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On the Language of Standard Dis
rete Planesand Surfa
esDamien JametLIRMM, Université Montpellier II, 161 rue Ada, 34392 Montpellier Cedex 5 - Fran
ejamet�lirmm.frAbstra
t A standard dis
rete plane is a subset of Z3 verifying the dou-ble Diophantine inequality µ ≤ ax + by + cz < µ + ω, with (a, b, c) 6=
(0, 0, 0). In the present paper we introdu
e a generalization of this no-tion, namely the (1, 1, 1)-dis
rete surfa
es. We �rst study a 
ombinatorialrepresentation of dis
rete surfa
es as two-dimensional sequen
es over athree-letter alphabet and show how to use this 
ombinatorial point ofview for the re
ognition problem for these dis
rete surfa
es. We thenapply this 
ombinatorial representation to the standard dis
rete planesand give a �rst attempt of to generalize the study of the dual spa
e ofparameters for the latter [VC00℄.Introdu
tionThe works related to dis
rete lines and planes 
an be roughly divided in twokinds of approa
hes. In [And93℄, É. Andrès introdu
ed the arithmeti
 dis
reteplanes, as a natural generalization of the arithmeti
 dis
rete lines introdu
edby J.P. Reveillès [Rév91℄. Sin
e then, using di�erent approa
hes, many authorshave investigated the re
ognition problem of dis
rete planes, that is, � given

V ⊆ Z3 a set of voxels, does there exist a dis
rete plane 
ontaining V? � (usinglinear programming [Meg84,PS85,VC00,Buz02℄, arithmeti
 stru
ture [DRR96℄and Farey series [VC00℄). An interesting review of these algorithms 
an be foundin [BCK04℄.On the other hand, a wide literature has been devoted to the study of Stur-mian words, that is, the in�nite words over a binary alphabet whi
h have n + 1fa
tors of length n [Lot02℄. These words are also equivalently de�ned as a dis
reteapproximation of a line with irrational slope. Then, many attempts have beeninvestigated to generalize this 
lass of in�nite words to two-dimensional words.For instan
e, in [Vui98,BV00b,ABS04℄, it is shown that the orbit of an element
µ ∈ [0, 1[ under the a
tion of two rotations 
odes a standard dis
rete plane. Fur-thermore, the generating problem of one or two-dimensional words 
hara
terizingdis
rete lines or planes is investigated in [BV00b,Lot02,ABS04,BT04℄.Let us now introdu
e some basi
 notions and notation used in the presentpaper. Let {−→e1 ,

−→e2 ,−→e3} denote the 
anoni
al basis of the Eu
lidean spa
e R3. Anelement of Z3 is 
alled a voxel. It is usual to represent a voxel (x, y, z) ∈ Z3 asa unit 
ube of R3 
entered in (x, y, z). Another equivalent representation is to
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onsider the unit 
ube {(x + λ1, y + λ2, z + λ3) | (λ1, λ2, λ3) ∈ [0, 1]}. In thepresent paper, for 
larity issues, we 
onsider the last representation.Let (a, b, c, µ, ω) ∈ R5. An arithmeti
 dis
rete plane with normal ve
tor
(a, b, c), with translation parameter µ, and with thi
kness ω, is the subset of
Z3 de�ned as follows:

P(a, b, c, µ, ω) =
{
(x, y, z) ∈ Z3 | µ ≤ ax + by + cz < µ + ω

}
. (1)If ω = max{|a|, |b|, |c|}, then P(a, b, c, µ, ω) is said to be a naive dis
rete plane.If ω = |a| + |b| + |c|, then P(a, b, c, µ, ω) is said to be a standard dis
rete plane.Considering the a
tion of the group of isometries on the set of the dis
rete planes,we 
an suppose, with no loss of generality, that 0 ≤ a ≤ b ≤ c and c 6= 0.It is well known that the naive dis
rete planes are fun
tional, that is, if 0 ≤

a ≤ b ≤ c, the naive dis
rete plane P (a, b, c, µ,max{|a|, |b|, |c|}) is in bije
tionwith the integral points of the plane z = 0 by the proje
tion map πz : R3 →
{(x, y, z) ∈ R3 | z = 0} along the ve
tor (0, 0, 1). In a similar way, in [ABS04℄,it is shown that, given the a�ne orthogonal proje
tion along the ve
tor (1, 1, 1)onto the plane x + y + z = 0, namely π : R3 −→ {(x, y, z) ∈ R3 | x + y + z = 0},and given Γ = π

(
Z2

), then the restri
tion π : P(a, b, c, µ, |a| + |b| + |c|) −→ Γis a bije
tion. In other words, any standard dis
rete plane 
an be re
oded on aregular latti
e (see Se
tion 1).From now on, let us denote P(a, b, c, µ) the standard dis
rete plane
P(a, b, c, µ, |a| + |b| + |c|). We 
all unit 
ube any translate of the fundamentalunit 
ube with integral verti
es, that is, any set (x, y, z) + C where (x, y, z) ∈ Z3and C is the fundamental unit 
ube (see Figure 2(a)):

