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On the Language of Standard Disrete Planesand SurfaesDamien JametLIRMM, Université Montpellier II, 161 rue Ada, 34392 Montpellier Cedex 5 - Franejamet�lirmm.frAbstrat A standard disrete plane is a subset of Z3 verifying the dou-ble Diophantine inequality µ ≤ ax + by + cz < µ + ω, with (a, b, c) 6=
(0, 0, 0). In the present paper we introdue a generalization of this no-tion, namely the (1, 1, 1)-disrete surfaes. We �rst study a ombinatorialrepresentation of disrete surfaes as two-dimensional sequenes over athree-letter alphabet and show how to use this ombinatorial point ofview for the reognition problem for these disrete surfaes. We thenapply this ombinatorial representation to the standard disrete planesand give a �rst attempt of to generalize the study of the dual spae ofparameters for the latter [VC00℄.IntrodutionThe works related to disrete lines and planes an be roughly divided in twokinds of approahes. In [And93℄, É. Andrès introdued the arithmeti disreteplanes, as a natural generalization of the arithmeti disrete lines introduedby J.P. Reveillès [Rév91℄. Sine then, using di�erent approahes, many authorshave investigated the reognition problem of disrete planes, that is, � given

V ⊆ Z3 a set of voxels, does there exist a disrete plane ontaining V? � (usinglinear programming [Meg84,PS85,VC00,Buz02℄, arithmeti struture [DRR96℄and Farey series [VC00℄). An interesting review of these algorithms an be foundin [BCK04℄.On the other hand, a wide literature has been devoted to the study of Stur-mian words, that is, the in�nite words over a binary alphabet whih have n + 1fators of length n [Lot02℄. These words are also equivalently de�ned as a disreteapproximation of a line with irrational slope. Then, many attempts have beeninvestigated to generalize this lass of in�nite words to two-dimensional words.For instane, in [Vui98,BV00b,ABS04℄, it is shown that the orbit of an element
µ ∈ [0, 1[ under the ation of two rotations odes a standard disrete plane. Fur-thermore, the generating problem of one or two-dimensional words haraterizingdisrete lines or planes is investigated in [BV00b,Lot02,ABS04,BT04℄.Let us now introdue some basi notions and notation used in the presentpaper. Let {−→e1 ,

−→e2 ,−→e3} denote the anonial basis of the Eulidean spae R3. Anelement of Z3 is alled a voxel. It is usual to represent a voxel (x, y, z) ∈ Z3 asa unit ube of R3 entered in (x, y, z). Another equivalent representation is to



2onsider the unit ube {(x + λ1, y + λ2, z + λ3) | (λ1, λ2, λ3) ∈ [0, 1]}. In thepresent paper, for larity issues, we onsider the last representation.Let (a, b, c, µ, ω) ∈ R5. An arithmeti disrete plane with normal vetor
(a, b, c), with translation parameter µ, and with thikness ω, is the subset of
Z3 de�ned as follows:

P(a, b, c, µ, ω) =
{
(x, y, z) ∈ Z3 | µ ≤ ax + by + cz < µ + ω

}
. (1)If ω = max{|a|, |b|, |c|}, then P(a, b, c, µ, ω) is said to be a naive disrete plane.If ω = |a| + |b| + |c|, then P(a, b, c, µ, ω) is said to be a standard disrete plane.Considering the ation of the group of isometries on the set of the disrete planes,we an suppose, with no loss of generality, that 0 ≤ a ≤ b ≤ c and c 6= 0.It is well known that the naive disrete planes are funtional, that is, if 0 ≤

a ≤ b ≤ c, the naive disrete plane P (a, b, c, µ,max{|a|, |b|, |c|}) is in bijetionwith the integral points of the plane z = 0 by the projetion map πz : R3 →
{(x, y, z) ∈ R3 | z = 0} along the vetor (0, 0, 1). In a similar way, in [ABS04℄,it is shown that, given the a�ne orthogonal projetion along the vetor (1, 1, 1)onto the plane x + y + z = 0, namely π : R3 −→ {(x, y, z) ∈ R3 | x + y + z = 0},and given Γ = π

