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EIGENVECTORS OF WIGNER MATRICES: UNIVERSALITY OF GLOBAL
FLUCTUATIONS

FLORENT BENAYCH-GEORGES

Abstract. We prove that for [ui,j ]
n
i,j=1 the eigenvectors matrix of a Wigner matrix, under

some moments conditions, the bivariate random process0BB@ X
1≤i≤ns,
1≤j≤nt

(|ui,j |2 − 1/n)

1CCA
(s,t)∈[0,1]2

converges in distribution to a bivariate Brownian bridge.

1. Introduction

It is well known that the matrix Un = [ui,j ]ni,j=1 whose columns are the eigenvectors of a
GOE or GUE matrix Xn can be chosen to be distributed according to the Haar measure on
the orthogonal or unitary group. As a consequence, much can be said about the ui,j ’s: their
joint moments can be computed via the so-called Weingarten calculus developed in [8, 9], any
finite (or not too large) set of ui,j ’s can be approximated, as n→∞, by independent Gaussian
variables (see [17, 7]) and the global asymptotic fluctuations of the |ui,j |’s are governed by a
theorem of Donati-Martin and Rouault, who proved in [10] that as n→∞, the bivariate càdlàg
process Bn

s,t :=

√
β

2

∑
1≤i≤ns,
1≤j≤nt

(|ui,j |2 − 1/n)


(s,t)∈[0,1]2

(where β = 1 in the real case and β = 2 in the complex case) converges in distribution, for the
Skorokhod topology, to the bivariate Brownian bridge, i.e. the centered continuous Gaussian
process (Bs,t)(s,t)∈[0,1]2 with covariance

(1) E[Bs,tBs′,t′ ] = (min{s, s′} − ss′)(min{t, t′} − tt′).

A natural question is the following:

What can be said beyond the Gaussian case, when the entries of the Wigner
matrix Xn are general random variables ?
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2 FLORENT BENAYCH-GEORGES

For a general Wigner matrix1, the exact distribution of the matrix Un cannot be computed
and few works had been devoted to this subject until quite recently. One of the reasons is that
while the eigenvalues of an Hermitian matrix admit variational characterizations as extremums of
certain functions, the eigenvectors can be characterized as the argmax of these functions, hence
are more sensitive to perturbations of the entries of the matrix. However, in the last three years,
the eigenvectors of general Wigner matrices have been the object of a growing interest, due in
part to some relations with the universality conjecture for the eigenvalues. In several papers
(see, among others, [13, 14, 15]), a delocalization property was shown for the eigenvectors of
random matrices. More recently, Knowles and Yin in [19] and Tao and Vu in [25] proved that if
the first four moments of the atom distributions of Xn coincide with the ones of a GOE or GUE
matrix, then under some tail assumptions on these distributions, the ui,j ’s can be approximated
by independent Gaussian variables as long as we only consider a finite (or not too large) set of
ui,j ’s.

In this paper, we consider the global behavior of the |ui,j |’s, and we prove (Theorem 2.3) that
for Wigner matrices whose entries have moments of all orders, the process (Bn

s,t)(s,t)∈[0,1]2 has a
limit in a weaker sense than for the Skorokhod topology and that this weak limit is the bivariate
Brownian bridge if and only if the off-diagonal entries of the matrix have the same fourth
moment as the GOE or GUE matrix (quite surprisingly, no hypothesis on the third moment
is necessary). Under some additional hypotheses on the atom distributions (more coinciding
moments and continuity), we prove the convergence for the Skorokhod topology (Theorem 2.6).

This result was conjectured by Djalil Chafäı, who also conjectures the same kind of universality
for unitary matrices appearing in other standard decompositions, such as the singular values
decomposition or the Housholder decomposition of matrices with no symmetry, as long as the
matrix considered has i.i.d. entries with first moments agreeing with the ones of Gaussian
variables. It would also be interesting to consider the same type of question in the context
of band matrices, connecting this problem with the so-called Anderson conjecture (see e.g. the
works of Erdös and Knowles [11, 12], of Schenker [20] or of Sodin [22], or, for a short introduction,
the blog note by Chafäı [6]).

The paper is organized as follows. The main results are stated in Section 2, where we also
make some comments on their hypotheses ; outlines of the proofs and the formal proofs are
given in Section 3 ; and Section 4 is devoted to the definitions of the functional spaces and their
topologies and to the proofs of several technical results needed in Section 3.

Acknowledgements: It is a pleasure for the author to thank Djalil Chafäı for having generously
pointed out this problem to him and for the nice discussions we had about it. We also would
like to thank Alice Guionnet, for her availability and her precious advices, and Terry Tao, who
kindly and patiently answered several naive questions asked by the author on his blog.

2. Main results

For each n, let us consider a real symmetric or Hermitian random matrix

Xn :=
1√
n

[x(n)
i,j ]ni,j=1.

1A Wigner matrix is a real symmetric or Hermitian random matrix with independent, centered entries whose
variance is one. Its atom distributions are the distributions of its entries.
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For notational brevity, x(n)
i,j will be denoted by xi,j .

Let us denote by λ1 ≤ · · · ≤ λn the eigenvalues of Xn and consider an orthogonal or unitary
matrix Un = [ui,j ]ni,j=1 such that

Xn = Un diag(λ1, . . . , λn)U∗n.

Note that Un is not uniquely defined. However, one can choose it in any measurable way.

We define the bivariate càdlàg processBn
s,t :=

√
β

2

∑
1≤i≤ns,
1≤j≤nt

(|ui,j |2 − 1/n)


(s,t)∈[0,1]2

,

where β = 1 in the real case and β = 2 in the complex case.

Assumption 2.1. For each n, the random variables xi,j’s are independent (up to the symmetry),
with the same distribution on the diagonal and the same distribution above the diagonal.

Assumption 2.2. For each k ≥ 1, supn E[|x1,1|k + |x1,2|k] <∞. Moreover,

(2) E[x1,1] = E[x1,2] = 0, E[|x1,2|2] = 1

and E[|x1,2|4] has a limit as n→∞.

The bivariate Brownian bridge has been defined in the introduction and the definitions of the
functional spaces and their topologies can be found in Section 4.1.