C =
{
λ1

−→e1 + λ3
−→e3 + λ3

−→e3 | (λ1, λ2, λ3) ∈ [0, 1]3
}

.Let us now de�ne the three basi
 fa
es (see Figure 1):
E1 = {λ2

−→e2 + λ3
−→e3 | (λ2, λ3) ∈ [0, 1[2},

E2 = {−λ1
−→e1 + λ3

−→e3 | (λ1, λ3) ∈ [0, 1[2},

E3 = {−λ1
−→e1 − λ2

−→e2 | (λ1, λ2) ∈ [0, 1[2}.Let (x, y, z) ∈ Z3. We 
all pointed fa
e of type k pointed on (x, y, z) the set
(x, y, z) + Ek with k ∈ {1, 2, 3}. Noti
e that ea
h fa
e 
ontains exa
tly oneintegral point. We 
all it the distinguished vertex of the fa
e. Let P be the planewith equation ax + by + cz = µ with (a, b, c) ∈ R3 and 0 ≤ a ≤ b ≤ c, let CP bethe union of the unit 
ubes interse
ting the open half-spa
e ax + by + cz < µ,and let PP = CP \

◦

CP , where CP (resp. ◦

CP) is the 
losure (resp. the interior) ofthe set CP in R3, provided with its usual topology. In [ABS04℄, it is proved thatthe set PP is partitioned by pointed fa
es. Moreover, let VP = PP ∩ Z3 be theset of verti
es of PP . Then, VP = P(a, b, c, µ) (see (1)). From now on, up to the
ontext and if no 
onfusion is possible, we will 
all dis
rete plane indi�erently
PP and P(a, b, c, µ).In the present paper we introdu
e a generalization of the 
on
ept of standarddis
rete planes: the (1, 1, 1)-dis
rete surfa
es (see Figure 3). Roughly speaking, a
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(1, 1, 1)-dis
rete surfa
e is a subset of R3, partitionable by the pointed fa
es andin one-to-one 
orresponden
e, by the proje
tion map π : R3 → {(x, y, z) ∈ R3 |
x + y + z = 0} with the diagonal plane {(x, y, z) ∈ R3 | x + y + z = 0}. Then,as performed in the 
ase of the standard dis
rete planes, given a dis
rete surfa
e
S, we asso
iate to it a two-dimensional 
oding depending on the type of thepointed fa
es partitioning S. Then, it be
omes natural to try to 
hara
terize thetwo-dimensional sequen
es 
oding the (1, 1, 1)-dis
rete surfa
es. In other words,given a two-dimensional sequen
e U ∈ {1, 2, 3}Z

2, does U 
ode a (1, 1, 1)-dis
retesurfa
e S? Is this problem lo
al? that is, does there exist a �nite set of two-dimensional �nite patterns E su
h that: � U 
odes a (1, 1, 1)-dis
rete surfa
e ifand only if, for all ω ∈ E , ω does not belong to the language of U �?This paper is organized as follows. In Se
tion 1, we de�ne the (1, 1, 1)-dis
retesurfa
es and their two-dimensional 
odings. In Se
tion 2, after introdu
ing thenotions of τ -shape, τ -patterns, τ -
omplexity and τ -language, we investigate the
hara
terization problem of the sequen
es U ∈ {1, 2, 3}Z
2 
oding dis
rete sur-fa
es. Then we give the list A of permitted τ -patterns (see Figure 4), and prove:Theorem 1. Let U ∈ {1, 2, 3}Z

2. Then U 
odes a (1, 1, 1)-dis
rete surfa
e if andonly if Lτ (u) ⊆ A, where Lτ (U) is the subset of subwords of U of shape τ .In Se
tion 3, we show that the standard dis
rete planes have a 
anoni
al stru
tureof (1, 1, 1)-dis
rete surfa
e and the language of their two-dimensional 
odings is
ompletely de�ned by their normal ve
tor and does not depend on their trans-lation parameter. Next, we prove that the τ -
omplexity of a standard dis
reteplanes is bounded by 6 and equal to 6 for the standard dis
rete planes with a Q-free normal ve
tor. Finally, in Se
tion 4, we give a �rst attempt to generalize thestudy of the dual spa
e of parameters and its 
orresponding Farey tessellation[VC00℄.



41 (1, 1, 1)-dis
rete surfa
es and two-dimensional 
odingsIn this se
tion, we introdu
e the (1, 1, 1)-dis
rete surfa
es and we show how we
an re
ode ea
h dis
rete surfa
e on a regular latti
e.Let π : R3 −→ {(x, y, z) ∈ R3 | x + y + z = 0} be the a�ne proje
tion alongthe ve
tor (1, 1, 1). Then, π is expli
itly de�ned by:
π : R3 −→ {(x, y, z) ∈ R3 | x + y + z = 0}

(x, y, z) 7→ (x − z)π (−→e1) + (y − z)π (−→e2) .
(2)Let us re
all [BV00b,ABS04℄ that ea
h standard dis
rete plane is in one-to-
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tion by πFig. 2. The proje
tion of the fundamental unit 
ubeone 
orresponden
e with the regular latti
e Γ = Zπ (−→e1) + Zπ (−→e2) = π
(
Z3

