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On the Language of Standard Discrete Planes
and Surfaces

Damien Jamet

LIRMM, Université Montpellier 11, 161 rue Ada, 34392 Montpellier Cedex 5 - France
jamet@lirmm.fr

Abstract A standard discrete plane is a subset of Z* verifying the dou-
ble Diophantine inequality u < ax + by + ¢z < p + w, with (a,b,c) #
(0,0,0). In the present paper we introduce a generalization of this no-
tion, namely the (1, 1, 1)-discrete surfaces. We first study a combinatorial
representation of discrete surfaces as two-dimensional sequences over a
three-letter alphabet and show how to use this combinatorial point of
view for the recognition problem for these discrete surfaces. We then
apply this combinatorial representation to the standard discrete planes
and give a first attempt of to generalize the study of the dual space of
parameters for the latter [VCO00].

Introduction

The works related to discrete lines and planes can be roughly divided in two
kinds of approaches. In [And93], E. Andrés introduced the arithmetic discrete
planes, as a natural generalization of the arithmetic discrete lines introduced
by J.P. Reveillés [Rév91]. Since then, using different approaches, many authors
have investigated the recognition problem of discrete planes, that is, « given
YV C Z3 a set of voxels, does there exist a discrete plane containing V? » (using
linear programming [Meg84,PS85 VC00,Buz02], arithmetic structure [DRRI6]
and Farey series [VCO00]). An interesting review of these algorithms can be found
in [BOK04].

On the other hand, a wide literature has been devoted to the study of Stur-
mian words, that is, the infinite words over a binary alphabet which have n + 1
factors of length n [Lot02]. These words are also equivalently defined as a discrete
approximation of a line with irrational slope. Then, many attempts have been
investigated to generalize this class of infinite words to two-dimensional words.
For instance, in [Vui98,BV00b,ABS04], it is shown that the orbit of an element
i € [0, 1] under the action of two rotations codes a standard discrete plane. Fur-
thermore, the generating problem of one or two-dimensional words characterizing
discrete lines or planes is investigated in [BV00b,Lot02,ABS04,BT04].

Let us now introduce some basic notions and notation used in the present
paper. Let {e_f, es, 6_3)} denote the canonical basis of the Euclidean space R3. An
element of Z3 is called a vozel. Tt is usual to represent a voxel (z,y,2) € Z3 as
a unit cube of R? centered in (z,y, 2). Another equivalent representation is to



consider the unit cube {(x + A1,y + A2, 2 + A3) | (A1, A2, A3) € [0,1]}. In the
present paper, for clarity issues, we consider the last representation.

Let (a,b,c,p,w) € R5. An arithmetic discrete plane with normal vector
(a,b,c), with translation parameter p, and with thickness w, is the subset of
7> defined as follows:

Pla,b,e,pw) = {(0,y.2) €2° |p<az+by+cz <ptwh. (1)

If w = max{|al, |b],|c|}, then P(a,b, ¢, u, w) is said to be a naive discrete plane.
If w = |a| + |b] + |c|, then P(a, b, ¢, p,w) is said to be a standard discrete plane.
Considering the action of the group of isometries on the set of the discrete planes,
we can suppose, with no loss of generality, that 0 < a < b < ¢ and ¢ # 0.

It is well known that the naive discrete planes are functional, that is, if 0 <
a < b < ¢, the naive discrete plane P (a, b, ¢, p, max{|al, |b|, |c|}) is in bijection
with the integral points of the plane z = 0 by the projection map 7, : R3 —
{(z,y,2) € R® | z = 0} along the vector (0,0,1). In a similar way, in [ABS04],
it is shown that, given the affine orthogonal projection along the vector (1,1,1)
onto the plane x +y+ 2z = 0, namely 7 : R® — {(z,9,2) € R® | x +y + 2 = 0},
and given I' = 7 (Z?), then the restriction m : B(a,b, ¢, u, |a| + [b] + |c|]) — I’
is a bijection. In other words, any standard discrete plane can be recoded on a
regular lattice (see Section 1).