Theorem 2.3. Suppose that Assumptions 2.1 and 2.2 are satisfied. Then the sequence

(distribution(Bn))n≥1

has a unique possible accumulation point supported by C([0, 1]2). This accumulation point
is the distribution of a centered Gaussian process which depends on the distributions of the
xi,j’s only through limn→∞ E[|x1,2|4], and which is the bivariate Brownian bridge if and only if
limn→∞ E[|x1,2|4] = 4− β.

More precisions about the way the unique possible accumulation point depends on the fourth
moment of the entries are given in Remark 2.8.

To get a stronger statement where the convergence in distribution to the bivariate Brownian
bridge is actually stated, one needs stronger hypotheses.

Assumption 2.4. The distributions of the entries of Xn are absolutely continuous with respect
to the Lebesgue measure.

The following hypothesis depends on an integer m ≥ 2.

Assumption 2.5. For each k ≥ 1, supn E[|x1,1|k + |x1,2|k] <∞. Moreover, for each r, s ≥ 0,

(3) r + s ≤ m− 2 =⇒ E[<(x1,1)r=(x1,1)s] = E[<(g1,1)r=(g1,1)s]

and

(4) r + s ≤ m =⇒ E[<(x1,2)r=(x1,2)s] = E[<(g1,2)r=(g1,2)s].

where the gi,j’s are the entries of a standard GOE or GUE matrix.
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Theorem 2.6. Suppose that Assumptions 2.1 and 2.4 are satisfied, as well as Assumption 2.5
for m = 12. Then, as n → ∞, the bivariate process Bn converges in distribution, for the
Skorokhod topology in D([0, 1]2), to the bivariate Brownian bridge.

Remark 2.7. Weakening of the assumptions. As explained above, the distributions of the
entries xi,j = x

(n)
i,j are allowed to depend on n. In order to remove Assumption 2.4 below (which

we did not manage to do yet), it mights be useful to weaken Assumptions 2.2 and 2.5 in the
following way: one can easily see that the proofs of Theorems 2.3 and 2.6 and Proposition 2.10
still work if, in Equations (2), (3) and (4), one replaces the identities by the same identities up
to an error which is O(n−α) for all α > 0.

Remark 2.8. Complements on Theorem 2.3. One can wonder how the unique accumulation
point mentioned in Theorem 2.3 depends on the fourth moment of the entries of Xn. Let
G := (Gs,t)(s,t)∈[0,1]2 be distributed according to this distribution. We know that (Gs,t)(s,t)∈[0,1]2

is the bivariate Brownian bridge only in the case where limn→∞ E[|x1,2|4] = 4 − β. In the
other cases, defining Fsemicircle as the cumulative distribution function of the semicircle law, the
covariance of the centered Gaussian process

(5)
(∫ 2

u=−2
ukGs,Fsemicircle(u)du

)
s∈[0,1],k≥0

can be computed thanks to Lemma 3.4 and Proposition 3.5. By Lemma 3.3, it determines
completely the distribution of the process G. However, making the covariance of G explicit out
of the covariance of the process of (5) is a very delicate problem, and we shall only stay at
a quite vague level, saying that it can be deduced from the proof of Proposition 3.5 that the
variances of the one-dimensional marginals of G are increasing functions of limn→∞ E[|x1,2|4].
More specifically, one can deduce from Lemma 3.4 and Proposition 3.5 that for all 0 ≤ s1, s2 ≤ 1,

Cov
(∫ 2

u=−2
u2Gs1,Fsemicircle(u)du,

∫ 2

u=−2
u2Gs2,Fsemicircle(u)du

)
=
E[|x1,2|4]− 1

4
(min{s1, s2} − s1s2).

Remark 2.9. Comments on the hypotheses of Theorem 2.6 (1). In order to prove
the convergence in the Skorokhod topology, we had to make several hypotheses on the atom
distributions: absolute continuity, moments of all orders and coincidence of their 10 (on the
diagonal) and 12 (above the diagonal) first moments with the ones of a GOE or GUE matrix.
We needed these assumptions to control the discontinuities of the process Bn. Even though
these hypotheses might not be optimal (especially the continuity one), a bound on the tails
of the atom distributions seems to be necessary to avoid too large variations of the process
Bn. Indeed, as illustrated by Figure 1, for a GOE matrix (left picture), |ui,j |2 is close to 1/n
for all i, j with high probability, whereas when the atom distributions have not more than a
second moment (right picture), the matrix Xn looks more like a sparse matrix, and so does Un,
which implies that for certain (i, j)’s, |ui,j |2 − 1/n is not small enough. Since |ui,j |2 − 1/n is
the jump of the process Bn at (s, t) = (i/n, j/n), this could be an obstruction to the existence
of a continuous limit for the process Bn. That being said, we have hopes to prove the theorem
under Assumption 2.5 for m = 4 instead of m = 12 (see Remark 2.11 bellow).

Note that it follows from the previous theorem that for all 0 ≤ s < s′ ≤ 1 and 0 ≤ t < t′ ≤ 1,
the sequence of random variables

1√
(s′ − s)(t′ − t)

∑
ns<i≤ns′
nt<j≤nt′

(|ui,j |2 − 1/n)
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Figure 1. Influence of the tails of the atom distributions of Xn on the
|ui,j |’s: Plot of the map (i/n, j/n) 7−→ ||ui,j |2 − 1/n| for two different choices
of atom distributions. Left: GOE matrix. Right: Wigner matrix with atom
distribution admitting moments only up to order 2 + ε for a small ε. For both
pictures, the matrices are n× n with n = 50.

admits a limit in distribution as n → ∞, hence is bounded in probability (in the sense of [23,
Def. 1.1]). In the same way, it follows from [19] and [25] that the sequence n|ui,j |2−1 is bounded
in probability. In the next proposition, we improve these assertions by making them uniform
on s, s′, t, t′, i, j and upgrading them to the L2 and L4 levels. The proof of the proposition is
postponed to Section 4.5.

Proposition 2.10. Suppose that Assumptions 2.1, 2.4 and 2.5 for m = 4 are satisfied. Then
as n→∞, the sequences

(6) n|ui,j |2 − 1 and
1√

(s′ − s)(t′ − t)

∑
ns<i≤ns′
nt<j≤nt′

(|ui,j |2 − 1/n)

are bounded for the respective L4 and L2 norms, uniformly in s < s′, t < t′, i, j.