)and is partitioned by integral translates of the three basi
 fa
es E1, E2 and E3.Using these properties of standard dis
rete planes, we de�ne the (1, 1, 1)-dis
retesurfa
es as follows:De�nition 1 ((1, 1, 1)-dis
rete surfa
e). Let S ⊆ R3. Then S is said to bea (1, 1, 1)-dis
rete surfa
e (or just a dis
rete surfa
e) if the following 
onditionshold:i) the proje
tion map π : S → {(x, y, z) ∈ R3 | x + y + z = 0} is a bije
tion;ii) S is partitioned by pointed fa
es.Even if, unfortunately, the terminology 
an be ambiguous, in parti
ular forthe ones who are a

ustomed with [Fra95,KI00,Mal97,RKW91℄, we will use theterminology dis
rete surfa
e instead of (1, 1, 1)-dis
rete surfa
e in the presentpaper, in order to simplify notations.Sin
e the plane x + y + z = 0 is a disjoint union of a 
ountable setof translates of the tiles π(E1), π(E2) and π(E3), then there exist two se-quen
es (xn, yn, zn)n∈N ∈
(
Z3

)N and (in)n∈N ∈ {1, 2, 3}N su
h that S =⋃

n∈N

(xn, yn, zn) + Ein
.
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Fig. 3. A pie
e of a dis
rete surfa
e and its proje
tion under π.A �rst property of dis
rete surfa
es is that, given n ∈ N, the point (xn, yn, zn)
annot have two di�erent types. Moreover, the proje
tion map π : R3 →
{(x, y, z) ∈ R3 | x + y + z = 0} provides a one-to-one 
orresponden
e between
{(xn, yn, zn) | n ∈ N} and Γ . More pre
isely,Lemma 1. Let S =

⋃
n∈N

(xn, yn, zn) + Ein
be a dis
rete surfa
e. Then, thefollowing assertions hold:i) ∀(m, n) ∈ N2, (xm, ym, zm) = (xn, yn, zn) implies in = im;ii) the fun
tion π : {(xn, yn, zn) | n ∈ N} −→ Zπ(−→e1) + Z−→e2 is a bije
tion. Inother words, {(xn − zn, yn − zn) | n ∈ N} = Z2.In the present paper, we suppose that the representation of a dis
rete surfa
e

S is redu
ed, that is, Lemma 1 i) and ii) are assumed to hold, and we denote by
VS = S ∩ Z3 the set of verti
es of S.Sin
e every vertex of S has a unique type, then, to ea
h (m, n) ∈ Z2, we 
anasso
iate the type of the ante
edent (x, y, z) ∈ S of the element mπ(−→e1)+n−→e2 ∈
Γ . Thus, we obtain the two-dimensional 
oding of S as follows:De�nition 2 (Two-dimensional 
oding). Let S =

⋃
n∈N

(xn, yn, zn) + Einbe a dis
rete surfa
e. The two-dimensional 
oding of S is the sequen
e U ∈
{1, 2, 3}Z

2 de�ned as follows:
∀n ∈ N, Uxn−zn,yn−zn

= in.Sin
e we have a two-dimensional 
oding over the three-letter alphabet
{1, 2, 3} of ea
h dis
rete surfa
e, it be
omes natural to investigate the languageof these sequen
es and to study the 
hara
terization problem of su
h a sequen
e,that is, given a two-dimensional sequen
e U ∈ {1, 2, 3}Z

2, does it 
ode a dis
retesurfa
e S? In the next se
tion, we prove that the language of a dis
rete surfa
e
oding is of �nite type and we provide the set of permitted patterns.For every (m, n) ∈ Z2, let τm,n = {(m, n), (m, n + 1), (m + 1, n + 1)}. A
τ-pattern is a pattern with shape τ . Hen
e, following the de�nitions above, one
an de�ne the τ -language and the τ -
omplexity of a two-dimensional sequen
e.



62 Chara
terization of the two-dimensional 
oding of thedis
rete surfa
es2.1 Basi
 notions on two-dimensional sequen
es over a �nitealphabetIn this se
tion, we re
all some basi
 notions and terminology 
on
erning thetwo-dimensional sequen
es over a �nite alphabet.Let ∼ be the equivalen
e relation over the set P(Z2) of the �nite subsets of
Z2, as follows:

∀(Ω, Ω′) ∈ P(Z2)2, Ω ∼ Ω′ ⇐⇒ ∃(v1, v2) ∈ Z2, Ω = Ω′ + (v1, v2).An element Ω of P(Z2)/ ∼ is said to be a shape.Let A be a �nite alphabet. Let Ω be a �nite subset of Z2. A fun
tion ω : Ω →
A is 
alled a �nite pointed pattern over the alphabet A. The equivalen
e relationde�ned above provides an equivalen
e relation over the set of the �nite pointedpatterns over the alphabet A, also denoted ∼, as follows: ∀(ω, ω′) ∈ W2

A, ω ∼ ω′if and only if
∃(v1, v2) ∈ Z2, Ω = Ω′ + (v1, v2) and ∀(m, n) ∈ Ω, ωm,n = ω′

m+v1,n+v2
.Let us noti
e, that given two �nite pointed patterns over the alphabet A, ω :

