —a’]
V2VW02? + a2 + 2a K K
2 K* K3
= —[— - K% = - - 2Ka.
K = a

Putting these formulas into p, we have that

fQ(K) = p(w> k>p7 q) = %p&

where
K? K? K3
p1 = 4(7 —a)+p + q2(7 —a)®+2pga — 2(p + qa) K — 2Q(7 —2Ka),
K? K? K3
p2 = 4(7 —a)+p* + q2(7 —a)? +2pqa + 2(p + qa) K + 2q(7 —2Ka),
and
ps = exp(—KS).

The max problem turns into the following problem

K).
et )
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We can see that

max  fo(K) = max{ fo( Kmin), f2(Kmaz), f2(Ki)},

Ke[Kminmeaz]

where K;’s are the points where f3(K;) = 0.
We have that

f5(K) = ga(K)ha(K),
where
g2(K) = exp(—KS)(8K? — 16a + 4p*> + ¢* K* — 4¢° K?a + 4¢%a® + 8Kp — 8Kpa + 49 K> + 8pqa) 2,

and

ho(K) = 16Sq¢*a* — 256SK%a — 64S¢° K*a*p + 16S¢° K*pa —
—325p* ¢ K?a — 256 K2 qa — 48¢° K*p + 16¢° K*a + 32¢° K*a® +
+64p°qa + 96 K *p* — 64pgPa® + 64p® — 128 K?p + 64¢K* — 8¢°K® —
—256pa + 256ga* — 64¢°a® + 2565 K pga + Sq*K® — 128Sap® —
—1285¢%a® + 16Sp* + 64SK* 4 2565a* 4 256¢° K 2ap — 32SK*¢*a +
+128SK?¢*a® — 256Spga® + 96Sp*q*a® 4 64Sp>qa — 85S¢  K®a +
+24S¢* K*a? — 32S¢* K?a® + 8Sp** K* + 64S¢°a®p — 64SK*pq.

We have to solve the equation he(K) = 0. Using the same argument as
above, we reduce this equation into

K3¢*S — 8¢°K® + 64¢K* — 128pK? + 64p° = 0.

Tlhis equation has four solutions Ky « 2v/2¢7 2572, Ky v 2v/2¢7}, K3 -
\/§p§q—§, Ky - @p. We can see that K1, Ko, K3, K4 € [Kpin, Kmaz|. Thus

max fo(K) = max{ fo(Kpin), fo(Kmaz), fo(K1), f2(K2), f2(K3), f2(K4)}-

Ke[Kminmeaz]

We do not need to consider K,,;, and K4, in this case because we have
already consider the max problem on the edges w = Wmin, W = Wmaz-
* For fo(K7), we have that

1

prow 167187 4P+ P (4071 — a)? — 2(p + qa)2V2g S
~2q(8v/2q287% — 4v/2aq"387%) + 2pqa
 16¢71S7 £ p? + 16572 — 4v/2pg S — 16v/2¢ 253
~ 16572 — 16v2¢72 573,
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pr o 16¢71S7 4 p? + P(4g7IS TN — a)? + 2(p + qa)2v/2¢ SR
+2q(8\/§q_35_% — 4\/§aq_%5_%) + 2pqa
16718+ p? + 16572 +4v/2pg TS E + 16v/2¢ 252
~ 16572 +16v2¢ 2S¢,

and L
p3 1 — 2/2¢7257.
Thus -
folE) 1 — 42473 5%,
* For fa(Ks), we have that

pr o 1607 —da+p° +¢° (477 — a)* = 2(p + qa)2V2q " —
—2q¢(8V2¢73 — 4V 2aq™Y) + 2pqa
w3272 4 p? — 4V2pgt — 16V/2¢72
(32— 16V2)q2,

p2 w 16¢72 —da+p* + 2472 — a)> + 2(p+ qa)2v2¢7 +
+2q(8V2¢73 — 4V2aq™Y) + 2pqa
w3272+ PP + 4V 2pg ! + 16v/2¢ 72
(324 16V2)¢ 72,

and
ps 1 —2v/2¢718.
Thus V3
2 —/2
K5) v )
f2( 2) 2+ \/5

* For fo(K3), we have that

proo Apg Tt —da+ P+ ¥ (pg Tt — a)? = 2(p + qa)V2piq I —
—2¢(V2p%q~% — 2aV/2p2q %) + 2pqa
~ ApgTt PR = 2V 2prg T — 2V/2prg e
— Apgt+2p? — 4V2p3qE,
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pr v Apgt —da+ 1P+ P(pg Tt — a)? + 2(p + qa)V2pTqE +

+2q(\/§p%q_% — Qaﬂp%q_%) + 2pqa
“ Apgt Pt 4t + 2\/§p%q_% + Qﬂp%q_%

—1 2 3 _1

w pg 2%+ 4V2peg e,

and L
ps o~ 1—V2p2q28.
Thus

Apg™ + 2p® — 4 2prqT
Apg=" + 2P + 4/ 2pEq”
“w o 1-— Qﬂp%q%.