Remark 2.11. Comments on the hypotheses of Theorem 2.6 (2). This proposition is
almost sufficient to apply the tightness criterion that we use in this paper. Would the second
term of (6) have been bounded for the L2+ε norm (instead of L2), Assumption 2.5 for m = 4
would have been enough to prove that Bn converges in distribution, for the Skorokhod topology
in D([0, 1]2), to the bivariate Brownian bridge.

3. Proofs of Theorems 2.3 and 2.6

3.1. Outline of the proofs. Firstly, Theorem 2.6 can be deduced from Theorem 2.3 by proving
that the sequence (distribution(Bn))n≥1 is tight and only has C([0, 1]2)-supported accumulation
points. This can be done via some upper bounds on the fourth moment of the increments of
Bn and on its jumps (or discontinuities). These bounds are given in the proof of Lemma 3.1
below, and rely on the existing bounds in the case where Xn is a GOE or GUE matrix and on
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the “one-by-one entries replacement method” developed by Terence Tao and Van Vu in recent
papers, such as [24, 25].

Secondly, the proof of Theorem 2.3 relies on the following remark, inspired by some ideas
of Jack Silverstein (see [2, Chap. 10] and [21]): even though we do not have any “direct
access” to the eigenvectors of Xn, we have access to the process (Bn

s,FµXn
(u))s∈[0,1],u∈R, for

FµXn (u) := 1
n]{i ; λi ≤ u}. Indeed,

Bn
s,FµXn

(u) =

√
β

2

∑
1≤i≤ns

∑
1≤j≤n

s.t. λj≤u

(|ui,j |2 − 1/n),

hence for all fixed s ∈ [0, 1], the function u ∈ R 7−→ Bn
s,FµXn

(u) is the cumulative distribution
function of the signed measure

(7)

√
β

2

∑
1≤i≤ns

n∑
j=1

(|ui,j |2 − 1/n)δλj ,

which can be studied via its moments∑
1≤i≤ns

(
e∗iX

k
nei −

1
n

TrXk
n

)
(k ≥ 1),

the ei’s being the vectors of the canonical basis. From the asymptotic behavior of the moments
of the signed measure of (7), one can then find out the asymptotic behavior of its cumulative
distribution function.

Once the asymptotic distribution of the process (Bn
s,FµXn

(u))s∈[0,1],u∈R identified, one can

obtain the asymptotic distribution of the process (Bn
s,t)s∈[0,1],t∈[0,1] because the function FµXn

tends to the (non random) cumulative distribution function Fsemicircle of the semicircle law.

3.2. Formal proofs. By a standard tightness + uniqueness of the accumulation point argument,
Theorem 2.6 will follow from the following lemma and Theorem 2.3. The proof of the lemma is
postponed to Section 4.5.

Lemma 3.1. Under Assumptions 2.1, 2.4 and 2.5 for m = 12, the sequence (distribution(Bn))n≥1

is C-tight, i.e. is tight and has only C([0, 1]2)-supported accumulation points.

So let us now prove Theorem 2.3 under Assumptions 2.1 and 2.2. Note that it suffices to prove
that the sequence (distribution(Bn))n≥1 has a unique possible accumulation point supported
by C([0, 1]2) and that this accumulation point is the distribution of a centered Gaussian process
which depends on the distributions of the xi,j ’s only through limn→∞ E[|x1,2|4] (and actually
does depend on limn→∞ E[|x1,2|4]). Indeed, in this case, by Theorem 1.1 of [10], where the case
of GOE and GUE matrices is treated, this limit distribution is the bivariate Brownian bridge if
and only if limn→∞ E[|x1,2|4] is the same as for Xn a GOE or GUE matrix, i.e. equal to 4− β.

The following proposition is the key of the proof, since it allows to transfer the problem from
the eigenvectors to some more accessible objects: the weighted spectral distributions of Xn.
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Proposition 3.2. Let ei denote the ith vector of the canonical basis. To prove Theorem 2.3, it
suffices to prove that each finite-dimentional marginal distribution of the process ∑

1≤i≤ns

(
e∗iX

k
nei −

1
n

TrXk
n

)
s∈[0,1],k≥1

converges to a centered Gaussian measure and that the covariance of the limit process depends
on the distributions of the xi,j’s only through limn→∞ E[|x1,2|4] and actually does depend on
limn→∞ E[|x1,2|4].

Proof. Let µXn := 1
n

∑n
i=1 δλi be the empirical spectral law ofXn and FµXn (u) := 1

n]{i ; λi ≤ u}
be its cumulative distribution function. It is a well known result [2, Th. 2.5] that FµXn converges
in probability, as n tends to infinity, to the cumulative distribution function Fsemicircle of the
semicircle law in the space Dc(R, [0, 1]) (see Section 4.1 for the definitions of the functional
spaces and their topologies). Moreover, the map

D0([0, 1]2)×Dc(R, [0, 1]) −→ Dc([0, 1]× R)
((Gs,t)s,t∈[0,1], (g(u))u∈R) 7−→ (Gs,g(u))(s,u)∈[0,1]×R

is continuous at any pair of continuous functions. Hence for any continuous process (Bs,t)s,t∈[0,1]

whose distribution is an accumulation point of the sequence (distribution(Bn))n≥1 for the Sko-
rokhod topology in D([0, 1]2), the process

(Bn
s,FµXn

(u))(s,u)∈[0,1]×R

converges in distribution (up to the extraction of a subsequence) to the process

(Bs,Fsemicircle(u))(s,u)∈[0,1]×R

(for the reader who is not used to weak convergence of probability measures, this assertion relies
on two results which can be found in [5]: Theorem 4.4 and Corollary 1 of Theorem 5.1 in Chapter
1). Now, note that Fsemicircle : R→ [0, 1] admits a right inverse, so the distribution of the process
(Bs,t)s,t∈[0,1] is entirely determined by the one of the process (Bs,Fsemicircle(u))(s,u)∈[0,1]×R.

As a consequence, to prove Theorem 2.3, it suffices to prove that the sequence

(8)
(

distribution((Bn
s,FµXn

(u))(s,u)∈[0,1]×R)
)
n≥1

has a unique possible Cc([0, 1]× R)-supported accumulation point as n→∞.