Ω → A and ω′ : Ω′ → A, one has ω ∼ ω′ implies that Ω ∼ Ω′. The equivalen
e
lass ω of ω is said to be a pattern of shape Ω. In order to simplify the notation,when no 
onfusion is possible, we will use ω (resp. Ω) instead of ω (resp. Ω).Let U ∈ AZ
2 be a two-dimensional sequen
e and let ω : Ω → A be a patternof shape Ω. An o

urren
e of ω in U is an element (m0, n0) ∈ Z2 su
h that forall (m, n) ∈ Ω, ωm,n = Um0+m,n0+n. The set of patterns o

urring in U is 
alledthe language of U and is denoted L(U). Given a shape Ω, the set of patternswith shape Ω o

urring in U is 
alled the Ω-language of U and is denoted by

LΩ(U).Let Ω be a shape. The Ω-
omplexity map is the fun
tion pΩ : AZ
2

−→
N ∪ {∞} de�ned as follows:

pΩ : AZ
2

−→ N ∪ {∞}
U 7→ |LΩ(U)|,where |LΩ(U)| is the 
ardinality of the set LΩ(U).2.2 Chara
terization of the two-dimensional 
oding of a dis
retesurfa
eLet us �rst redu
e the 
hara
terization problem to a two-dimensional tiling prob-lem of the plane {(x, y, z) ∈ R3 | x + y + z = 0}. Indeed, a dire
t 
onsequen
e ofDe�nitions 1 and 2 is:



7Lemma 2. Let U ∈ {1, 2, 3}Z
2 be a two-dimensional sequen
e. The followingassertions are equivalent:i) the set S =

⋃
(m,n)∈Z2{m

−→e1 + n−→e2 + EUm,n
} is a dis
rete surfa
e;ii) the sequen
e U 
odes a dis
rete surfa
e;iii) the set {mπ(−→e1) + nπ(−→e2) + π(EUm,n)|(m,n)∈Z2} is a partition of the plane

x + y + z = 0.Let P0 = Rπ(−→e1) + Rπ(−→e2) be the two-dimensional R-ve
tor spa
e of basis
{π(−→e1), π(−→e2)}. Let | · |∞ : P0 −→ R+ be the norm on P0 de�ned by:

∀(x, y) ∈ (R2)2, |xπ(−→e1) + yπ(−→e2)|∞ = max{|x|, |y|}.Let d∞ be the distan
e on P0 asso
iated to the norm | · |∞, that is,
∀(z, z′) ∈ P2

0 , d∞(z, z′) = |z − z′|∞.The following lemma is immediate (see Figure 1):Lemma 3. Let z, z′ ∈ Γ = π(S), z′′ ∈ P0 and (i, i′) ∈ {1, 2, 3}2. Then,i) z + π(Ei) ∩ z′ + π(Ei′ ) 6= ∅ =⇒ d∞(z, z′) ≤ 1;ii) z′′ ∈ z + π(Ei) =⇒ d∞(z, z′′) < 2.An interesting 
onsequen
e of Lemma 3 is that, given a two-dimensionalsequen
e U ∈ {1, 2, 3}Z
2, de
iding whether U 
odes a dis
rete surfa
e is a lo
alproblem. Now, it remains to exhibit a set A of permitted patterns.Roughly speaking, the 
hara
terization problem 
an be divided in two parts:an � inje
tion problem � and a � surje
tion problem �. The � inje
tion problem� 
onsists in de
iding whether a given union of proje
tions of pointed fa
es isdisjoint. The � surje
tion problem � 
onsists in de
iding whether a given unionof proje
tions of pointed fa
es 
overs P0.Then, let us �rst investigate the � inje
tion problem �.Lemma 4. Let U ∈ {1, 2, 3}Z

2 be a two-dimensional sequen
e. The followingassertions are equivalent:i) The sets mπ(−→e1) + nπ(−→e2) + π(EUm,n), with (m, n) ∈ Z2 are relatively dis-joint.ii) For every (m, n) ∈ Z2, the sets m′π(−→e1)+n′π(−→e2)+π(EUm,n), with (m′, n′) ∈
τm,n are relatively disjoint.Hen
e, we have obtained a ne
essary and su�
ient 
ondition to de
idewhether a union of proje
tions of pointed fa
es is a disjoint union. It remains to�nd a similar 
ondition for the � surje
tion problem �. Sin
e the 
hara
terizationproblem is lo
al, a disjoint union of proje
tions of pointed fa
es will 
over theplane P0 = {(x, y, z) ∈ R3 | x+y+z = 0} if and only if ea
h point z of P0 will be
overed by the proje
tion of a pointed fa
e 
lose to x. This is a dire
t 
onsequen
eof Lemma 3. Consequently, given a point g = mπ(−→e1) + nπ(−→e2) ∈ Γ , a union⋃

(m,n)∈Z2 mπ(−→e1) + nπ(−→e2) + π(EUm,n
) of proje
tions of pointed fa
es will 
over
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P0 if and only if g +π(E3) ⊂

⋃

z=(z1,z2)
d∞(z,g)<2

∈Γ

z1π(−→e1) + z2π(−→e2) + π(EUz1,z2
). In fa
t,this problem 
an be redu
ed to the study of the τ -patterns.Lemma 5. Let U ∈ {1, 2, 3}Z