* For fo(Ky), we have that

fo(K3) (1 —V2p3q z9)

N[ N

- 2—4a—|—p2—|-q2(p—2—a)2—2(p—l—qa) 2p—Qq( P —V/2pa) + 2pqa
2.4 3
2 2, 4P 2 qp
- TE L op? — 1
T V2p NG
el (2_\/5)]927
2 3
2 2 2/P 2 \/EP p
— P4 L p p NG p
pr o PP datpt (T —a) 4+ 2p + ga) - + q(4\/§ V2pa) + 2pga
2.4 3
2 2, 4P 2 4qp
- 17 2 qr
PP eV 5
“ (24 V2)p
and V3
2
Thus V3
2—14/2
Ky) - .
fa(Ka) 2+2
Hence

max fo(K) = max{ fo(Kmin), fo(Kmaz), f2(K1), f2(K2), fo(K3), f2(K4)}

Ke[Kminmeaz]
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= max{ fo( Knin), fo(Kmaz), 1 = 2V2p3q%, 1 — 4v/2g73 53},
Combining all of the max problems on the four edges, we have that

p(w> k>p7 q) :max{l—Q\/ip%q%,1—4\/§q_%5%,1— )

max
We[wminywmaz]yke[kminykmaz] p

1 —4/pq, 1 —853¢7}
Step 2 of Case 1: Similar as in the previous section, we equibrate the
terms and try to solve the following equation

2./pq = 4\/§q_15% = .
p
It is equivalent to
2X2.
pq =4q7'S = =5
p

Thus

p=4q¢7%S.
Therefore

4q7'S16q71S* = 2X2,..
Hence 2
3 _2

Therefore

1 4
porSTEXD
Using the same argument of the previous section, we can prove that the

4 _2
pair (p«, q.) = (S_%X%mﬂS%Xl ®) is the unique solution of our min-max
problem

min max p(w> k>p> q) = max p(w> k>p*>q*)
p,q>0 we [Wminywmaz] ke [kminykmaz] we [Wminywmaz]yke [kminykmaz]
And

1
plw, k,pu,qe) ~ 1 — 4Xfm-n5%.

we [Wminywmaz] 7k€ [kminykmaz]

Case 2: k4. L is not small and w,,, L is not small and not large
Similar as in the previous case, we will consider the problem of finding the
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maximum on the four edges. We suppose here that p = C,S7%, ¢ = C,S"
where 0 < 7,7, < 1, v + 7, < 1 and 27, > 1.

*On the edge k = k4., similar as in the previous case, we have that
p < Cy < 1 where ( is a postive constant.

*On the edge w = wpin, we have similarly
max  pP(Wmin, k,p, q) = max{l — 4,/pq,1 — 85% 2,1 — %

ke [kminykmaz]

*On the edge k = ki, we can have similarly that the equation hg (K
has four solutions K; « 2v2¢"35%, Ky « 2¢/2¢7%, K3 « V2piq~3,
?p. We can see that in this case Ko, K3, Ky € [Kmin, Kmaz] and
[ Kmin, Kmaz)]. Thus

max fo(K) = max{fo(Kmin), fo(FKinaz), f2(K2), f2(K3), fo(K4)}

Ke[Kmin,Kmaz]
11
= max{ fo(Knin), fo(Kmaz), 1 —2\/5295(]5}-

*On the edge w = wyae, we consider the following cases
+ If k%12 is much more bigger than wye,v or k*v? « O, S~ where v, > 1,
we have that

) =0
K, -
Ki ¢

,0(/{5, Wmazxs Py Q) "

4k%0% + p? + @kt 4 2pgk?r? — 2(p + qk*r?)2ky — 2qWimaxVV 2WmazV y
4k202 4 p2 + @2kAv4 + 2pgk2u? 4+ 2(p + qk202)2kv + 2qWimae V'V 2wWmaz v
x exp(—2kvS)
_ 4k*2 + Pkt — 4qkPV? (1 — 2%8)
4k2v? + ¢?k*vt + 4qk3v3

“ 1=8¢ kvt —2kvS <1— 8q_55%,

or
,0(/{5, Wmazxs Py Q) "

4k%02 4 p? + Pkt + 2pgk?u? — 2(p + qk*v?)2ky — 2qWimaeV v 2WmazV y
4k2v2? 4 p? + @2 k** + 2pgk?v? + 2(p + qk?v?)2ky 4 2qWmazV v 2WmaxV

x exp(—2kvS)
4?2 + Pk — dqkPu?
4k2V? + ¢?kvt + 4qk:31/3( vS)

w1 —2qkv — 2kvS 1 —2qkv < 1 —8S%q_%.
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+ If Winae is much more bigger than k%02 or k?v? « O, S~ where v, < 1,
we have that

,0(/{5, Wmazxs Py Q) "

YWmazV + P? + ¢Pw?, V2 + 2pqk?v? — 2(p + gk V)V 2WmarV — 2qWimazV V2WmazV
AWmazV + P + 22, V% + 2pgk?v? + 2(p + gk V?)V 2WmazV + 2qWmazs Vv 2WmazV

X exp(—v2wWmazS)

_ AomazV + Gw? U — 20WimaeV N 2WmazV (1 - VIoS)
QWmazV + Pw2, V2 + 2qWmaeV/ 2WimasV

«w (11— ﬂq\/wmamy)(l — V2Wia2S)

“ 1—\/§q,/wmamy< 1—8S%q_%.

+ If k%12 «~ C,S~1, we have that

,0(/{5, Wmazxs Py Q) "

“(dyw? V2 kA — 2k \/2\/w2 v? + kvt + 2k202

max max

—2qWinazV” \/2\/%2,1%1/2 + kvt — 2k202) (4y/ W2, 1% + kAt +
+2qk*v? \/2 w2, V2 4 kvt + 25202 4 2qwimae? \/2\/(.«),2,1(”1/2 + kit — 2k202)7 1 X
X exp(—\/Q\/wfmmvz + kvt 4 2k2025)

. k21/2\/2 W2, 4aV? + Kt 4 2k202 + wmaxl/\/Z W2, ,eV? + kvt — 2k202

max

2 2 1 A4
w2 2+ ky

4X
< 1-—
p

Combining the maximum results on the four edges, we have that

max = max{1—2v2,/pg, 1— , 1—4./p ,1—8S%q_%}.