From now on, let us denote P(a,b,c,u) the standard discrete plane
PBla, b, c, 1, |a] + 0] + |¢|). We call unit cube any translate of the fundamental
unit cube with integral vertices, that is, any set (z,y, z) +C where (x,vy, 2) € Z3
and C is the fundamental unit cube (see Figure 2(a)):

C = {)\16—{ + )\36—3) + )\36—3> | ()\1, A2, )\3) S [0, 1]3} .
Let us now define the three basic faces (see Figure 1):

Ey = {\es + Mse3 | (A2, A3) € [0,1]%},
By = {-Mer + Asez | (M, As) € 0,112},
Eg = {—/\16—1) — )\26—5 | ()\1,/\2) S [0, 1[2}

Let (z,y,2) € Z*. We call pointed face of type k pointed on (x,y,z) the set
(x,y,2) + Er with k € {1,2,3}. Notice that each face contains exactly one
integral point. We call it the distinguished vertezx of the face. Let P be the plane
with equation az + by + cz = p with (a,b,¢) € R3 and 0 < a < b < ¢, let Cp be
the union of the umt cubes intersecting ‘rhe open half-space az + by + cz < p,

and let Pp = Cp \Cp7 where Cp (resp. Cp) is the closure (resp. the interior) of
the set Cp in R3, provided with its usual topology. In [ABS04], it is proved that
the set PBp is partitioned by pointed faces. Moreover, let Vp = PBp N Z3 be the
set, of vertices of Pp. Then, Vp = P(a, b, ¢, 1) (see (1)). From now on, up to the
context and if no confusion is possible, we will call discrete plane indifferently
PBp and P(a,b,c, ).

In the present paper we introduce a generalization of the concept of standard
discrete planes: the (1,1, 1)-discrete surfaces (see Figure 3). Roughly speaking, a
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Fig. 1. The three fundamental faces.

(1,1, 1)-discrete surface is a subset of R3, partitionable by the pointed faces and
in one-to-one correspondence, by the projection map 7 : R3 — {(z,y,2) € R? |
T +y+ 2z = 0} with the diagonal plane {(z,y,2) € R® | 2 + y + z = 0}. Then,
as performed in the case of the standard discrete planes, given a discrete surface
G, we associate to it a two-dimensional coding depending on the type of the
pointed faces partitioning &. Then, it becomes natural to try to characterize the
two-dimensional sequences coding the (1,1, 1)-discrete surfaces. In other words,
given a two-dimensional sequence U € {1, 2, 3}22, does U code a (1,1, 1)-discrete
surface &7 Is this problem local? that is, does there exist a finite set of two-
dimensional finite patterns £ such that: « U codes a (1,1, 1)-discrete surface if
and only if, for all w € £, w does not belong to the language of U »?

This paper is organized as follows. In Section 1, we define the (1,1, 1)-discrete
surfaces and their two-dimensional codings. In Section 2, after introducing the
notions of 7-shape, T-patterns, 7-complexity and 7-language, we investigate the
characterization problem of the sequences U € {1,2,3}Zz coding discrete sur-
faces. Then we give the list 2 of permitted 7-patterns (see Figure 4), and prove:

Theorem 1. Let U € {1,2,3}%°. Then U codes a (1,1,1)-discrete surface if and
only if L,(u) CA, where L.(U) is the subset of subwords of U of shape 7.

In Section 3, we show that the standard discrete planes have a canonical structure
of (1,1, 1)-discrete surface and the language of their two-dimensional codings is
completely defined by their normal vector and does not depend on their trans-
lation parameter. Next, we prove that the 7-complexity of a standard discrete
planes is bounded by 6 and equal to 6 for the standard discrete planes with a Q-
free normal vector. Finally, in Section 4, we give a first attempt to generalize the
study of the dual space of parameters and its corresponding Farey tessellation
[VCO00].