2 be a two-dimensional sequen
e. The followingassertions are equivalent:i) for every (m0, n0) ∈ Z2,
(m0+1)π(−→e1)+n0π(−→e2)+π(E3) ⊆

⋃

(m,n)∈τm0,n0

mπ(−→e1) + nπ(−→e2) + π(EUm,n
).ii) ⋃

(m,n)∈Z2

mπ(−→e1) + nπ(−→e2) + π(EUm,n
) = P0.A simple enumeration gives the permitted τ -patterns (see Figure 4). In fa
t,

1
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1

1

1 3

1

2

1

2 3

2

1

2

2 2
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2
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rete surfa
ewe have proved that:Theorem 2. Let A be the set of allowed τ-patterns (see Figure 4). Let U ∈

{1, 2, 3}Z
2 be a two-dimensional sequen
e over the three-letter alphabet {1, 2, 3}.Then U 
odes a dis
rete surfa
e S if and only if Lτ (U) ⊆ A.



93 A parti
ular 
ase of dis
rete surfa
es: the standarddis
rete planesIn this se
tion, we investigate the standard dis
rete planes with a positive normalve
tor and show that they admit a 
anoni
al stru
ture of dis
rete surfa
e. Fromnow on, we suppose that (a, b, c) ∈ R3
+.3.1 PreliminariesFor the moment, we have de�ned the dis
rete surfa
es via a one-to-one 
on-dition on the proje
tion map π : S −→ {(x, y, z) ∈ R3 | x + y + z = 0}.In [BV00b,ABS04℄, it is proved that a standard dis
rete plane is in bije
tionwith Γ = π(Z3). Let P be a plane with equation ax + by + cz = µ. Toprove that PP (see Se
tion 1) is a dis
rete surfa
e, we have to show that

π : PP −→ {(x, y, z) ∈ R3 | x + y + z = 0} is a bije
tion, or equivalently,that the 
oding of PP 
odes a dis
rete surfa
e. Let us re
all how to build thetwo-dimensional 
oding of PP . It is based on Lemma 6.Lemma 6. [ABS04℄ Let (x, y, z) ∈ VP and k ∈ {1, 2, 3}. Let I1 = [0, a[, I2 =
[a, a+ b[ and I3 = [a+ b, a+ b+ c[. Then, the following assertions are equivalent:i) the point (x, y, z) is of type k, that is,(x, y, z) + Ek ⊆ PP ;ii) ax + by + cz − µ ∈ Ik;iii) a(x − z) + b(y − z) − µ mod (a + b + c) ∈ Ik.The two-dimensional sequen
e U 
oding PP is de�ned as follows:

∀(m, n) ∈ Z2, ∀k ∈ {1, 2, 3}, Um,n = k ⇐⇒ am + bn − µ ∈ Ik.The dis
rete surfa
e stru
ture of PP follows from:Theorem 3. The set PP is a dis
rete surfa
e.Proof. Let U be the two-dimensional 
oding of PP . Let us show that U 
odes adis
rete surfa
e. Indeed, sin
e U 
odes PP , we will dedu
e that PP is a dis
retesurfa
e. Let k ∈ {1, 2, 3} and let us 
onsider a τ -pattern ω su
h that ω0,0 = 1.Let (m, n) ∈ Z2 be an o

urren
e of ω, that is, Um+i,n+j = ωki,j for (i, j) ∈
τ0,0. Let us �rst suppose that (m, n) = (0, 0). Then, we dedu
e that µ ∈ [0, a[
mod (a + b + c). Hen
e µ + a + b ∈ [a + b, 2a + b[ mod (a + b + c). If a < c,then µ + a + b ∈ [a + b, a + b + c[ mod (a + b + c) and ω1,1 = 3. Conversely, if
a > c, then 2a + b ∈ [0, a[ mod (a + b + c) and ω1,1 = 1. In all 
ases, ω1,1 6= 2.If (m, n) 6= (0, 0), we similarly prove that ω1,1 ∈ {1, 3}. The other forbidden
τ -patterns 
an be ex
luded in the same way.



103.2 Chara
terization of the language of a standard dis
rete planeIn this se
tion, given a standard dis
rete plane P, we 
all language of a standarddis
rete plane the language of the two-dimensional 
oding of P.Let (α, β) ∈ R2
+. The rotation Rα of angle α modulo β is the fun
tion Rα :

[0, β[−→ [0, β[ de�ned as follows:
Rα : [0, β[ −→ [0, β[

x 7→ x + α mod β.From now on, Ra (resp. Rb) denotes the rotation of angle a (resp. of angle b)modulo a + b + c.Lemma 7. Let U ∈ {1, 2, 3}Z
2 be the two-dimensional 
oding of the standarddis
rete plane P(a, b, c, µ). Let ω : Ω → {1, 2, 3} be a pattern. Then, the followingassertions are equivalent:i) ω ∈ L(U), that is, there exists (k, k′) ∈ Z2 su
h that:

∀(m, n) ∈ Ω, ωm,n = Um+k,n+k′ .ii) there exists (k, k′) ∈ Z2 su
h that:
ak + bk′ − µ ∈

