HMM-based Prosodic Structure Model Using Rich Linguistic Context - Archive ouverte HAL
Communication Dans Un Congrès Année : 2010

HMM-based Prosodic Structure Model Using Rich Linguistic Context

Résumé

This paper presents a study on the use of deep syntactical features to improve prosody modeling. A French linguistic processing chain based on linguistic preprocessing, morpho- syntactical labeling, and deep syntactical parsing is used in order to extract syntactical features from an input text. These features are used to define more or less high-level syntactical feature sets. Such feature sets are compared on the basis of a HMM-based prosodic structure model. High-level syntactical features are shown to significantly improve the performance of the model (up to 21% error reduction combined with 19% BIC reduction).
Fichier principal
Vignette du fichier
OBIN_IS10_PROSOSTRUCTURE.pdf (174.57 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00589069 , version 1 (27-04-2011)

Identifiants

  • HAL Id : hal-00589069 , version 1

Citer

Nicolas Obin, Xavier Rodet, Anne Lacheret. HMM-based Prosodic Structure Model Using Rich Linguistic Context. Interspeech, Sep 2010, Makuhari, Japan. pp.1133-1136. ⟨hal-00589069⟩
186 Consultations
162 Téléchargements

Partager

More