(
Z2

), then the restrition π : P(a, b, c, µ, |a| + |b| + |c|) −→ Γis a bijetion. In other words, any standard disrete plane an be reoded on aregular lattie (see Setion 1).From now on, let us denote P(a, b, c, µ) the standard disrete plane
P(a, b, c, µ, |a| + |b| + |c|). We all unit ube any translate of the fundamentalunit ube with integral verties, that is, any set (x, y, z) + C where (x, y, z) ∈ Z3and C is the fundamental unit ube (see Figure 2(a)):

C =
{
λ1

−→e1 + λ3
−→e3 + λ3

−→e3 | (λ1, λ2, λ3) ∈ [0, 1]3
}

.Let us now de�ne the three basi faes (see Figure 1):
E1 = {λ2

−→e2 + λ3
−→e3 | (λ2, λ3) ∈ [0, 1[2},

E2 = {−λ1
−→e1 + λ3

−→e3 | (λ1, λ3) ∈ [0, 1[2},

E3 = {−λ1
−→e1 − λ2

−→e2 | (λ1, λ2) ∈ [0, 1[2}.Let (x, y, z) ∈ Z3. We all pointed fae of type k pointed on (x, y, z) the set
(x, y, z) + Ek with k ∈ {1, 2, 3}. Notie that eah fae ontains exatly oneintegral point. We all it the distinguished vertex of the fae. Let P be the planewith equation ax + by + cz = µ with (a, b, c) ∈ R3 and 0 ≤ a ≤ b ≤ c, let CP bethe union of the unit ubes interseting the open half-spae ax + by + cz < µ,and let PP = CP \

◦

CP , where CP (resp. ◦

CP) is the losure (resp. the interior) ofthe set CP in R3, provided with its usual topology. In [ABS04℄, it is proved thatthe set PP is partitioned by pointed faes. Moreover, let VP = PP ∩ Z3 be theset of verties of PP . Then, VP = P(a, b, c, µ) (see (1)). From now on, up to theontext and if no onfusion is possible, we will all disrete plane indi�erently
PP and P(a, b, c, µ).In the present paper we introdue a generalization of the onept of standarddisrete planes: the (1, 1, 1)-disrete surfaes (see Figure 3). Roughly speaking, a
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() Fae oftype 3Fig. 1. The three fundamental faes.
(1, 1, 1)-disrete surfae is a subset of R3, partitionable by the pointed faes andin one-to-one orrespondene, by the projetion map π : R3 → {(x, y, z) ∈ R3 |
x + y + z = 0} with the diagonal plane {(x, y, z) ∈ R3 | x + y + z = 0}. Then,as performed in the ase of the standard disrete planes, given a disrete surfae
S, we assoiate to it a two-dimensional oding depending on the type of thepointed faes partitioning S. Then, it beomes natural to try to haraterize thetwo-dimensional sequenes oding the (1, 1, 1)-disrete surfaes. In other words,given a two-dimensional sequene U ∈ {1, 2, 3}Z

2, does U ode a (1, 1, 1)-disretesurfae S? Is this problem loal? that is, does there exist a �nite set of two-dimensional �nite patterns E suh that: � U odes a (1, 1, 1)-disrete surfae ifand only if, for all ω ∈ E , ω does not belong to the language of U �?This paper is organized as follows. In Setion 1, we de�ne the (1, 1, 1)-disretesurfaes and their two-dimensional odings. In Setion 2, after introduing thenotions of τ -shape, τ -patterns, τ -omplexity and τ -language, we investigate theharaterization problem of the sequenes U ∈ {1, 2, 3}Z
2 oding disrete sur-faes. Then we give the list A of permitted τ -patterns (see Figure 4), and prove:Theorem 1. Let U ∈ {1, 2, 3}Z

2. Then U odes a (1, 1, 1)-disrete surfae if andonly if Lτ (u) ⊆ A, where Lτ (U) is the subset of subwords of U of shape τ .In Setion 3, we show that the standard disrete planes have a anonial strutureof (1, 1, 1)-disrete surfae and the language of their two-dimensional odings isompletely de�ned by their normal vetor and does not depend on their trans-lation parameter. Next, we prove that the τ -omplexity of a standard disreteplanes is bounded by 6 and equal to 6 for the standard disrete planes with a Q-free normal vetor. Finally, in Setion 4, we give a �rst attempt to generalize thestudy of the dual spae of parameters and its orresponding Farey tessellation[VC00℄.