⋂

(i,j)∈Ω

R−i
a ◦ R−j

b

(
Iωi,j

)
.In [Rév91,And93,VC00℄, the authors 
onsidered standard dis
rete planes

P(a, b, c, µ) with (a, b, c, µ) ∈ Z4 and gcd(a, b, c) = 1. In [BV00b,Lot02,ABS04℄,the authors investigated the standard dis
rete lines or planes with a Q-free nor-mal ve
tor. Let us re
all that a n-uple (a1, . . . , an) ∈ Rn is said to be Q-free iffor every (x1, . . . , xn) ∈ Qn, one has:
n∑

i=1

aixi = 0 ⇐⇒ ∀i ∈ [[1, n]], xi = 0.In fa
t, this two-
ase division is not ne
essary to study the language of thetwo-dimensional 
oding of a standard dis
rete plane. More pre
isely:Corollary 1. Let U ∈ {1, 2, 3} be the two-dimensional 
oding of the standarddis
rete plane P(a, b, c, µ). Let ω be an Ω-pattern. Then,
ω ∈ L(U) ⇐⇒ Iω =

⋂

(i,j)∈Ω

R−i
a ◦ R−j

b

(
Iωi,j

)
6= ∅.A dire
t 
onsequen
e of Corollary 1 is:Corollary 2. Let U ∈ {1, 2, 3}Z

2 (resp. U ′ ∈ {1, 2, 3}Z
2) be the two-dimensional
oding of the standard dis
rete plane P(a, b, c, µ) (resp. P(a′, b′, c′, µ′)). Let ussuppose that P is parallel to P′, that is, there exits α ∈ R su
h that (a, b, c) =

α(a′, b′, c′). Then L(U) = L(U ′).



11Sin
e two sequen
es 
oding two parallel standard dis
rete planes have thesame language, it be
omes natural to investigate the following problem: giventwo standard dis
rete planes P = P(a, b, c, µ) and P′ = P(a′, b′, c′, µ′) andgiven U ∈ {1, 2, 3}Z
2 (resp. U ′ ∈ {1, 2, 3}Z

2) the two-dimensional 
oding of P(resp. P′). Let us suppose that L(U) = L(U ′). Are the standard dis
rete planes
P and P′ parallel? The answer is given by the following theorem:Theorem 4. Let (a, b, c, µ) ∈ Z4 (resp. (a′, b′, c′, µ′) ∈ Z4). Let U ∈ {1, 2, 3}Z

2(resp. U ′ ∈ {1, 2, 3}Z
2) be the two-dimensional 
oding of the standard dis
reteplane P = P(a, b, c, µ) (resp. P′ = P(a′, b′, c′, µ′)). Then, the following asser-tions are equivalent:i) the planes ax + by + cz = µ and a′x + b′y + c′z = µ′ are parallel;ii) there exists (m0, n0) ∈ Z2 su
h that, for every (m, n) ∈ Z2, Um,n =

U ′
m+m0,n+n0

;iii) L(U) = L(U ′).Proof. Let us �rst prove that given a square S of edge a + b + c, the number of
a (resp. b, c) in a subwords ω : S → {1, 2, 3} is a(a + b + c) (resp. b(a + b + c),
c(a + b + c)). In fa
t, it is su�
ient to study the 
ase S = [[0, a + b + c− 1]]2. Thegeneral 
ase is a dire
t 
onsequen
e of Corollary 1.Let us assume that gcd(a, b, c) = 1. Then, gcd(a, b, a + b + c) = 1. Hen
e, forevery element k ∈ [[0, a − 1]], there exists (x, y) ∈ Z2 su
h that ax + by − µ ≡ k
mod a + b + c. Let (m, n) ∈ [[0, a + b + c − 1]]2 su
h that m ≡ x mod a + b + cand n ≡ y mod a+ b+ c. Then am+ bn−µ ≡ ax+ bx−µ ≡ x mod (a+ b+ c)and Um,n = 1. Let k ∈ [[0, a + b + c − 1]]. Then Um−kb,n+ka = 1. Moreover,for all (m, n) ∈ [[0, a + b + c − 1]]2, (m, n) ≡ (m − kb, n + ka) mod a + b + c ifand only if k = 0. Indeed, let us suppose that ka ≡ kb ≡ 0 mod a + b + c andlet (u, v) ∈ Z2 su
h that au + bv ≡ 1 mod a + b + c. Then k ≡ k(au + bv) ≡
kau + kav ≡ 0 mod a + b + c. Sin
e k ∈ [[0, a + b + c − 1]], we dedu
e that
k = 0. Hen
e |U |a ≥ a(a + b + c). We similarly prove that |U |b ≥ b(a + b + c)and |U |c ≥ c(a + b + c). Finally, sin
e |U |a + |U |b + |U |c ≥ (a + b + c)2, one hasthe desired result. If gcd(a, b, c) = d, then let us de�ne a′ = a/d, b′ = b/d and
c′ = c/d. Then, let us denote |Ũ |a (resp. |Ũ |b, |Ũ |c) the number of a (resp. b,
c) in the square S =