Now, note that any f ∈ Cc([0, 1]×R) is entirely determined by the collection of real numbers
(
∫
u∈R u

kf(s, u)du)s∈[0,1],k≥0. Let us prove that this fact remains true in the “distribution sense”
in the case where f is random. More precisely, let us prove the following lemma.

Lemma 3.3. Let f be a random variable taking values in Cc([0, 1]×R) such that with probability
one, f(s, u) = 0 when |u| > 2. Then the distribution of f is entirely determined by the finite
dimensional marginals of the process

(9)
(∫

u∈R
ukf(s, u)du

)
s∈[0,1],k≥0

.

Moreover, in the case where the finite dimensional marginals of the process of (9) are Gaussian
and centered, then so are the ones of f .
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Proof. Let us fix (s, u0) ∈ [0, 1] × [−2, 2] and let, for each p ≥ 1, (Pp,q)q≥1 be a sequence of
polynomials that is uniformly bounded on [−3, 3] and that converges pointwise to 1[u0,u0+1/p]

on [−3, 3]. Then one has, with probability one,

f(s, u0) = lim
p→∞

p

∫ u0+1/p

u0

f(s, u)du = lim
p→∞

lim
q→∞

p

∫
u∈R

Pp,q(u)f(s, u)du.

This proves the lemma, because any almost sure limit of a sequence of variables belonging to a
space of centered Gaussian variables is Gaussian and centered. �

Since the fourth moment of the entries of Xn is bounded, by e.g. [2, Th. 5.1], we know that
the extreme eigenvalues of Xn converge to −2 and 2. As a consequence, for any random variable
f taking values in Cc([0, 1]× R) such that the distribution of f is a limit point of the sequence
of (8), we know that with probability one, f(s, u) = 0 when |u| > 2.

As a consequence, it follows from the previous lemma and from what precedes that to prove
Theorem 2.3, it suffices to prove that each finite dimensional marginal distribution of the process(∫

u∈R
ukBn

s,FµXn
(u)du

)
s∈[0,1],k≥0

converges to a centered Gaussian measure and that the covariance of the limit process depends
on the distributions of the xi,j ’s only through limn→∞ E[|x1,2|4] and actually does depend on
limn→∞ E[|x1,2|4].

But for all (s, u) ∈ [0, 1]× R,

Bn
s,FµXn

(u) =

√
β

2

∑
1≤i≤ns

∑
1≤j≤n

s.t. λj≤u

(|ui,j |2 − 1/n),

hence

(10) Bn
s,FµXn

(u) =

√
β

2

∑
1≤i≤ns

FµXn,ei−µXn (u),

where:

• µXn is still the empirical spectral law of Xn,
• µXn,ei is the weighted spectral law of Xn, defined by µXn,ei :=

∑n
j=1 |ui,j |2δλj ,

• FµXn,ei−µXn is the cumulative distribution function of the null-mass signed measure
µXn,ei − µXn .

The following lemma will allow to conclude the proof of Proposition 3.2.

Lemma 3.4. Let µ be a compactly supported null-mass signed measure and set Fµ(u) :=
µ((−∞, u]). Then for all k ≥ 0,∫

u∈R
ukFµ(u)du = −

∫
x∈R

xk+1

k + 1
dµ(x).

Proof. Let a < b be such that the support of µ is contained in the open interval (a, b). Fµ is
null out of (a, b) and satisfies Fµ(u) = −µ((u, b)), so by Fubini’s Theorem,∫
u∈R
ukFµ(u)du =

∫ b

x=a

∫ x

u=a
−ukdudµ(x) =

∫ b

x=a

−xk+1

k + 1
dµ(x) +

ak+1

k + 1
µ((a, b)) =

∫ b

x=a

−xk+1

k + 1
dµ(x).
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�

It follows from this lemma and from (10) that for all s ∈ [0, 1], k ≥ 0,∫
u∈R

ukBn
s,FµXn

(u)du =
−1
k + 1

√
β

2

∑
1≤i≤ns

(
e∗iX

k+1
n ei −

1
n

TrXk+1
n

)
,

which proves Proposition 3.2. �

Now, Theorem 2.3 is a direct consequence of the following proposition, whose proof is post-
poned below to Section 4.2.

Proposition 3.5. Under Assumptions 2.1 and 2.2, each finite-dimentional marginal distribution
of the process  ∑

1≤i≤ns
(e∗iX

k
nei −

1
n

Tr(Xk
n))


s∈[0,1],k≥1

converges to a centered Gaussian measure. The covariance of the limit distribution, denoted by

(Covs1,s2(k1, k2))s1,s2∈[0,1],k1,k2≥1 ,

depends on the distributions of the xi,j’s only through limn→∞ E[|x1,2|4]. Moreover, we have

Covs1,s2(2, 2) = ( lim
n→∞

E[|x1,2|4]− 1)(min{s1, s2} − s1s2).

4. Proofs of the technical results

4.1. Functional spaces and associated topologies. In this paper, we use several functional
spaces:

• C([0, 1]2) (resp. Cc([0, 1] × R)) is the set of continuous functions on [0, 1]2 (resp. com-
pactly supported continuous function on [0, 1]×R), endowed with the uniform convergence
topology.

• Dc(R, [0, 1]) is the set of compactly supported càdlàg functions on R taking values in
[0, 1], endowed with the topology defined by the fact that fn −→ f if and only if the
bounds of the support of fn tend to the ones of the support of f and for all M > 0, after
restriction to [−M,M ], fn −→ f (the topology of D([−M,M ]) being deduced from the
one of D([0, 1]) defined in [5]).

• D([0, 1]2) (resp. Dc([0, 1]×R)) is the set of functions f : [0, 1]2 → R (resp. of compactly
supported functions f : [0, 1]×R→ R) admitting limits in all “orthants”, more precisely
such that for each s0, t0, for each pair of symbols �, �′ ∈ {<,≥},

lim
s�s0
t�′t0

f(s, t)

exists, and is equal to f(s0, t0) if both � and �′ are ≥. The space D([0, 1]2) is endowed
with the Skorokhod topology defined in [4] and the space Dc([0, 1] × R) is endowed
with the topology defined by fn −→ f if and only if for all M > 0, after restriction to
[0, 1]× [−M,M ], fn −→ f (the topology of D([0, 1]× [−M,M ]) being deduced from the
one of D([0, 1]2)).
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• D0([0, 1]2) is the set of functions in D([0, 1]2) vanishing at the border of [0, 1]2, endowed
with the induced topology.