We[Wminywmaz]yke[kminykmaz]
Similar as in the previous sections, we solve the equilibrating equation
2\/5,/pq:8q_%5% = .

p
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Thus

2X2.
pg = 8¢S = —§".
p
Hence
p =8¢ 2S.
Thus
8¢~ 1S64q1S* =2X2, .
Therefore
256¢7°S% = X2 .
Hence )
8 3 ,—2
q= 25 SsXmisrw
and

4 4
p=852"58 5X5 =2555X5

Using the same argument of the previous sections, we can prove that the

1 _2
pair (ps,qs) = (S_%X5 2555 X 5 ) is the unique solution of our min-max

min? min
problem
min max p(w> k>p> q) = max p(w> k>p*>q*)
pquO We[wminywmaz]yke[kminykmaz] We[wminywmaz]7k€[kmin7kmaz]
And

1
max p(w,l{:,p*,q*)ml—2%X5- S5,

mn
we [Wminywmaz] 7k€ [kminykmaz]
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3.2.2 Proof of the Theorems in the Nonoverlapping
Case

Proof of Theorem 3.2.3 :

Case 1: At = C1Azx, Ay = CyAx.

In this case, we have that wpnin = 75, Wnee = CllAa?_l, Emin = 53 and
kmaz = C%Ax_l.

Similar as in the overlapping case, we will consider the max problem on
the four edges. We suppose that p = C,Az™", ¢ = C,Az" and 0 < v, <
Vg < 1.

* On the edge w = wyin, similar as in the overlapping case, we put
X = \/2 w?v? + kvt + 2k212, and wr = a, and the convergence factor
becomes

p(w> k>p7 q) = & = .fl(X)>

P2
where
4a? 402 , 1 X2 a? 4a? X2 a?
:X2 - 2 2X2 _2__2 =2 YVX) —g— 9 -~ =
p1 t5m PP (XN 55 g — 20+l — ) X) — a2 — 55),
and
4a? 402 , 1 2 a? a? X2 a?
= X2 PP+ (X )2 — 42 T X)) 4 g— + 2pg(D— — ).
P2 t oy TP X+ 5) e 20t - ) X) Fa +2pa( - 55)
We need to consider the following problem
max X
Xe[Xminmeaz] fl( )’
where
Xmm = \/2 \/(“szm'ny2 _I— k;lniny4 _I— 2k72ninl/2>
and

Xonarw = \/2\/wfnml/2 + k. v 4 2k2 . U2

We have that
fi(X) = gi(X) (X)),
where
(X)) = (—=16X?)(16X° + 64a®X? + 16p* X* + ¢°X® + 8¢ X?a® + 16¢°a* +
+32pX° + 8¢ X7 + 32¢a’X> + 8pg X6 — 32pqX?a?)7?,
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and
hi(X) = 64p° X% —64X%p +16X"0q — ¢* X" + 128X°%qa® + 768a* X *p +
+256a* X2q — 4¢°Xp + 4¢° X%a® + 80¢*a* X* + 192¢%a® +
+16¢X%p? + 192¢%a*pX? — 224¢* XOpa® — 448qa* X *p*.
We can see that

max k € [Kmin, Fmaz| f1(X) = max{ fi(Xmin), f1(Xmaz), [1(Xi) },

where f{(X;) = 0.

We will try to solve the equation hy(X) = 0.

Similar as in the overlapping case, we can deduce from the equation
hl (X) = 0 that

0=16X"¢— ¢*X"* — 64pX® + 64p> X©,
and we can see that this equation has three solutions X; « 4¢71, Xy

2p2q‘%, and X5 v p and X7, Xo, X3 € [Xonin, Ximaz)-
For f1(X7), we have that

a2q2 a2q2 1 a2q2
N 16 —2 -1 2 216 —2 _2__2 4—2__ 4—1
p1 ¢ tp + ¢° (16 + 4)16 (p+q(4q 16))q
2 2 -2 a2q2 -1
—a”q” +2pq(4q— — T) + 8pq

w 16¢72 +p* + 167> —8pqg~" — 32¢7 % + 8pg " ~ p?,

and
L, a*¢? a2 1 a2
p1 ~ 16¢7° + Tq +p° 4+ ¢ (167 + Tq)gﬁ +2(p+q(4g7% - 1—2))4q !
2,2 L 9no(dg2 — a’q? -1
+aq” + 2pq(4q T6 ) + 8pq

“~ 16g72+p?* +16¢7% +8pg "t + 32072 + 8pg~ !« 64¢72.

Thus
fi(Xy) » —-.
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For fi(X2), we have that
1

pr o Apgt+ a0t + P (dpg Tt + a’pTg) = G
2. —1
o, a*plg L _a’pTlq
—2(p+qlpg~" — 1 ))2p7q "% — 2a°p 2 q” + 2pq(pq~" 1

 Apg U+ PP+ PP — 8prgTE 4+ 2
w Apgt 4 4p? — 8pTq 3,

Pl olw

and

B B B 1
p2 o~ Apg Tt +a’p g+’ + P (dpg T+ aPpTlg) =

16
+2(p + qlpg ™" — ai q))2p 273 + 2% 2% + 2pq(pg a2p4_1q
o Apg Tt 4 PP+ +8p% 3 4 2p°
“ dpgTt + 4p? —|—8p q =
Thus .
- Apg”" +4p” — 8p§q_2 11— dprge.

