Eigenvectors of Wigner matrices: universality of global fluctuations
Résumé
Let $U_n=[u_{i,j}]$ be the eigenvectors matrix of a Wigner matrix. We prove that under some moments conditions, the bivariate random process indexed by $[0,1]^2$ with value at $(s,t)$ equal to the sum, over $1\le i \le ns$ and $1\le j \le nt$, of $|u_{i,j}|^2 - 1/n$, converges in distribution to the bivariate Brownian bridge.
Origine | Fichiers produits par l'(les) auteur(s) |
---|