4.2. Proof of Proposition 3.5. Note that by invariance of the law of Xn under conjugation
by any permutation matrix, the expectation of the random law µXn,ei does not depend on i. So
for all s ∈ [0, 1], k ≥ 1,
(11)∑
1≤i≤ns

(e∗iX
k
nei −

1
n

Tr(Xk
n)) =

∑
1≤i≤ns

(e∗iX
k
nei − E[e∗iX

k
nei])−

bnsc
n

∑
1≤i≤n

(e∗iX
k
nei − E[e∗iX

k
nei]).

Hence we are led to study the limit, as n→∞, of the finite-dimentional marginal distributions
of the process

(12)

 ∑
1≤i≤ns

(e∗iX
k
nei − E[e∗iX

k
nei])


s∈[0,1],k≥1

The random variables of (12) are going to be studied via their joint moments. So let us fix
p ≥ 1, s1, . . . , sp ∈ [0, 1] and k1, . . . , kp ≥ 1. We shall study the limit, as n tends to infinity, of

(13) E[
p∏
`=1

∑
1≤i≤ns`

(e∗iX
k`
n ei − E[e∗iX

k`
n ei])].

We introduce the set

(14) E := {01
, . . . . . . , k1

1} ∪ · · · · · · · · · · · · ∪ {0p, . . . . . . , kp
p},

where the sets {01
, 11

, . . .}, {02
, 12

, . . .}, . . . . . . , {0p, 1p, . . .} are p disjoint copies of the set of
nonnegative integers. The set E is ordered as presented in (14). For each partition π of E , for
each x ∈ E , we denote by π(x) the index of the class of x, after having ordered the classes
according to the order of their first element (for example, π(11) = 1; π(21) = 1 if 11 π∼ 21 and
π(21) = 2 if 11 π� 21).

By Assumption 2.1, the expectation of (13) can be expanded and expressed as a sum on the
set Part(E) of partitions of the set E introduced above. We get

E[
∏p
`=1

∑
1≤i≤ns`(e

∗
iX

k`
n ei − E[e∗iX

k`
n ei])] =(15)

n−
k1+···+kp

2
∑

π∈Part(E)
A(n, π)E

[∏p
`=1

(
x
π(0

`
),π(1

`
)
· · ·x

π(k`−1
`
),π(k`

`
)
− E[x

π(0
`
),π(1

`
)
· · ·x

π(k`−1
`
),π(k`

`
)
]
)]
,

where for each π ∈ Part(E), A(n, π) is the number of families of indices of

(i
0
1 , . . . , i

k1
1 , i

0
2 , . . . , i

k2
2 , . . . . . . . . . , i0p , . . . , ikp

p) ∈ {1, . . . , n}E

whose level sets partition is π and who satisfy, for each ` = 1, . . . , p,

(16) 1 ≤ i
0
` = i

k`
` ≤ ns`.

For any π ∈ Part(E), let us define Gπ to be the graph with vertex set the set {π(x) ; x ∈ E}
and edge set

Eπ := { {π(m− 1`), π(m`)} ; 1 ≤ ` ≤ p, m ∈ {1, . . . , k`} }.

For the term associated to π in (15) to be non zero, we need to have:
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(i) π(0`) = π(k`
`) for each ` = 1, . . . , p,

(ii) each edge of Gπ is visited at least twice by the union of the p paths (π(0`), . . . . . . , π(k`
`))

(` = 1, . . . , p),
(iii) for each ` = 1, . . . , p, the exists `′ 6= ` such that at least one edge of Gπ is visited by

both paths (π(0`), . . . . . . , π(k`
`)) and (π(0`

′
), . . . . . . , π(k`′

`′)).

Indeed, (i) is due to (16), (ii) is due to the fact that the xi,j ’s are centered and (iii) is due to
the fact the the xi,j ’s are independent.

Let us define a function s(·) on the set E in the following way: for each ` = 1, . . . , p and each
m = 0, . . . , k`, set

s(m`) =

{
s` if m = 0 or m = k`,
1 otherwise,

and

(17) sπ :=
∏

B bloc of π

min
x∈B

s(x).

Then one can easily see that, as n→∞,

(18) A(n, π) ∼ sπn|π|.

Thus for π to have a non zero asymptotic contribution to (15), we need the following condition,
in addition to (i), (ii) and (iii):

(iv) k1+···+kp
2 ≤ |π|.

The following lemma is a generalization of [1, Lem. 2.1.34]. Its proof goes along the same
lines as the proof of the former.

Lemma 4.1. Let π ∈ Part(E) satisfy (i), (ii), (iii). The the number cπ of connected components
of Gπ is such that cπ ≤ p/2 and

|π| ≤ cπ −
p

2
+
k1 + · · ·+ kp

2
.

As a consequence, if π also satisfies (iv), we have

(a) cπ = p/2,
(b) p is even,
(c) |π| = k1+···+kp

2 (so that k1 + · · ·+ kp is also even).

Note also that by (ii), we also have

(d) |Eπ| ≤ k1+···+kp
2 .

To sum up, by (15) and (18), we have

limn→∞ E[
∏p
`=1

∑
1≤i≤ns`(e

∗
iX

k`
n ei − E[e∗iX

k`
n ei])] =(19)∑

π sπ limn→∞ E
[∏p

`=1

(
x
π(0

`
),π(1

`
)
· · ·x

π(k`−1
`
),π(k`

`
)
− E[x

π(0
`
),π(1

`
)
· · ·x

π(k`−1
`
),π(k`

`
)
]
)]
,

where the sum is taken over the partitions π of E which satisfy (i), (ii), (iii) and (iv) above, and
such partitions also do satisfy (a), (b), (c) and (d) above.
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Case where p is odd: By (b), we know that when p is odd, there is no partition π satisfying
the above conditions. So by (19),

lim
n→∞

E[
p∏
`=1

∑
1≤i≤ns`

(e∗iX
k`
n ei − E[e∗iX

k`
n ei])] = 0.