41 (1, 1, 1)-disrete surfaes and two-dimensional odingsIn this setion, we introdue the (1, 1, 1)-disrete surfaes and we show how wean reode eah disrete surfae on a regular lattie.Let π : R3 −→ {(x, y, z) ∈ R3 | x + y + z = 0} be the a�ne projetion alongthe vetor (1, 1, 1). Then, π is expliitly de�ned by:
π : R3 −→ {(x, y, z) ∈ R3 | x + y + z = 0}

(x, y, z) 7→ (x − z)π (−→e1) + (y − z)π (−→e2) .
(2)Let us reall [BV00b,ABS04℄ that eah standard disrete plane is in one-to-

PSfrag replaements
−→e1

−→e2

−→e3

(a) The fundamentalunit ube
PSfrag replaements

−→e1
−→e2

−→e3

(b) Its projetion by πFig. 2. The projetion of the fundamental unit ubeone orrespondene with the regular lattie Γ = Zπ (−→e1) + Zπ (−→e2) = π
(
Z3

)and is partitioned by integral translates of the three basi faes E1, E2 and E3.Using these properties of standard disrete planes, we de�ne the (1, 1, 1)-disretesurfaes as follows:De�nition 1 ((1, 1, 1)-disrete surfae). Let S ⊆ R3. Then S is said to bea (1, 1, 1)-disrete surfae (or just a disrete surfae) if the following onditionshold:i) the projetion map π : S → {(x, y, z) ∈ R3 | x + y + z = 0} is a bijetion;ii) S is partitioned by pointed faes.Even if, unfortunately, the terminology an be ambiguous, in partiular forthe ones who are austomed with [Fra95,KI00,Mal97,RKW91℄, we will use theterminology disrete surfae instead of (1, 1, 1)-disrete surfae in the presentpaper, in order to simplify notations.Sine the plane x + y + z = 0 is a disjoint union of a ountable setof translates of the tiles π(E1), π(E2) and π(E3), then there exist two se-quenes (xn, yn, zn)n∈N ∈
(
Z3

)N and (in)n∈N ∈ {1, 2, 3}N suh that S =⋃

n∈N

(xn, yn, zn) + Ein
.
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Fig. 3. A piee of a disrete surfae and its projetion under π.A �rst property of disrete surfaes is that, given n ∈ N, the point (xn, yn, zn)annot have two di�erent types. Moreover, the projetion map π : R3 →
{(x, y, z) ∈ R3 | x + y + z = 0} provides a one-to-one orrespondene between
{(xn, yn, zn) | n ∈ N} and Γ . More preisely,Lemma 1. Let S =

⋃
n∈N

(xn, yn, zn) + Ein
be a disrete surfae. Then, thefollowing assertions hold:i) ∀(m, n) ∈ N2, (xm, ym, zm) = (xn, yn, zn) implies in = im;ii) the funtion π : {(xn, yn, zn) | n ∈ N} −→ Zπ(−→e1) + Z−→e2 is a bijetion. Inother words, {(xn − zn, yn − zn) | n ∈ N} = Z2.In the present paper, we suppose that the representation of a disrete surfae

S is redued, that is, Lemma 1 i) and ii) are assumed to hold, and we denote by
VS = S ∩ Z3 the set of verties of S.Sine every vertex of S has a unique type, then, to eah (m, n) ∈ Z2, we anassoiate the type of the anteedent (x, y, z) ∈ S of the element mπ(−→e1)+n−→e2 ∈
Γ . Thus, we obtain the two-dimensional oding of S as follows:De�nition 2 (Two-dimensional oding). Let S =

⋃
n∈N

(xn, yn, zn) + Einbe a disrete surfae. The two-dimensional oding of S is the sequene U ∈
{1, 2, 3}Z

2 de�ned as follows:
∀n ∈ N, Uxn−zn,yn−zn

= in.Sine we have a two-dimensional oding over the three-letter alphabet
{1, 2, 3} of eah disrete surfae, it beomes natural to investigate the languageof these sequenes and to study the haraterization problem of suh a sequene,that is, given a two-dimensional sequene U ∈ {1, 2, 3}Z

2, does it ode a disretesurfae S? In the next setion, we prove that the language of a disrete surfaeoding is of �nite type and we provide the set of permitted patterns.For every (m, n) ∈ Z2, let τm,n = {(m, n), (m, n + 1), (m + 1, n + 1)}. A
τ-pattern is a pattern with shape τ . Hene, following the de�nitions above, onean de�ne the τ -language and the τ -omplexity of a two-dimensional sequene.