1 (1,1,1)-discrete surfaces and two-dimensional codings

In this section, we introduce the (1,1, 1)-discrete surfaces and we show how we
can recode each discrete surface on a regular lattice.

Let m: R® — {(z,y,2) € R* | 2 + y + 2 = 0} be the affine projection along
the vector (1,1, 1). Then, 7 is explicitly defined by:

m: R® —{(z,y,2) eR®|z+y+2=0}

(@1,2) = (@27 (@) + -2 (@), 2)

Let us recall [BV0Ob,ABS04] that each standard discrete plane is in one-to-
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Fig. 2. The projection of the fundamental unit cube

one correspondence with the regular lattice I' = Zw (e7) + Zm (e3) = 7 (Z3)
and is partitioned by integral translates of the three basic faces E;, E5 and Fj3.
Using these properties of standard discrete planes, we define the (1,1, 1)-discrete
surfaces as follows:

Definition 1 ((1,1,1)-discrete surface). Let & C R®. Then G is said to be
a (1,1, 1)-discrete surface (or just a discrete surface) if the following conditions
hold:

i) the projection map 7 : & — {(v,y,2) ER?® |2z +y + 2z =0} is a bijection;
ii) & is partitioned by pointed faces.

Even if, unfortunately, the terminology can be ambiguous, in particular for
the ones who are accustomed with [Fra95,K100,Mal97, RKW91]|, we will use the
terminology discrete surface instead of (1,1,1)-discrete surface in the present
paper, in order to simplify notations.

Since the plane = 4+ y + z = 0 is a disjoint union of a countable set
of translates of the tiles 7(E1), m(E2) and w(FE3), then there exist two se-
quences (T, Yn, Zn)neN € (Z3)N and (ip)nen € {1,2,3} such that & =

U ("Ena Yn, Zn) + Ein'
neN



Fig. 3. A piece of a discrete surface and its projection under 7.

A first property of discrete surfaces is that, given n € N, the point (2, Yn, 2n)
cannot have two different types. Moreover, the projection map = : R® —
{(z,y,2) € R® | z + y + z = 0} provides a one-to-one correspondence between
{(Zn;Yn, zn) | n € N} and I'. More precisely,

Lemma 1. Let & = (J, oy
following assertions hold:

(TnyYn, 2n) + Fi, be a discrete surface. Then, the

i) Y(m,n) € N2 (T, Ym, 2m) = (Tn, Yn, 2n) implies iy, = im;
ii) the function © : {(Tn,Yn,2n) | n € N} — Zn(e1) + Zes is a bijection. In
other words, {(x,, — 2n,Yn — 2n) | n € N} = Z2.

In the present paper, we suppose that the representation of a discrete surface
G is reduced, that is, Lemma 1 i) and ii) are assumed to hold, and we denote by
Ve = 6 NZ3 the set of vertices of &.

Since every vertex of & has a unique type, then, to each (m,n) € Z2, we can
associate the type of the antecedent (z,y, z) € & of the element mn(e;) +nes €

I'. Thus, we obtain the two-dimensional coding of G as follows:

Definition 2 (Two-dimensional coding). Let & = UnEN (Tny Yn, 2n) + Ei,
be a dichTGte surface. The two-dimensional coding of & is the sequence U €
{1,2,3}%" defined as follows:

vn € N? Uzn_znyyn_zn = ln-

Since we have a two-dimensional coding over the three-letter alphabet
{1,2,3} of each discrete surface, it becomes natural to investigate the language
of these sequences and to study the characterization problem of such a sequence,
that is, given a two-dimensional sequence U € {1,2, 3}22, does it code a discrete
surface &7 In the next section, we prove that the language of a discrete surface
coding is of finite type and we provide the set of permitted patterns.