Case where p = 2: In this case, by (a), for each partition π satisfying (i), (ii), (iii) and (iv),
Gπ is connected, so that |π| − 1 ≤ |Eπ|. Hence by (c) and (d), |Eπ| is either equal to k1+k2

2 or
to k1+k2

2 − 1.

In the case where |Eπ| = k1+k2
2 − 1, the graph Gπ has exactly one more vertex than edges,

hence is a tree. As a consequence, the paths (π(01), . . . . . . , π(k1
1)) and (π(02), . . . . . . , π(k2

2)),
which have the same beginning and ending vertices, have the property to visit an even number
of times each edge they visit. By an obvious cardinality argument, only one edge is visited more
than twice, and it is visited four times (twice in each sense). The other edges are visited once
in each sense. It follows that the expectation associated to π in (19) is equal to E[|x1,2|4]− 1.

In the case where |Eπ| = k1+k2
2 , by a cardinality argument again, we see that each edge of Gπ

is visited exactly twice (in fact, the configuration is the one described in [1, Sect. 2.1.7], where
Gπ is a bracelet). It follows that the expectation associated to π in (19) is equal to 1.

As a consequence, as n tends to infinity,

E

 ∑
1≤i≤ns1

(e∗iX
k1
n ei − E[e∗iX

k1
n ei])×

∑
1≤i≤ns2

(e∗iX
k2
n ei − E[e∗iX

k2
n ei])


converges to a number that we shall denote by

(20) Covcentered
s1,s2 (k1, k2)

and which depends on the distributions of the xi,j ’s only through limn→∞ E[|x1,2|4].

Case where p is > 2 and even: By (a) above, for each partition π satisfying (i), (ii), (iii) and
(iv), Gπ has exactly p/2 connected components. By (iii), each of them contains the support of
exactly two of the p paths

(21) (π(0`), . . . . . . , π(k`
`)) (` = 1, . . . , p).

Let us define σπ to be the matching (i.e. a permutation all of whose cycles have length two) of
{1, . . . , p} such that for all ` = 1, . . . , p, the paths with indices ` and σπ(`) of the collection (21)
above are supported by the same connected component of Gπ.

We shall now partition the sum of (19) according to the value of the matching σπ defined by
π. We get

limn→∞ E[
∏p
`=1

∑
1≤i≤ns`(e

∗
iX

k`
n ei − E[e∗iX

k`
n ei])] =∑

σ

∑
π sπ limn→∞ E

[∏p
`=1

(
x
π(0

`
),π(1

`
)
· · ·x

π(k`−1
`
),π(k`

`
)
− E[x

π(0
`
),π(1

`
)
· · ·x

π(k`−1
`
),π(k`

`
)
]
)]
,

where the first sum is over the matchings σ of {1, . . . , p} and the second sum is over the partitions
π satisfying (i), (ii), (iii) and (iv) such that σπ = σ.

Note that for each matching σ of {1, . . . , p}, the set of partitions π of E such that σπ = σ can
be identified with the cartesian product, indexed by the set of cycles {`, `′} of σ, of the set of
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partitions τ of the set

E`,`′ := {0`, . . . . . . , k`
`} ∪ {0`

′
, . . . . . . , k`′

`′} (subset of E)

satisfying the following conditions

(i.2) τ(0`) = τ(k`
`) and τ(0`

′
) = τ(k`′

`′),
(ii.2) each edge of the graphGτ is visited at least twice by the union of the 2 paths (τ(0`), . . . . . . , τ(k`

`))
and (τ(0`

′
), . . . . . . , τ(k`′

`′)),
(iii.2) at least one edge of Gτ is visited by both previous paths,
(iv.2) k`+k`′

2 ≤ |τ |.

Moreover, by independence of the random variables xi,j ’s, the expectation

E

[
p∏
`=1

(
x
π(0

`
),π(1

`
)
· · ·x

π(k`−1
`
),π(k`

`
)
− E[x

π(0
`
),π(1

`
)
· · ·x

π(k`−1
`
),π(k`

`
)
]
)]

factorizes along the connected components of Gπ. The factor sπ, defined in (17), also factorizes
along the connected components of Gπ. It follows that we have

limn→∞ E[
∏p
`=1

∑
1≤i≤ns`(e

∗
iX

k`
n ei − E[e∗iX

k`
n ei])] =∑

σ

∏
{`,`′} limn→∞ E

[∑
1≤i≤ns`(e

∗
iX

k`
n ei − E[e∗iX

k`
n ei])×

∑
1≤i≤ns`′

(e∗iX
k`′
n ei − E[e∗iX

k`′
n ei])

]
,

where the sum is over the matchings σ of {1, . . . , p} and for each such σ, the product is over the
cycles {`, `′} of σ.

By the definition of Covcentered
s1,s2 (k1, k2) in (20), we get

lim
n→∞

E[
p∏
`=1

∑
1≤i≤ns`

(e∗iX
k`
n ei − E[e∗iX

k`
n ei])] =

∑
σ matching

∏
{`, `′} cycle of σ

Covcentered
s`,s`′

(k`, k`′).

By Vick’s formula and Equation (11), we have proved the first part of Proposition 3.5.

Computation of Covss1,s2(2, 2): We have, by the paragraph devoted to the case p = 2 above,

Covcentered
s1,s2 (2, 2) =

∑
π,Gπ is a tree

sπ × ( lim
n→∞

E[|x1,2|4]− 1) +
∑

π,Gπ is a bracelet

sπ.

There is exactly one tree and zero bracelet with 2 vertices. We represent this tree in the following
way: • − ◦. There are two associated partitions π:

- the first one is defined by

(π(01), π(11), π(21)) = (π(02), π(12), π(22)) = (•, ◦, •),
and satisfies sπ = min{s1, s2},

- the second one is defined by

(π(01), π(11), π(21)) = (•, ◦, •) , (π(02), π(12), π(22)) = (◦, •, ◦),
and satisfies sπ = s1s2.

As a consequence, Covcentered
s1,s2 (2, 2) = (limn→∞ E[|x1,2|4]− 1)(min{s1, s2}+ s1s2).