62 Charaterization of the two-dimensional oding of thedisrete surfaes2.1 Basi notions on two-dimensional sequenes over a �nitealphabetIn this setion, we reall some basi notions and terminology onerning thetwo-dimensional sequenes over a �nite alphabet.Let ∼ be the equivalene relation over the set P(Z2) of the �nite subsets of
Z2, as follows:

∀(Ω, Ω′) ∈ P(Z2)2, Ω ∼ Ω′ ⇐⇒ ∃(v1, v2) ∈ Z2, Ω = Ω′ + (v1, v2).An element Ω of P(Z2)/ ∼ is said to be a shape.Let A be a �nite alphabet. Let Ω be a �nite subset of Z2. A funtion ω : Ω →
A is alled a �nite pointed pattern over the alphabet A. The equivalene relationde�ned above provides an equivalene relation over the set of the �nite pointedpatterns over the alphabet A, also denoted ∼, as follows: ∀(ω, ω′) ∈ W2

A, ω ∼ ω′if and only if
∃(v1, v2) ∈ Z2, Ω = Ω′ + (v1, v2) and ∀(m, n) ∈ Ω, ωm,n = ω′

m+v1,n+v2
.Let us notie, that given two �nite pointed patterns over the alphabet A, ω :

Ω → A and ω′ : Ω′ → A, one has ω ∼ ω′ implies that Ω ∼ Ω′. The equivalenelass ω of ω is said to be a pattern of shape Ω. In order to simplify the notation,when no onfusion is possible, we will use ω (resp. Ω) instead of ω (resp. Ω).Let U ∈ AZ
2 be a two-dimensional sequene and let ω : Ω → A be a patternof shape Ω. An ourrene of ω in U is an element (m0, n0) ∈ Z2 suh that forall (m, n) ∈ Ω, ωm,n = Um0+m,n0+n. The set of patterns ourring in U is alledthe language of U and is denoted L(U). Given a shape Ω, the set of patternswith shape Ω ourring in U is alled the Ω-language of U and is denoted by

LΩ(U).Let Ω be a shape. The Ω-omplexity map is the funtion pΩ : AZ
2

−→
N ∪ {∞} de�ned as follows:

pΩ : AZ
2

−→ N ∪ {∞}
U 7→ |LΩ(U)|,where |LΩ(U)| is the ardinality of the set LΩ(U).2.2 Charaterization of the two-dimensional oding of a disretesurfaeLet us �rst redue the haraterization problem to a two-dimensional tiling prob-lem of the plane {(x, y, z) ∈ R3 | x + y + z = 0}. Indeed, a diret onsequene ofDe�nitions 1 and 2 is:



7Lemma 2. Let U ∈ {1, 2, 3}Z
2 be a two-dimensional sequene. The followingassertions are equivalent:i) the set S =

⋃
(m,n)∈Z2{m

−→e1 + n−→e2 + EUm,n
} is a disrete surfae;ii) the sequene U odes a disrete surfae;iii) the set {mπ(−→e1) + nπ(−→e2) + π(EUm,n)|(m,n)∈Z2} is a partition of the plane

x + y + z = 0.Let P0 = Rπ(−→e1) + Rπ(−→e2) be the two-dimensional R-vetor spae of basis
{π(−→e1), π(−→e2)}. Let | · |∞ : P0 −→ R+ be the norm on P0 de�ned by:

∀(x, y) ∈ (R2)2, |xπ(−→e1) + yπ(−→e2)|∞ = max{|x|, |y|}.Let d∞ be the distane on P0 assoiated to the norm | · |∞, that is,
∀(z, z′) ∈ P2

0 , d∞(z, z′) = |z − z′|∞.The following lemma is immediate (see Figure 1):Lemma 3. Let z, z′ ∈ Γ = π(S), z′′ ∈ P0 and (i, i′) ∈ {1, 2, 3}2. Then,i) z + π(Ei) ∩ z′ + π(Ei′ ) 6= ∅ =⇒ d∞(z, z′) ≤ 1;ii) z′′ ∈ z + π(Ei) =⇒ d∞(z, z′′) < 2.An interesting onsequene of Lemma 3 is that, given a two-dimensionalsequene U ∈ {1, 2, 3}Z
2, deiding whether U odes a disrete surfae is a loalproblem. Now, it remains to exhibit a set A of permitted patterns.Roughly speaking, the haraterization problem an be divided in two parts:an � injetion problem � and a � surjetion problem �. The � injetion problem� onsists in deiding whether a given union of projetions of pointed faes isdisjoint. The � surjetion problem � onsists in deiding whether a given unionof projetions of pointed faes overs P0.Then, let us �rst investigate the � injetion problem �.Lemma 4. Let U ∈ {1, 2, 3}Z