Apg=' 4 4p? + 8pTq~
For f1(X3), we have that

proo PP Adp T 4 4 P07+ 4a?pT?)

16
p2 2 9 2 _9 p2 2 9
—2(p+q(7 —a’p))p —daqp™ + 2pg (T —ap)
2.4 2.4
q°p s @t qp® @p
7S I I ) oo S | . SO & il
O T s R I R T
pr o pPPA4a’p i+ p? + (7 +4d’p ) — %
p2 2 9 2 2 p2 2 9
+2(p +q( —a’p))p +4daTqp” +2pq(z —a’p)
2.4
oo P g WL W T e

16 2 2 16
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Thus -
p* 2 2
fl(X?’) T 162 3 p64ql ’
L +4p* +qp

For f1(Xnin), we have that

) 2 a2
prL D+ 2]9(]( Zm - X2 ) - 2pXmm>
and 2 )
min a
P2 1+ 2pa (= 55) + 20 Xomin.
Thus
2 X2 . a2
fl(szn) = — X2 .2 (1 — sznS)
P2 p2 + 2]9(](% — Xz—) + 2pXmm
“w 11— .
p
Thus

max [(X) = max{fi(Xmin), f1(Xmaz), [1(X1), f1(X2), f1(X3)}

Xe[Xminmeaz]

4Xmm L 1
= max{l— 71_4péq é7.731()(7?101)}‘
p

* On the edge k = kpin, similar as in the overlapping case, we put K =
\/2\/w21/2 + k3, vt +2k2, V2, and a = k2, 1?, then

man min

K € [Kminmeam] =

= [\/2\/(4172,”-”7/2 + k;lniny4 + 2k72ninl/2> \/2\/(4}72)%&1/2 + k;lniny4 + 2k72nm1/2]

Thus p
1
fQ(K) = p(w> k‘,p,Q) =

P2
where

2 K2 3
p1 = 4(7 —a)+p + q2(7 —a)® +2pga — 2(p + qa) K — 2Q(7 —2Ka),
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and

K*? K*? K3
p2 = 4(7 —a)+p*+ q2(7 —a)®+2pga + 2(p + qa) K + 2q(7 —2Ka).

The max problem turns into the following problem

K).
P S

We can see that

max  fo(K) = max{ fo( Kmin), f2(Kmaz), f2(Ki)},

Ke[Kminmeaz]

where K;’s are the points where f(K;) = 0.
We have that

fo(K) = g2(K)ha(K),
where
g2(K) = 8(8K*—16a+4p* +¢* K*—4¢* K*a+4¢*a*+8 K p—8 K qa+4q K> +8pqa) 2,
and
ho(K) = —12¢K*p* 4 6¢*°K*p + 8pq*a + 32K?qa — 2¢° K*a — 8p*qa — 32¢* K*ap
+16K?p — 8¢ K* — 4¢° K*a® — 8p® + ¢* K® + 32pa — 32qa® + 8¢°a’.
From the equation hy(K) = 0, we get
K% — 8¢K* + K*16p — 8p* = 0.

The equation has three solutions K; « 2v2¢7%, Ky « V2p2q 2, K3 -
e
For fo(K7), we have
pr o~ 1677 —da+p* +¢* (497 — a)’ — 2(p + qa)2v2¢ "
—2q¢(8V2¢73 — 4V/2¢7a) + 2pqa
w~ 16¢7% +p* +16¢7% — 4v2pg ! — 16v2¢7% ~ 16(2 — V2)q 7,

and

p2 w 16¢72 —da+p* + ¢*(4¢72 — a)? + 2(p + qa)2v2¢ !
+2¢(8v2¢7% — 4v/2¢7ta) + 2pqa
16072+ p? +16¢72 + 4v2pgt 4+ 16v2¢72 ~ 16(2 + v/2)g 2.
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Thus

For fo(K3), we have

N

pr e Apgt —da+ PP+ (gt — a)® + 2pga — 2(p + qa)V2p3q-
—2¢(V2p2q% — 2aV/2p7q )
“ ApgTt 4Pt 4t — Qﬂp%q_% — Qﬂp%q_% w dpg~t + 2p* — 4\/§p%q_%,

and

N

pr ~ Apgt —da+ P+ ¢*(pg " — a)? + 2pga + 2(p+ qa)V2p3iq~
+2¢(V2p¥q 7 — 20v/2p7q %)
“ Apgt+pP 4t F 2\/§p%q_% + 2\/§p%q_% “dpgt + 207 + 4\/§p%q_%.