From this formula and Equation (11), we easily deduce the formula of Covs1,s2(2, 2). It
concludes the proof of Proposition 3.5. �
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4.3. A preliminary result for the proofs of Proposition 2.10 and Lemma 3.1. Propo-
sition 4.3 below will allow to prove Lemma 3.1. Let us now consider two independent Wigner
matrices Xn, X

′
n. Let us introduce a modified version of Assumption 2.5, also depending on an

integer m ≥ 2:

Assumption 4.2. For each k ≥ 1, supn E[|x1,1|k + |x1,2|k + |x′1,1|k + |x′1,2|k] < ∞. Moreover,
there exists ε0 > 0 such that for each r, s ≥ 0,

(22) r + s ≤ m− 2 =⇒ E[<(x1,1)r=(x1,1)s]− E[<(x′1,1)r=(x′1,1)s] = O(n−ε0+1+ r+s−m
2 )

and

(23) r + s ≤ m =⇒ E[<(x1,2)r=(x1,2)s]− E[<(x′1,2)r=(x′1,2)s] = O(n−ε0+ r+s−m
2 ).

Let U ′n = [u′i,j ]
n
i,j=1 be the associated eigenvectors matrix of a matrix X ′n (like Un = [ui,j ]ni,j=1

for Xn).

Proposition 4.3. We suppose that Xn, X ′n both satisfy Assumptions 2.1 and 2.4, and sat-
isfy Assumption 4.2. Let us fix a positive integer k and a polynomial function G on Ck.
For each n, let us consider a collection (i1, p1, q1), . . . , (ik, pk, qk) ∈ {1, . . . , n}3 (this collec-
tion might depend on n). Then for a certain constant C independent of n and of the choices of
(i1, p1, q1), . . . , (ik, pk, qk) (but depending on k and on G)

(24) | E[G(nup1,i1uq1,i1 , . . . , n upk,ikuqk,ik)]− E[G(nu′p1,i1u
′
q1,i1 , . . . , n u

′
pk,ik

u′qk,ik)] | ≤ Cn2−m
2 .

Proof. The proof follows the ideas developed by Terence Tao and Van Vu in recent papers,
such as [24, 25]. More precisely, it makes an intensive use of the strategy and of some estimations
given in [25].

An event E = E(n) depending on the parameter n will be said to be true with overwhelming
probability if for all c > 0, 1 − P(E) = O(n−c). One can neglect any such event in the proof of
(24) because G has polynomial growth and the entries of unitary matrices are bounded by 1.

By Assumption 2.5 and Chebyshev’s inequality, that for each k, as t→∞,

P(|xi,j | ≥ t) = O(t−k) (uniformly in i, j and n),

so that by the union bound, P(max1≤i,j≤n |xi,j | ≥ nε) = O(n2−kε) for any ε, k. Hence by what
precedes, for a fixed ε1 (a parameter fixed later), one can suppose that for each n, the xi,j ’s
satisfy |xi,j | ≤ nε1 for all i, j. Of course, one can also suppose that |x′i,j | ≤ nε1 for all i, j.

To prove (24), it suffices to prove that we can replace the xi,j ’s by the x′i,j ’s one by one up
to an error in the considered expectation which is O(n1−m

2 ) for each diagonal replacement and
O(n−

m
2 ) for each off-diagonal replacement (and, of course, that these bounds on the errors are

uniform in the n(n+1)
2 replacements).

So let us fix 1 ≤ p ≤ q ≤ n and define, for each z ∈ C (or z ∈ R if p = q), Ap,q(z) be the
matrix obtained by “mixing” the (rescaled) matrices Xn and X ′n in the following way:

• for each 1 ≤ i ≤ j ≤ n such that (i, j) is below (p, q) for the lexicographic order, the i, j
entry of Ap,q(z) and its symmetric one are the corresponding ones in the entries of nX ′n,
• the p, q entry of Ap,q(z) and its symmetric one are z and z,
• for each 1 ≤ i ≤ j ≤ n such that (i, j) is above (p, q) for the lexicographic order, the i, j

entry of Ap,q(z) and its symmetric one are the corresponding ones in the entries of nXn.
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We set U(z) = [ui,j(z)]ni,j=1 to be the eigenvectors matrix of Ap,q(z) and

F (z) := G(nup1,i1(z)uq1,i1(z), . . . , n upk,ik(z)uqk,ik(z)).

Let E[ · | Ap,q(0)] denote the conditional expectation with respect to the σ-algebra generated by
the entries of Ap,q(0). We have to prove that with overwhelming probability, we have, uniformly
on the probability space and on p, q,

(25) E[F (
√
nxp,q) | Ap,q(0)] = E[F (

√
nx′p,q) | Ap,q(0)] +O(n1p=q−

m
2 ).

To prove it, we shall use the Taylor expansion of F around zero. Let us for example treat the
case p 6= q. For |x| ≤ nε1 , we have

F (
√
nx) =

∑
r+s≤m

n
r+s
2

r!s!
∂r<(z)∂

s
=(z)F (0)<(x)s=(x)s+O

n(m+1)(ε1+1/2) sup
r+s=m+1
|z|≤nε1+1/2

|∂r<(z)∂
s
=(z)F (z)|

 .

Moreover, by [25, Propo. 20], we know that with overwhelming probability, Ap,q(0) is a good
configuration (in the sense of [25, Def. 18]). By Equation (27) of [25, Lem. 24], it implies that
with overwhelming probability, for all l = 1, . . . , k, for all r, s such that r + s ≤ 10,

sup
|z|≤n1/2+ε1

|∂r<(z)∂
s
=(z)(nupl,il(z)uql,il(z)|) = O(nε1−(r+s))

(in the statement of [25, Lem. 24], m must be bounded above by 10, but the bound 10 can be
replaced by any finite one). The function G is polynomial, let d be its degree. It follows that
with overwhelming probability, for all r, s, we have

sup
|z|≤n1/2+ε1

|∂r<(z)∂
s
=(z)F (z)| = O(ndε1−(r+s)).