[[
0, a+b+c

d
− 1

]]2. Sin
e (0, a + b + c) and (a + b + c, 0) aretwo periodi
 ve
tors of U , that is, for all (k, k′) ∈ Z2 and for all (m, n) ∈ Z2, wehave Um,n = Um+k(a+b+c),n+k′(a+b+c), then |U |a = d2|Ũ |a (resp. |U |b = d2|Ũ |b,
|U |c = d2|Ũ |c). By the same way as above, we obtain that |Ũ |a = aa+b+c

d2(resp. |Ũ |b = ba+b+c
d2 , |Ũ |c = ca+b+c

d2 ) and the desired result follows.It is su�
ient to prove that ii) =⇒ iii). Let us suppose that L(U) = L(U ′).Let k = lcm(a+b+c, a′+b′+c′)/(a+b+c) and k′ = lcm(a+b+c, a′+b′+c′)/(a′+
b′ + c′). Let (a1, b1, c1, µ1) = k(a, b, c, µ) and (a′

1, b
′
1, c

′
1, µ

′
1) = k′(a′, b′, c′, µ′).Let V ∈ {1, 2, 3}Z

2 (resp. V ′ ∈ {1, 2, 3}Z
2) be the two-dimensional sequen
e
oding the standard dis
rete planeP(a1, b1, c1, µ1) (resp.P(a′

1, b
′
1, c

′
1, µ

′
1)). Then,

V = U and V ′ = U ′. Sin
e a1 + b1 + c1 = a′
1 + b′1 + c′1 and one has |V |a = |V ′|a(resp. |V |b = |V ′|b, |V |c = |V ′|c)) (see Lemma 7), we have a1(a1 + b1 + c1) =
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a′
1(a1 + b1 + c1) (resp. b1(a1 + b1 + c1) = b′1(a1 + b1 + c1), c1(a1 + b1 + c1) =

c′1(a1 + b1 + c1)), that is, ka = k′a′, kb = k′b′ and kc = k′c′.4 An analyti
 des
ription of the τ -language of thestandard dis
rete planesIn Theorem 4, we proved that the language of a standard dis
rete plane witha positive normal ve
tor does not depend on its translation parameter µ and is
ompletely de�ned by its normal ve
tor (a, b, c).In this se
tion, we provide an analyti
 way to des
ribe the τ -language Lτ (P)of a standard dis
rete plane P. This kind of investigation 
an be 
ompared to[Col02,Gér99,VC99,Vui98℄Roughly speaking, to ea
h τ -pattern ω of A, we asso
iate the subset of thetriples (a, b, c) of R3, su
h that ω has an o

urren
e in the two-dimensional
oding of any standard dis
rete planes with normal ve
tor (a, b, c).Let us re
all that we 
an de�ned the dis
rete surfa
e stru
ture of a stan-dard dis
rete plane if and only if its normal ve
tor (a, b, c) is positive, that is
min{a, b, c} ≥ 0. In the present se
tion, if it is not mentioned, we will suppose
a, b, c to be positive and c 6= 0.Sin
e it is easily 
he
ked that P(a, b, c, µ) = P(a/c, b/c, 1, µ/c), let us assumethat c = 1. Hen
e, to ea
h τ -pattern ω of A, we will asso
iate the subset of thepairs (a, b) of R2, su
h that ω has an o

urren
e in the two-dimensional 
odingof any standard dis
rete planes with normal ve
tor (a, b, 1).For instan
e, let us 
onsider the following τ -patterns:

ω =
1 2
3Then, following Corollary 1, one has:

ω ∈ Lτ (P) ⇐⇒ I3 ∩ R−1
b (I1) ∩ R−1

a ◦ R−1
b (I2) 6= ∅

⇐⇒ b < a + c.Then, assuming that c = 1, we asso
iate to ω the set {(a, b) ∈ R2 | b < a + 1},representing the pairs (a, b, 1) ∈ R3
+, su
h that ω o

urs in the two-dimensional
oding of any standard dis
rete plane with normal ve
tor (a, b, 1).Considering the τ -patterns of Figure 4, we obtain the following graphi
alrepresentation (see Figure 5):
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1Fig. 5. Graphi
al representation of the τ -language of the standard dis
rete planes.
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zone τ -patterns
τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ121 × × × × × ×2 × × × × × ×3 × × × × × ×4 × × × × × ×5 × × × × × ×6 × × × × × ×7 × × × × × ×8 × × × × × ×9 × × × × × ×10 × × × × × ×11 × × × × × ×12 × × × × × ×For every k ∈ [[1, 12]], let Lk be the set of A-patterns asso
iated to the k-thzone of Figure 5. Then, a dire
t 
onsequen
e of Corollary 1 and Figure 5 is:Theorem 5. Let (a, b) ∈ N2, {n1, . . . , nk} ⊆ [[1, 12]] be the �nite set of all thezones of Figure 5 
ontaining (a, b) and L(a, b) be the language of the standard



14dis
rete plane with normal ve
tor (a, b, 1). Then,
L(a, b) =

k⋂

i=1

Li.Let us 
all τ-
omplexity of a standard dis
rete plane P the τ -
omplexity ofthe two-dimensional 
oding of P. Then, a dire
t 
onsequen
e of Figure 5 andTheorem 5 is:Corollary 3. Let U ∈ {1, 2, 3}Z
2 be the two-dimensional 
oding of a standarddis
rete plane with normal ve
tor (a, b, c) ∈ N3 with c 6= 0 and let {n1, . . . , nk} ⊆