Thus
pg~t + 2p — 4V/2p3q
fg(Kg) A 3 1 1-— 2\/5«/]9(]
Apg=! + 2p2 + 4v/2p2q 2
For fo(K3), we have that
2 2 2p2 p 3 \/—
A —4da+p +q¢ (= — —2(p+qa)—F&= —2 2pa) + 2pqa
1 p P a5 a)? —2(p q)\@ q(4\f pa) + 2pq
2 +— V2p — == (2= V2)PP,
P’ 2f - ( )P
and
2 2 2P2 2 p P3 \/—
“ —4da+p +q (= —a) +2p+qa)—=+2¢(—= — V2pa) + 2pqa
p2 p P+ (G —a) +2(p q)\/ﬁ q(4\/§ pa) + 2pq
qp qp 2
207+ VY = (24+V2
P’ G 2p 23 - ( )P
Thus V3
2—2
K3) v« .
fa£s) 2+2
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We suppose that Ky = \/Ep%q‘% € [Kmin, Kmaz|. Thus

oy o /5 /a1,

= 1-—
KelKmKomas] max fo(Komaa),

* On the edge k = kyaz, we have that
Vwv? + kb vt kR DR

max

Thus p(w, kmam>p7 q) -

Ak2 12+ p? 4+ kL vt 2pgk2,, 12 — A(p + qk2,, ) kmast — 2v/2q(wp)
Ak 0 + P>+ QQk?naxV“ + 2Pk 00 + 4P + qkZ 00V kmacv + 2V 2q(wr)?
2k4 4(]/{5

N mam mam “~1—8 _lk‘ 1 —
q?k2 vt + 4qk3 ¢ Fmas¥

max mam

| ol

*On the edge w = wyae, we consider the following cases
If k212 is much more bigger than wy,q.v or k?v? « CpS™% where v, > 1,
we have that p(k, wmaz, D, q) <

4% + p? + Pk + 2pgkPv? — 2(p + qk*v?)2ky — 20WimazVV 2WmazV
4k202 4 p? + @2kt + 2pgk2u? + 2(p + qk20?) 2k 4 2qWimee V'V 2Wmar
4k*? + Pk — dgkPu3
4k2v? 4 g2kt + 4qk:31/3

~ 1-8¢7 kv <1 -8¢7 kL v = p(Winazs Kmazs Py @),

mam

N

or p(ka Wmaz Ps Q) e

4k%02 + p? + Pkt 4 2pgkPv? — 2(p + qk?v?)2ky — 2qWimarVV2WimazV
4202 + p2 + @2k4vd 4 2pgk202 + 2(p + qk202)2ky + 2qWimarVV2WmazV
4k* 2 + Pkt — 4qkPV?

4k2v? + ¢?k*vt + 4qk3v3

w1 —=2qkv <1—4,/pq.

xp(—2kvS)

N

If Wyae is much more bigger than k?v? or k?v? « C,.S™7 where v, < 1,
we have that p(k, Wmaz, P, q) =

AwmazV + P + PwpaeV” + 20gk*v? = 2(p + gk*v*)V20mast — 2Wmazt V2WimazV
4wmazV + p? + qu?naxl/Q + 2pqk2v2? + 2(p + qk2v2)\/2WmazV + 2qWimazV 2WmazV
AmazV + @wl oV = 2(p + qWmac)V 2WmazV
YmazV + Pwt0nV? + 2(p + WmazV ) V2WmazV
o 1= V2p+ mae?) (Wmar) T2 < 1= 24/2pg,

N
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here, we use the assumptions: 0 < v,,7, <1, 7 + 7, < 1 and 2v, > 1.
If k%02 «~ C,L.S™Y, we have that p(k, Wmaz, P, q)

w (AW R = 2(p 4 gkP)Y \/2\/wmaml/2 + ktvt + 2k202
—2qWinazV” \/2\/wmarl/2 + kvt — 2k202) (4y/ W2, v + kAt
—2(p + gk*v? \/2\/(.«)7271“1/2 + kA4 + 2k202 — 2qwmaxy2\/2\/w%mxl/2 + kdvd — 2k22) 7t

(p + gk?v? \/2 w2 v2 4 kWt + 28202 4+ qwmaxl/\/2 w? v+ kvt — 2k202

V2 + k41/4

2
Winax

< 1-2+/2pq.

Combining the maximum results on the four edges, we have that

max p(wakapaQ):ma’X{l_ 51_2 2pq51_4\/p ,1—8(] lkm}zx B }

WEWmin ,Wmaz),kE€[Emin,kmaz]

Similar as in previous sections, we solve the equilibrating equation

4Xmm —
2 2pq = - 8 lkmclm
p

Thus
pgq = 2X72nzn7
and
q = 8km o
Hence
1
pq = 2 mznkmamy 2,
Thus 1
5 1
Xﬂzfl,zn maml/E.
And then o 1 o |
p= sznm 7%”Lazl/Z = sznin(_)ZAl’_Z‘
Cy
Therefore o
7= 2‘)(7er]{:7’”“1m _% = 2X7;;ITL(F)_%A[L’%
2

Checking with the condition v/2p2q~2 < \/2 VW2 + kv 42K 12

we can see that since ’”CZ”Cl < 2, we have W < WmazV, or the condi-
tion is satisfied in this case.
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Using the same argument of the previous section, we can prove that the
3 1 _1L . _3
pair (ps,qs) = (X;*nmk:;,*mmy%,2Xmi4nk:m3zy_%) is the unique solution of our

min-max problem

min max p(w> k>p7 q) = max p(w> k>p*>q*)
p,q>0 We[wminywmaz]yke[kminykmaz] We[Wminywmaz]yke[kminykmaz]
And
1 1 1 TV, _1 1
D,k P 02) o 1=AXE, kot = axd, (Z) gt
We[wminywmaz]yke[kminykmaz] 02

Case 2: At = C1Az?, Ay = CyAx.
Similar as in Case 1, we consider the max problem on the four edges.
* On the edge w = Wyin, similar as in case 1, we also have that

max [(X) = max{fi(Xmin), f1(Xmaz), [1(X1), f1(X2), f1(X3)}

Xe[Xminmeaz]

min

) 11— 4p%q_%> fl(Xmam)}-

= max{l —

* On the edge k = ki, similar as in Case 1, we also have

f2(K) :max{f2(Kmar)>1_ 71_2\/5\/29_‘]}>

max
Ke[Kminmeaz]

with the remark that in this case

K2 = \/gp%q_% < \/2\/w72nam1/2 + k;lniny4 + 2k72ninyz'