As a consequence, by the bounds of (23),

E[F (
√
nxp,q) | Ap,q(0)]− E[F (

√
nx′p,q) | Ap,q(0)] =

∑
r+s≤m

O(ndε1−
m
2
−ε0) +O(n(m+1+d)ε1−m+1

2 )

Now, choosing ε1 small enough so that dε1 < ε0 and (m+ 1 + d)ε1 < 1/2, we get (25). �

4.4. Proof of Proposition 2.10. Let us first prove that E[(n|ui,j |2 − 1)4] is bounded inde-
pendently of i, j and n. To do so, let us apply Proposition 4.3 for X ′n a GOE or GUE matrix
and m = 4: it allows to reduce the problem to the case where the ui,j ’s are the entries of a
Haar-distributed matrix. In this case, the distribution of ui,j does not depend on i, j and it
is well known that the moments of

√
nu1,1 converge to the ones of a standard real or complex

Gaussian variable. We did not find any concise enough reference for this moments convergence,
but in the unitary case, Proposition 3.4 of [3] allows to compute E[(n|u1,1|2 − 1)4] and to verify
its boundedness. To treat the orthogonal case, the most direct way to compute E[(n|u1,1|2−1)4]
is to use the fact that u2

1,1 has the same distribution as Z2
1/(Z

2
1 + · · ·+ Z2

n) for Zi independent
standard Gaussian variables (see e.g. [18, Lem. 2.1]) and then to use [18, Lem. 2.4].

Let us now prove that there is a constant C independent of n and of 0 ≤ s < s′ ≤ 1 and
0 ≤ t < t′ ≤ 1 such that

(26) E[{
∑

ns<i≤ns′

∑
nt<j≤nt′

(|ui,j |2 − 1/n)}2] ≤ C(s′ − s)(t′ − t).
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Set I = {i = 1, . . . , n ; ns < i ≤ ns′} and J = {j = 1, . . . , n ; nt < j ≤ nt′}. We have

E[{
∑

i∈I,j∈J
(|ui,j |2 − 1/n)}2] = n−2

∑
(i`,j`)

2
`=1∈(I×J)2

E[
2∏
`=1

(n|ui`,j` |
2 − 1)].

Let us now apply Proposition 4.3 for X ′n a GOE or GUE matrix and m = 4. Let U ′n = [u′i,j ]
n
i,j=1

be a Haar-distributed orthogonal or unitary matrix. By Proposition 4.3, we have

E[{
∑

i∈I,j∈J
(|ui,j |2 − 1/n)}2] = n−2O(n−2(]I × J)2) + n−2

∑
(i`,j`)

2
`=1∈(I×J)2

E[
2∏
`=1

(n|u′i`,j` |
2 − 1)],

where the term n−2O(n−2(]I × J)2) is uniform in s, s′, t, t′, hence is bounded, for a certain
constant C1, by C1(s′ − s)2(t′ − t)2 ≤ C1(s′ − s)(t′ − t). So it suffices to prove the result for U ′n
instead of Un. Since each |u′i,j |2 has expectation 1/n,

E[
2∏
`=1

(n|u′i`,j` |
2 − 1)] = n2E[|u′i1,j1 |

2|u′i2,j2 |
2]− 1.

Then, to compute E[|u′i1,j1 |
2|u′i2,j2 |

2], one uses the Weingarten calculus, developed in [8, 9]. By
the formulas of [9, Sec. 6] for the orthogonal group and [8, Sec. 5.2] for the unitary group,

Wgortho(Id{1,2}) =
n+ 1

n(n− 1)(n+ 2)
, Wgortho((12)) =

1
n(n− 1)(n+ 2)

,

Wgunit(Id{1,2}) =
1

n2 − 1
, Wgunit((12)) =

−1
n(n2 − 1)

,

(where (12) denotes the transposition with support {1, 2}), one can easily verify that

n2E[|u′i1,j1 |
2|u′i2,j2 |

2]− 1 =


O(n−2) if i1 6= i2, j1 6= j2,
O(n−1) if (i1 = i2, j1 6= j2) or (i1 6= i2, j1 = j2),
O(1) if i1 = i2, j1 = j2,

which is enough to deduce (26).

4.5. Proof of Lemma 3.1. To prove Lemma 3.1, we shall use the following proposition, which
is the obvious multidimentional generalization of Proposition 3.26 of Chapter VI of [16] (note
also that the result of [16] is devoted to pocesses on [0,∞) and not on [0, 1], so that the N of
[16] means nothing to us).

For f ∈ D([0, 1]2) and (s0, t0) ∈ [0, 1]2, we define ∆s0,t0f to be the maximal jump of f at
(s0, t0), i.e.

∆s0,t0f := max
�,�′∈{<,≥}

∣∣∣∣∣∣f(s0, t0)− lim
s�s0
t�′t0

f(s, t)

∣∣∣∣∣∣ .
Proposition 4.4. If the sequence (distribution(Bn))n≥1 is tight and satisfies

(27) ∀ε > 0, P( sup
(s,t)∈[0,1]2

∆s,tB
n > ε) −→

n→∞
0,

then the sequence (distribution(Bn))n≥1 is C-tight, i.e. is tight and can only have C([0, 1]2)-
supported accumulation points.
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So to prove Lemma 3.1, let us first prove that the sequence (distribution(Bn))n≥1 is tight.
Note that the process Bn vanishes at the border of [0, 1]2. So according to [4, Th. 3] and
to Cauchy-Schwartz inequality, it suffices to prove that there is C < ∞ such that for n large
enough, for all s < s′, t < t′ ∈ [0, 1],

E[{
∑

ns<i≤ns′

∑
nt<j≤nt′

(|ui,j |2 − 1/n)}4] ≤ C(s′ − s)2(t′ − t)2.

As in the proof of (26) above, one can suppose that the ui,j ’s are the entries of a Haar-distributed
matrix. But in this case, the job has already been done in [10]: the unitary case is treated
in Section 3.4.1 (see specifically Equation (3.25)) and the orthogonal case is treated, more
elliptically, in Section 4.5 (to recover the details of the proof, join Equations (3.26), (4.5) and
(4.17)).

Let us now prove (27). Note that sup(s,t)∈[0,1]2 ∆s,tB
n = max1≤i,j≤n ||ui,j |2 − 1/n|. As a

consequence, by the union bound, it suffices to prove that for each ε > 0, there is C < ∞
independent of i, j and n such that for all i, j,

P(||ui,j |2 − 1/n| > ε) ≤ Cn−4,

which follows from Chebyshev’s inequality and Proposition 2.10. �
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