[[1, 12]] be the �nite set of all the zones of Figure 5 
ontaining (a/c, b/c). Then,
pτ (U) = 6 − k + 1.Remark 1. Let U ∈ {1, 2, 3}Z
2 be the two-dimensional 
oding of a standarddis
rete plane P(a, b, c, µ). One 
an have pτ (U) = 6 with while {a, b, c} is non-

Q-free. For instan
e, let a = 1, b = 3 and c = 5 (see Figure 6).
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Fig. 6. τ -patterns of the sequen
e asso
iated to the standard dis
rete plane P(1, 3, 5, 0).A
knowledgmentsI would like to thank Pierre Arnoux for having pointed me out the re
ognitionproblem of 
ombinatorial 
odings of dis
rete surfa
es and the referees for theuseful suggestions they made.Referen
es[ABS04℄ P. Arnoux, V. Berthé, and A. Siegel. Two-dimensional iterated morphismsand dis
rete planes. Theoreti
al Computer S
ien
e, 319:145�176, 2004.



15[And93℄ É. Andrès. Le plan dis
ret. Colloque de géométrie dis
rète en imagerie :fondements et appli
ations, Septembre 1993.[BCK04℄ V. Brimkov, D. Coeurjolly, and R. Klette. Digital planarity - a review. Te
h-ni
al Report RR2004-24, Laboratoire LIRIS - Université Lumière Lyon 2, may2004.[Buz02℄ L. Buzer. An in
remental linear time algorithm for digital line and planere
ognition using a linear in
remental feasibility problem. In Pro
eedings of the10th International Conferen
e on Dis
rete Geometry for Computer Imagery,pages 372�381. Springer-Verlag, 2002.[BT04℄ V. Berthé and R. Tijdeman. Latti
es and multi-dimensional words. Theoreti
alComputer S
ien
e, 319:177�202, 2004.[BV00a℄ V. Berthé and L. Vuillon. Suites doubles de basse 
omplexité. Journal deThéorie des Nombres de Bordeaux, 12:179�208, 2000.[BV00b℄ V. Berthé and L. Vuillon. Tilings and rotations on the torus: a two-dimensional generalization of sturmian sequen
es. Dis
rete Mathemati
s,223:27�53, 2000.[Col02℄ M.A. Ja
ob-Da Col. About lo
al 
on�gurations in arithmeti
 planes. Theor.Comput. S
i., 283(1):183�201, 2002.[DRR96℄ I. Debled-Rennesson and J.P. Réveillès. In
remental algorithm for re
ogniz-ing pie
es of digital planes. In Robert A. Melter, Angela Y. Wu, and LonginLate
ki, editors, Vision Geometry V, volume 2826 of SPIE Pro
eedings, pages140�151, August 1996.[Fra95℄ J. Françon. Dis
rete 
ombinatorial surfa
es. Graph. Models Image Pro
ess.,57(1):20�26, 1995.[Gér99℄ Y. Gérard. Lo
al 
on�gurations of digital hyperplanes. In Pro
eedings of the8th International Conferen
e on Dis
rete Geometry for Computer Imagery,pages 65�75. Springer-Verlag, 1999.[KI00℄ Y. Kenmo
hi and A. Imiya. Naive planes as dis
rete 
ombinatorial surfa
es.In Pro
eedings of the 9th International Conferen
e on Dis
rete Geometry forComputer Imagery, pages 249�261. Springer-Verlag, 2000.[Lot02℄ Lothaire. Algebrai
 Combinatori
s on Words. Cambridge University Press,2002.[Mal97℄ R. Malgouyres. A de�nition of surfa
es of Z3. a new 3d dis
rete jordan theo-rem. Theor. Comput. S
i., 186(1-2):1�41, 1997.[Meg84℄ N. Megiddo. Linear programming in linear time when the dimension is �xed.J. ACM, 31(1):114�127, 1984.[PS85℄ F.P. Preparata and M.I. Shamos. Computational geometry: an introdu
tion.Springer-Verlag New York, In
., 1985.[Rév91℄ J.P. Réveillès. Géométrie dis
ète, 
al
ul en nombres entiers et algorithmique.PhD thesis, Université Louis Pasteur, Strasbourg, 1991.[RKW91℄ A. Rosenfeld, T.Y. Kong, and A.Y. Wu. Digital surfa
es. CVGIP: Graph.Models Image Pro
ess., 53(4):305�312, 1991.[VC99℄ J. Vittone and J.M. Chassery. (n, m)-
ubes and farey nets for naive planesunderstanding. In Pro
eedings of the 8th International Conferen
e on Dis
reteGeometry for Computer Imagery, pages 76�90. Springer-Verlag, 1999.[VC00℄ J. Vittone and J.M. Chassery. Re
ognition of digital naive planes and poly-hedrization. In DGCI: International Workshop on Dis
rete Geometry forComputer Imagery, pages 297�307, 2000.[Vui98℄ L. Vuillon. Combinatoire des motifs d'une suite sturmienne bidimensionnelle.Theor. Comput. S
i., 209(1-2):261�285, 1998.