* On the edge k = kpqu:
If wv is much smaller than k2, 1% or wv «~ C,Az™" where 0 < v < 2,
then

4kfnam1/2 +p? + qzl{,‘fmmlfl + 2qu:,2narl/2 — qu‘fnaml/sz‘maml/ — 2quu/wr
P 4k2, v + p? + @?kE vt + 2pgk2, VP 4 2qK2, V2 2kman + 2quin/wr

qzyzk;lnamy4 B 4qk72naml/2kmazy 1 8 —lk—l -1
AN A - 1% .
GP2kE A 4 Agk2 12k 00 4 Ry

max max
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If wy v C,Ax~2, then

p ( (kfnamy + w2y - 2qkmam \/2\/(4) 2 + k;lnamy4 + 2k72nam

g2/ 0 — 202, ) (PR + )

\/2 w4+ kvt 4 2k2 2+ 2qu\/2 w22+ k4 vd 4 2k2  p2)Tt

max

—2qk?

mam

. k2 .V \/2 w2+ ki vt 2k2 v+ wy\/Z w2+ kA vt —2k2 12

o1 w4+ kL v
_ Ak \/2\/Ol2 —|-2a—|—a\/2\/a2 —2a
- maz? a2 + 1

where a = 5

max

. 0VaZi1+2 2vaZ+1-2a . . .
Since H(a) = Ve Zjﬁl\/ @172 §5 4 decreasing function. We can

see that in this case p(w, kmaz, P, q) < pP(Wimazs Emaz, P, q). And moreover,
p(wmam7 kmamyp, q) e

—1 mam \/2\/wmamy2 + k?namy4 + 2k12namy + (")mbaxy\/2\/(")7namy2 + kfnam - 2k72nax 2

2 2 4
WinazV + kmam

1—4q

* On the edge w = Wiaz:
If Wynaa v is much more larger that k%02 or k2v? « O, A~ where 0 < v < 2,
we have that

4wmam7/ + q maz? T 2(]9 + qk‘zl/z) V 2wWmazV — 2\/_Q(wmam7/)
Awmaat + Qw2 12 + 2(p + qk202)\/ 20mant + 2V2q¢(Wmazt)
o e = 2fq(“’m””)i 1 — 4v/2g  wnZorE.
PPw2 00 V? + 2v/2q(Wmas ) ?

N[ o

p “A
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If k202 «~ CrL,Ax~2, we have that p

max

(qz(k:41/4 + w? 1/2) — 2qk521/2 \/2\/wfmml/2 + k4t 4 2k212

—qumamy\/2\/w3mml/2 + kvt — 28202 (¢* (k' + W2, 07)
+2qk*? \/2 w2 p2 4 kit 4 2k202 4 2qwmax1/\/2 w2, 2 4 kvt 4 2k22) !

max

) k21/2\/2 W2, 4aV? + kAt 4 2k%202 + wmaxl/\/2\ Jw2 V2 + kAt — 2k202
1—4q~

- w2 v+ kvt
S 11— 4(]_1A>
where
A=
k7271axy2\/2\/w72naxy2 + k?naxy4 + 2k72naxy2 + wmaxy\/z\/w?naxVQ + k?naxy4 - 2k72naxy2
min{v/2, }

(w?naxVQ + k?naxVAL)\/ WmazxV

Combining the maximum results on the four edges, we have that

max p(w7 k?p7q) =

we [Wminywmaz] 7k€ [kminykmaz]

4Xmm — -1 1
1 —4ypg, 1 —2y/2pq, 1 — 4¢  wmazv éA}.

= max{l —

Similar as in the previous sections, we solve the equilibrating equation

1 4Xmm
2+/2pq = 4q_1(wmamy)_5A =
p
We have that
p3q = 2X72nm7
and
pg® = Q(wmamy)_lAz.
Thus ) L
pq = ﬂXiin(wmamy)_ZAE.
Hence

N

3
P = V2X 2 (Wmarv)TATE
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Thus

p= 2iX§nm(wmaml/)§A_i = QiX,%nm(g)%A_lAa:_i,
1
and 1 1 3 3 1 1wy, 3 3 3
RS PWREEES 3 STUORUNE
1

Using the same argument of the previous section, we can prove that the

L 3
1 1

3 U1
pair (p«,q.) = (X2, ;;amyi,QXmmkzmamy_%) is the unique solution of our

min-max problem

min max
p,q>0 we [Wminywmaz] 7k€ [kminykmaz]

And

max plw, k,

WEWmin ,Wmaz),kE€[Emin,kmaz]

pw, k,p,q) =

_3
Perge) ~1—27X 1
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we [Wminywmaz]yke [kminykmaz]

min

-+ 1.1 7
WmeV 8AT =1 —-27X

p(w> k>p*> q*)
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3.3 Numerical Results

In this section, we intend to verify our theoretical results on the opti-
mized parameters for the optimized Schwarz methods obtained in the pre-
vious sections. We chose for the problem parameters v = 1, in the domain
[—1,1] x [0,1], T = 1 with homogeneous boundary conditions. We discretize
the problem with Euler backward scheme and use random initial conditions.