2 be a two-dimensional sequene. The followingassertions are equivalent:i) The sets mπ(−→e1) + nπ(−→e2) + π(EUm,n), with (m, n) ∈ Z2 are relatively dis-joint.ii) For every (m, n) ∈ Z2, the sets m′π(−→e1)+n′π(−→e2)+π(EUm,n), with (m′, n′) ∈
τm,n are relatively disjoint.Hene, we have obtained a neessary and su�ient ondition to deidewhether a union of projetions of pointed faes is a disjoint union. It remains to�nd a similar ondition for the � surjetion problem �. Sine the haraterizationproblem is loal, a disjoint union of projetions of pointed faes will over theplane P0 = {(x, y, z) ∈ R3 | x+y+z = 0} if and only if eah point z of P0 will beovered by the projetion of a pointed fae lose to x. This is a diret onsequeneof Lemma 3. Consequently, given a point g = mπ(−→e1) + nπ(−→e2) ∈ Γ , a union⋃

(m,n)∈Z2 mπ(−→e1) + nπ(−→e2) + π(EUm,n
) of projetions of pointed faes will over
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P0 if and only if g +π(E3) ⊂

⋃

z=(z1,z2)
d∞(z,g)<2

∈Γ

z1π(−→e1) + z2π(−→e2) + π(EUz1,z2
). In fat,this problem an be redued to the study of the τ -patterns.Lemma 5. Let U ∈ {1, 2, 3}Z

2 be a two-dimensional sequene. The followingassertions are equivalent:i) for every (m0, n0) ∈ Z2,
(m0+1)π(−→e1)+n0π(−→e2)+π(E3) ⊆

⋃

(m,n)∈τm0,n0

mπ(−→e1) + nπ(−→e2) + π(EUm,n
).ii) ⋃

(m,n)∈Z2

mπ(−→e1) + nπ(−→e2) + π(EUm,n
) = P0.A simple enumeration gives the permitted τ -patterns (see Figure 4). In fat,
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τ5 τ6 τ7 τ8

τ9 τ10 τ11 τ12Fig. 4. The set A of permitted τ -patterns of a disrete surfaewe have proved that:Theorem 2. Let A be the set of allowed τ-patterns (see Figure 4). Let U ∈

{1, 2, 3}Z
2 be a two-dimensional sequene over the three-letter alphabet {1, 2, 3}.Then U odes a disrete surfae S if and only if Lτ (U) ⊆ A.



93 A partiular ase of disrete surfaes: the standarddisrete planesIn this setion, we investigate the standard disrete planes with a positive normalvetor and show that they admit a anonial struture of disrete surfae. Fromnow on, we suppose that (a, b, c) ∈ R3
+.3.1 PreliminariesFor the moment, we have de�ned the disrete surfaes via a one-to-one on-dition on the projetion map π : S −→ {(x, y, z) ∈ R3 | x + y + z = 0}.In [BV00b,ABS04℄, it is proved that a standard disrete plane is in bijetionwith Γ = π(Z3). Let P be a plane with equation ax + by + cz = µ. Toprove that PP (see Setion 1) is a disrete surfae, we have to show that

π : PP −→ {(x, y, z) ∈ R3 | x + y + z = 0} is a bijetion, or equivalently,that the oding of PP odes a disrete surfae. Let us reall how to build thetwo-dimensional oding of PP . It is based on Lemma 6.Lemma 6. [ABS04℄ Let (x, y, z) ∈ VP and k ∈ {1, 2, 3}. Let I1 = [0, a[, I2 =
[a, a+ b[ and I3 = [a+ b, a+ b+ c[. Then, the following assertions are equivalent:i) the point (x, y, z) is of type k, that is,(x, y, z) + Ek ⊆ PP ;ii) ax + by + cz − µ ∈ Ik;iii) a(x − z) + b(y − z) − µ mod (a + b + c) ∈ Ik.The two-dimensional sequene U oding PP is de�ned as follows:

