On the Language of Standard Discrete Planes and Surfaces - Archive ouverte HAL
Communication Dans Un Congrès Année : 2004

On the Language of Standard Discrete Planes and Surfaces

Résumé

A standard discrete plane is a subset of Z^3 verifying the double Diophantine inequality mu =< ax+by+cz < mu + omega, with (a,b,c) != (0,0,0). In the present paper we introduce a generalization of this notion, namely the (1,1,1)-discrete surfaces. We first study a combinatorial representation of discrete surfaces as two-dimensional sequences over a three-letter alphabet and show how to use this combinatorial point of view for the recognition problem for these discrete surfaces. We then apply this combinatorial representation to the standard discrete planes and give a first attempt of to generalize the study of the dual space of parameters for the latter [VC00].
Fichier principal
Vignette du fichier
iwcia04.pdf (253.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00580574 , version 1 (28-03-2011)

Identifiants

  • HAL Id : hal-00580574 , version 1

Citer

Damien Jamet. On the Language of Standard Discrete Planes and Surfaces. IWCIA 2004, Dec 2004, Auckland, New Zealand. pp.232-247. ⟨hal-00580574⟩
118 Consultations
114 Téléchargements

Partager

More