3.3.1 Test 1

First of all, we would like to compare the behavior of classical Schwarz
method and optimized Schwarz methods, with Robin and Ventcell transmis-
sion conditions in both cases: nonoverlapping and overlapping. We choose
30 grid points on both the time interval and the space interval. We choose
the overlapping length to be 1 grid points for overlapping algorithms and
we compute the solution in 10 iterations. We choose the parameter p for
the Robin transmission condition to be our computed optimal p and the pa-
rameter (p, q) for the first order transmission condition to be our computed
optimal (p,q). We can see that the optimized Schwarz methods converge
much faster than the classical one and the otimized Schwarz with the op-
timal first order transmission condition converges faster than the optimal
Robin one as in Figure 3.3.1.
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3.3.2 Test 2

Secondly, we would like to test the accuracy of our theoretical optimized
Robin parameters. According to our theoretical results, the optimized pa-
rameters depend on the constans C', D in both cases dt = Cdx, dt = Ddy
and dt = Cdx?, dt = Ddy?. Thus in order to vary C' and D, we vary the
number of grid points on T, x and y directions to see how the algorithms
behave.

In this test we solve solve by domain decomposition methods with Robin
transmission conditions, and Euleur backward scheme, the the heat equa-
tion in 2 D, v = 1, in a domain [—1,1] x [0,1], T" = 1, 10 iterations, the
overlapping size is one grid point. We will keep the same space-time window
and observe the behavior of the optimal p when we vary the number of grid
points on both space and time.

In the first case (Figure 3.3.2.A), we choose 50 grid points for the = direction,
50 grid points for the y direction, and 200 grid points for the T" direction.
In the second case (Figure 3.3.2.B), we choose 100 grid points for the x di-
rection, 100 grid points for the y direction, and 20 grid points for the T
direction.

In the third case (Figure 3.3.2.C), we choose 50 grid points for the x direc-
tion, 50 grid points for the y direction, and 20 grid points for the T" direction.
In the forth case (Figure 3.3.2.D), we choose 200 grid points for the z di-
rection, 100 grid points for the y direction, and 100 grid points for the T
direction.

In the fifth case (Figure 3.3.2.E), we choose 200 grid points for the z direc-
tion, 90 grid points for the y direction, and 20 grid points for the T" direction.
In the sixth case (Figure 3.3.2.F), we choose 60 grid points for the x direction,
50 grid points for the y direction, and 300 grid points for the T" direction.
In the seventh case (Figure 3.3.2.G), we choose 40 grid points for the x di-
rection, 80 grid points for the y direction, and 300 grid points for the T
direction.

In the eighth case (Figure 3.3.2.H), we choose 80 grid points for the z direc-
tion, 60 grid points for the y direction, and 20 grid points for the T" direction.
In the nineth case (Figure 3.3.2.1), we choose 120 grid points for the x direc-
tion, 50 grid points for the y direction, and 60 grid points for the T" direction.
In the tenth case (Figure 3.3.2.J), we choose 30 grid points for the x direc-
tion, 15 grid points for the y direction, and 60 grid points for the 7" direction.
We can see that in most of the case, the theoretical optimal p (the star % on
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3.3.3 Test 3

Similar as above, we want to test the accuracy of our optimized Ventcell
parameters. According to our theoretical results, the optimized parame-
ters depend on the constans C, D in both cases dt = C'dx, dt = Ddy and
dt = Cdx?, dt = Ddy?. Thus in order to vary C and D, we vary the number
of grid points on 7', x and y directions to see how the algorithms behave and
to see the behavior of the optimized parameter (p,q). The iterations is 16.
The test corresponds to both case dt = Cdx and dt = C'dz?.

In the first case (Figure 3.3.3.A.), we choose 20 grid points on the x interval,
10 grid points on the y interval and 10 on the time interval.

In the second case (Figure 3.3.3.B.), we choose 60 grid points on the z inter-
val, 30 grid points on the y interval and 300 on the time interval.

In the third case (Figure 3.3.3.C.), we choose 50 grid points on the z interval,
25 grid points on the y interval and 25 on the time interval.

In the forth case (Figure 3.3.3.D.), wwe choose 50 grid points on the z inter-
val, 50 grid points on the y interval and 50 on the time interval.

We can see that the theoretical optimal (p, q) (the ™ on the curve) is quite
close to the numerical one.
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3.3.4 Test 4

We now want to test our optimized Ventcell parameters, but for the nonover-
lapping case. According to our theoretical results, the optimized parame-
ters depend on the constans C, D in both cases dt = C'dx, dt = Ddy and
dt = Cdx?, dt = Ddy?. Thus in order to vary C and D, we vary the number
of grid points on 7', x and y directions to see how the algorithms behave and
to see the behavior of the optimized parameter (p, q). The test corresponds
to both case dt = dx and dt = da?.

In the first case (Figure 3.3.4.A.), we choose 40 grid points on the x interval,
20 grid points on the y interval and 20 on the time interval.

In the second case (Figure 3.3.4.B.), we choose 40 grid points on the z inter-
val, 20 grid points on the y interval and 201 on the time interval.

We can see that the theoretical optimal (p, q) (the ™ on the curve) is quite
close to the numerical one.
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3.3.5 Test 5

According to our theoretical results, the optimized parameters for the Robin
transmission condition have the assymptotic behavior of Cdz~'/%. In this
test, we want to verify this.