∀(m, n) ∈ Z2, ∀k ∈ {1, 2, 3}, Um,n = k ⇐⇒ am + bn − µ ∈ Ik.The disrete surfae struture of PP follows from:Theorem 3. The set PP is a disrete surfae.Proof. Let U be the two-dimensional oding of PP . Let us show that U odes adisrete surfae. Indeed, sine U odes PP , we will dedue that PP is a disretesurfae. Let k ∈ {1, 2, 3} and let us onsider a τ -pattern ω suh that ω0,0 = 1.Let (m, n) ∈ Z2 be an ourrene of ω, that is, Um+i,n+j = ωki,j for (i, j) ∈
τ0,0. Let us �rst suppose that (m, n) = (0, 0). Then, we dedue that µ ∈ [0, a[
mod (a + b + c). Hene µ + a + b ∈ [a + b, 2a + b[ mod (a + b + c). If a < c,then µ + a + b ∈ [a + b, a + b + c[ mod (a + b + c) and ω1,1 = 3. Conversely, if
a > c, then 2a + b ∈ [0, a[ mod (a + b + c) and ω1,1 = 1. In all ases, ω1,1 6= 2.If (m, n) 6= (0, 0), we similarly prove that ω1,1 ∈ {1, 3}. The other forbidden
τ -patterns an be exluded in the same way.



103.2 Charaterization of the language of a standard disrete planeIn this setion, given a standard disrete plane P, we all language of a standarddisrete plane the language of the two-dimensional oding of P.Let (α, β) ∈ R2
+. The rotation Rα of angle α modulo β is the funtion Rα :

[0, β[−→ [0, β[ de�ned as follows:
Rα : [0, β[ −→ [0, β[

x 7→ x + α mod β.From now on, Ra (resp. Rb) denotes the rotation of angle a (resp. of angle b)modulo a + b + c.Lemma 7. Let U ∈ {1, 2, 3}Z
2 be the two-dimensional oding of the standarddisrete plane P(a, b, c, µ). Let ω : Ω → {1, 2, 3} be a pattern. Then, the followingassertions are equivalent:i) ω ∈ L(U), that is, there exists (k, k′) ∈ Z2 suh that:

∀(m, n) ∈ Ω, ωm,n = Um+k,n+k′ .ii) there exists (k, k′) ∈ Z2 suh that:
ak + bk′ − µ ∈

⋂

(i,j)∈Ω

R−i
a ◦ R−j

b

(
Iωi,j

)
.In [Rév91,And93,VC00℄, the authors onsidered standard disrete planes

P(a, b, c, µ) with (a, b, c, µ) ∈ Z4 and gcd(a, b, c) = 1. In [BV00b,Lot02,ABS04℄,the authors investigated the standard disrete lines or planes with a Q-free nor-mal vetor. Let us reall that a n-uple (a1, . . . , an) ∈ Rn is said to be Q-free iffor every (x1, . . . , xn) ∈ Qn, one has:
n∑

i=1

aixi = 0 ⇐⇒ ∀i ∈ [[1, n]], xi = 0.In fat, this two-ase division is not neessary to study the language of thetwo-dimensional oding of a standard disrete plane. More preisely:Corollary 1. Let U ∈ {1, 2, 3} be the two-dimensional oding of the standarddisrete plane P(a, b, c, µ). Let ω be an Ω-pattern. Then,
ω ∈ L(U) ⇐⇒ Iω =

⋂

(i,j)∈Ω

R−i
a ◦ R−j

b

(
Iωi,j

)
6= ∅.A diret onsequene of Corollary 1 is:Corollary 2. Let U ∈ {1, 2, 3}Z

2 (resp. U ′ ∈ {1, 2, 3}Z
2) be the two-dimensionaloding of the standard disrete plane P(a, b, c, µ) (resp. P(a′, b′, c′, µ′)). Let ussuppose that P is parallel to P′, that is, there exits α ∈ R suh that (a, b, c) =

α(a′, b′, c′). Then L(U) = L(U ′).



11Sine two sequenes oding two parallel standard disrete planes have thesame language, it beomes natural to investigate the following problem: giventwo standard disrete planes P = P(a, b, c, µ) and P′ = P(a′, b′, c′, µ′) andgiven U ∈ {1, 2, 3}Z
2 (resp. U ′ ∈ {1, 2, 3}Z

2) the two-dimensional oding of P(resp. P′). Let us suppose that L(U) = L(U ′). Are the standard disrete planes
P and P′ parallel? The answer is given by the following theorem:Theorem 4. Let (a, b, c, µ) ∈ Z4 (resp. (a′, b′, c′, µ′) ∈ Z4). Let U ∈ {1, 2, 3}Z

2(resp. U ′ ∈ {1, 2, 3}Z
2) be the two-dimensional oding of the standard disreteplane P = P(a, b, c, µ) (resp. P′ = P(a′, b′, c′, µ′)). Then, the following asser-tions are equivalent:i) the planes ax + by + cz = µ and a′x + b′y + c′z = µ′ are parallel;ii) there exists (m0, n0) ∈ Z2 suh that, for every (m, n) ∈ Z2, Um,n =

U ′
m+m0,n+n0

;iii) L(U) = L(U ′).Proof. Let us �rst prove that given a square S of edge a + b + c, the number of
a (resp. b, c) in a subwords ω : S → {1, 2, 3} is a(a + b + c) (resp. b(a + b + c),
c(a + b + c)). In fat, it is su�ient to study the ase S = [[0, a + b + c− 1]]2. Thegeneral ase is a diret onsequene of Corollary 1.Let us assume that gcd(a, b, c) = 1. Then, gcd(a, b, a + b + c) = 1. Hene, forevery element k ∈ [[0, a − 1]], there exists (x, y) ∈ Z2 suh that ax + by − µ ≡ k
mod a + b + c. Let (m, n) ∈ [[0, a + b + c − 1]]2 suh that m ≡ x mod a + b + cand n ≡ y mod a+ b+ c. Then am+ bn−µ ≡ ax+ bx−µ ≡ x mod (a+ b+ c)and Um,n = 1. Let k ∈ [[0, a + b + c − 1]]. Then Um−kb,n+ka = 1. Moreover,for all (m, n) ∈ [[0, a + b + c − 1]]2, (m, n) ≡ (m − kb, n + ka) mod a + b + c ifand only if k = 0. Indeed, let us suppose that ka ≡ kb ≡ 0 mod a + b + c andlet (u, v) ∈ Z2 suh that au + bv ≡ 1 mod a + b + c. Then k ≡ k(au + bv) ≡
kau + kav ≡ 0 mod a + b + c. Sine k ∈ [[0, a + b + c − 1]], we dedue that
k = 0. Hene |U |a ≥ a(a + b + c). We similarly prove that |U |b ≥ b(a + b + c)and |U |c ≥ c(a + b + c). Finally, sine |U |a + |U |b + |U |c ≥ (a + b + c)2, one hasthe desired result. If gcd(a, b, c) = d, then let us de�ne a′ = a/d, b′ = b/d and
c′ = c/d. Then, let us denote |Ũ |a (resp. |Ũ |b, |Ũ |c) the number of a (resp. b,
c) in the square S =

[[
0, a+b+c

d
− 1

]]2. Sine (0, a + b + c) and (a + b + c, 0) aretwo periodi vetors of U , that is, for all (k, k′) ∈ Z2 and for all (m, n) ∈ Z2, wehave Um,n = Um+k(a+b+c),n+k′(a+b+c), then |U |a = d2|Ũ |a (resp. |U |b = d2|Ũ |b,
|U |c = d2|Ũ |c). By the same way as above, we obtain that |Ũ |a = aa+b+c

d2(resp. |Ũ |b = ba+b+c
d2 , |Ũ |c = ca+b+c

d2 ) and the desired result follows.It is su�ient to prove that ii) =⇒ iii). Let us suppose that L(U) = L(U ′).Let k = lcm(a+b+c, a′+b′+c′)/(a+b+c) and k′ = lcm(a+b+c, a′+b′+c′)/(a′+
b′ + c′). Let (a1, b1, c1, µ1) = k(a, b, c, µ) and (a′

1, b
′
1, c

′
1, µ

′
1) = k′(a′, b′, c′, µ′).Let V ∈ {1, 2, 3}Z

2 (resp. V ′ ∈ {1, 2, 3}Z
2) be the two-dimensional sequeneoding the standard disrete planeP(a1, b1, c1, µ1) (resp.P(a′