We consider 20 grid points in the x interval, 10 grid points in the y inter-
val and 10 grid points in the time interval, then dz = dt = 0.1 and fixed the
overlapping length to be 1 grid points. The number of iteration is 15. We
repeat this experiment by dividing dx and dt by 2, 3. We plot the practical
optimized parameters according to each mesh size and the line p = dz=*.
We can see on Figure 3.3.5.A that the practical optimized line and the line
p = dr~'/* are parallel. Which means that the asymptotic analysis predicts
very well the behavior of the optimized algorithm.

We consider the same experiment but with 20 grid points in the z in-
terval, 10 grid points in the y interval and 100 on the time interval, then
dt = dz* = dy* = 0.01, the overlapping length is again 1 grid points. We
repeat this experiment by dividing dx and dt by 2, 3. We plot the practical
optimized parameters according to each mesh size and the line p = dz=/3.
The asymptotic analysis again predicts very well the behavior of the opti-
mized algorithm in this case.
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3.3.6 Test 6

According to our theoretical results, the optimized parameters for the Vent-
cell transmission conditions have the assymptotic behavior of C'dx—/' and
Cdxz="*. In this test, we want to verify this.

We consider 100 grid points in the space interval and 200 grid points in
the time interval, then dx = dt = 0.01 and fixed the overlapping length to be
2 grid points. We repeat this experiment by dividing dz and dt by 2, 3, 4, 5.
We plot the practical optimized parameters according to each mesh size and
the line p = dz~'/*. We can see on Figure 2.3.6A that the practical optimized
line and the line p = dz~/* are parallel. Which means that the asymptotic
analysis predicts very well the behavior of the optimized algorithm.

We consider the same experiment but with 10 grid points in the space
interval and 200 on the time interval, then dt = dxz? = 0.01, the overlapping
length is again 2 grid points. We repeat this experiment by dividing dr and
dt by 2, 3, 4, 5. We plot the practical optimized parameters according to each
mesh size and the line p = dz~/3. The asymptotic analysis again predicts
very well the behavior of the optimized algorithm in this case.
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3.3.7 Test 7

As predicted in our theoretical results, the performance of the optimized
Schwarz methods depend on the lengths of the time intervals, we now do
some tests on this. We will increase the length of the time intervals, but
keep the same dt, and look at the behavior of the methods at each case.

In 2.3.7.A, we consider 20 grid points in the z-interval, 10 grid points in
the y-interval, and 10 grid points in the time interval, then dx = dy = dt =
0.1 and fixed the overlapping length to be 1 grid points. Then we plot the
errors of the methods with respect to the number of iteration. In 2.3.7.B, we
increase the time interval from [0, 1] to [0, 10] and choose 1000 grid points
on the time interval. In 2.3.7.C, we increase the time interval from [0, 1] to
[0,20] and choose 2000 grid points on the time interval. We can see that the
behavior of the methods depends on the length of the time interval.
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3.3.8 Test 8

In our theoretical results, the performance of the optimized Schwarz methods
depend also on the viscosity parameter v, we now do some tests on this.

In 2.3.8.A, we consider 20 grid points in the z-interval, 10 grid points in
the y-interval, and 100 grid points in the time interval, then dz? = dy? =
dt = 0.01 and fixed the overlapping length to be 1 grid points. Then we
plot the errors of the methods with respect to the number of iteration for
the three cases v = 0.1, v = 1, v = 10. We can see that the behavior of the
methods depends on v.

192



errar

)

10

10

)

— — nu=0.1
— - — - nu=1

nu=10

. E
- =
- ]
h\""-\. - -
\-H""-\. -
— .
— i
— - E
— S
"'\-\.,_H_ 9
e

- 3
"'\-\.,_\_\_E

1 L 1 L 1 L
10 11 12 13 14 15 16

iteration

Figure 3.3.8.A

193



Chapter 4

Acknowledgements.

The author would like to express his gratitude to his thesis advisor, Professor
Laurence Halpern for her help and support. He is also grateful to Professor
Martin Gander for fruitful discussions on the subject.

194



Bibliography

1]

D. Bennequin, M. J. Gander, and L. Halpern. A homographic best ap-
proximation problem with application to optimized Schwarz waveform
relaxation. Math. Comp., 78(265):185-223, 2009.

M. J. Gander and L. Halpern. Optimized Schwarz waveform relaxation
methods for advection reaction diffusion problems. SIAM J. Numer.
Anal., 45(2):666-697 (electronic), 2007.

Martin J. Gander and Laurence Halpern. Méthodes de relaxation d’ondes
(SWR) pour I’équation de la chaleur en dimension 1. C. R. Math. Acad.
Sci. Paris, 336(6):519-524, 2003.

P.-L. Lions. On the Schwarz alternating method. I. In First International
Symposium on Domain Decomposition Methods for Partial Differential
Equations (Paris, 1987), pages 1-42. STAM, Philadelphia, PA, 1988.

P.-L. Lions. On the Schwarz alternating method. II. Stochastic inter-
pretation and order properties. In Domain decomposition methods (Los
Angeles, CA, 1988), pages 47-70. STAM, Philadelphia, PA, 1989.

P.-L. Lions. On the Schwarz alternating method. III. A variant for
nonoverlapping subdomains. In Third International Symposium on Do-
main Decomposition Methods for Partial Differential Equations (Hous-
ton, TX, 1989), pages 202-223. STAM, Philadelphia, PA, 1990.

H. A. Schwarz. Gesammelte mathematische Abhandlungen. Band I, II.
Chelsea Publishing Co., Bronx, N.Y., 1972. Nachdruck in einem Band
der Auflage von 1890.

195