1, b
′
1, c

′
1, µ

′
1)). Then,

V = U and V ′ = U ′. Sine a1 + b1 + c1 = a′
1 + b′1 + c′1 and one has |V |a = |V ′|a(resp. |V |b = |V ′|b, |V |c = |V ′|c)) (see Lemma 7), we have a1(a1 + b1 + c1) =
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a′
1(a1 + b1 + c1) (resp. b1(a1 + b1 + c1) = b′1(a1 + b1 + c1), c1(a1 + b1 + c1) =

c′1(a1 + b1 + c1)), that is, ka = k′a′, kb = k′b′ and kc = k′c′.4 An analyti desription of the τ -language of thestandard disrete planesIn Theorem 4, we proved that the language of a standard disrete plane witha positive normal vetor does not depend on its translation parameter µ and isompletely de�ned by its normal vetor (a, b, c).In this setion, we provide an analyti way to desribe the τ -language Lτ (P)of a standard disrete plane P. This kind of investigation an be ompared to[Col02,Gér99,VC99,Vui98℄Roughly speaking, to eah τ -pattern ω of A, we assoiate the subset of thetriples (a, b, c) of R3, suh that ω has an ourrene in the two-dimensionaloding of any standard disrete planes with normal vetor (a, b, c).Let us reall that we an de�ned the disrete surfae struture of a stan-dard disrete plane if and only if its normal vetor (a, b, c) is positive, that is
min{a, b, c} ≥ 0. In the present setion, if it is not mentioned, we will suppose
a, b, c to be positive and c 6= 0.Sine it is easily heked that P(a, b, c, µ) = P(a/c, b/c, 1, µ/c), let us assumethat c = 1. Hene, to eah τ -pattern ω of A, we will assoiate the subset of thepairs (a, b) of R2, suh that ω has an ourrene in the two-dimensional odingof any standard disrete planes with normal vetor (a, b, 1).For instane, let us onsider the following τ -patterns:

ω =
1 2
3Then, following Corollary 1, one has:

ω ∈ Lτ (P) ⇐⇒ I3 ∩ R−1
b (I1) ∩ R−1

a ◦ R−1
b (I2) 6= ∅

⇐⇒ b < a + c.Then, assuming that c = 1, we assoiate to ω the set {(a, b) ∈ R2 | b < a + 1},representing the pairs (a, b, 1) ∈ R3
+, suh that ω ours in the two-dimensionaloding of any standard disrete plane with normal vetor (a, b, 1).Considering the τ -patterns of Figure 4, we obtain the following graphialrepresentation (see Figure 5):
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τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ121 × × × × × ×2 × × × × × ×3 × × × × × ×4 × × × × × ×5 × × × × × ×6 × × × × × ×7 × × × × × ×8 × × × × × ×9 × × × × × ×10 × × × × × ×11 × × × × × ×12 × × × × × ×For every k ∈ [[1, 12]], let Lk be the set of A-patterns assoiated to the k-thzone of Figure 5. Then, a diret onsequene of Corollary 1 and Figure 5 is:Theorem 5. Let (a, b) ∈ N2, {n1, . . . , nk} ⊆ [[1, 12]] be the �nite set of all thezones of Figure 5 ontaining (a, b) and L(a, b) be the language of the standard



14disrete plane with normal vetor (a, b, 1). Then,
L(a, b) =

k⋂

i=1

Li.Let us all τ-omplexity of a standard disrete plane P the τ -omplexity ofthe two-dimensional oding of P. Then, a diret onsequene of Figure 5 andTheorem 5 is:Corollary 3. Let U ∈ {1, 2, 3}Z
2 be the two-dimensional oding of a standarddisrete plane with normal vetor (a, b, c) ∈ N3 with c 6= 0 and let {n1, . . . , nk} ⊆

[[1, 12]] be the �nite set of all the zones of Figure 5 ontaining (a/c, b/c). Then,
pτ (U) = 6 − k + 1.Remark 1. Let U ∈ {1, 2, 3}Z
2 be the two-dimensional oding of a standarddisrete plane P(a, b, c, µ). One an have pτ (U) = 6 with while {a, b, c} is non-

Q-free. For instane, let a = 1, b = 3 and c = 5 (see Figure 6).
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