For every (m,n) € Z% let T, = {(m,n),(m,n +1),(m + 1,n + 1)}. A
T-pattern is a pattern with shape 7. Hence, following the definitions above, one
can define the 7-language and the 7-complexity of a two-dimensional sequence.



2 Characterization of the two-dimensional coding of the
discrete surfaces

2.1 Basic notions on two-dimensional sequences over a finite
alphabet

In this section, we recall some basic notions and terminology concerning the
two-dimensional sequences over a finite alphabet.

Let ~ be the equivalence relation over the set §3(Z?) of the finite subsets of
72, as follows:

V(02,02 € P(Z*?, 2~ < I(v,v) €Z%, 2 =0 + (v1,v2).

An element 2 of PB(Z?)/ ~ is said to be a shape.

Let A be a finite alphabet. Let {2 be a finite subset of Z2. A function w : 2 —
A is called a finite pointed pattern over the alphabet A. The equivalence relation
defined above provides an equivalence relation over the set of the finite pointed
patterns over the alphabet A, also denoted ~, as follows: V(w,w’) € W3, w ~ w’
if and only if

vi,v2) € Z2, 2= 2"+ (v1,v2) and V(m,n) € 2, Wi = Wiy 4o ntuy-
Let us notice, that given two finite pointed patterns over the alphabet A, w :
2 — Aand ' : 2 — A, one has w ~ ' implies that 2 ~ 2. The equivalence
class @ of w is said to be a pattern of shape £2. In order to simplify the notation,
when no confusion is possible, we will use w (resp. 2) instead of @ (resp. £2).

Let U € A be a two-dimensional sequence and let w : 2 — A be a pattern
of shape 2. An occurrence of w in U is an element (mg,ng) € Z? such that for
all (m,n) € 2, wmn = Ungtm.no+n- The set of patterns occurring in U is called
the language of U and is denoted L£(U). Given a shape 2, the set of patterns
with shape (2 occurring in U is called the {2-language of U and is denoted by
Lo(U).

Let {2 be a shape. The 2-complexity map is the function pg : AL
NU {oo} defined as follows:

pa: AX — NU {oc}
U = |[LaU),

where | Lo (U)| is the cardinality of the set Lo (U).
2.2 Characterization of the two-dimensional coding of a discrete
surface

Let us first reduce the characterization problem to a two-dimensional tiling prob-
lem of the plane {(z,y,2) € R? |  +y+ 2z = 0}. Indeed, a direct consequence of
Definitions 1 and 2 is:
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Lemma 2. Let U € {1,2,3}22 be a two-dimensional sequence. The following
assertions are equivalent:

i) the set & = U(m)n)ezz{me_f +nes + Ey,, .} is a discrete surface;
i1) the sequence U codes a discrete surface;
iii) the set {mm(e1) + nw(ez) + 7(Ey,, ) |(mm)ez2} is a partition of the plane
T+y+2z=0.

Let Py = Rr(ey) + Rr(es) be the two-dimensional R-vector space of basis
{n(e1),n(e2)}. Let | - | : Po — R4 be the norm on Py defined by:

V(z,y) € (R?)?, Jam(e7) + ym(e3)]o = max{lzl, [y[}.
Let do be the distance on Py associated to the norm | - |, that is,
V(z,2)) € PE, doo(2,2') = |2 — 2| oo-
The following lemma is immediate (see Figure 1):
Lemma 3. Let 2,2’ € I' = (&), 2" € Py and (i,i') € {1,2,3}%. Then,

D 2t ()N () £0 = duols,#) < 1
i) 2 € z4+m(E;) = doo(z,2") < 2.

An interesting consequence of Lemma 3 is that, given a two-dimensional
sequence U € {1,2, ?)}Z27 deciding whether U codes a discrete surface is a local
problem. Now, it remains to exhibit a set 2 of permitted patterns.

Roughly speaking, the characterization problem can be divided in two parts:
an « injection problem » and a « surjection problem ». The « injection problem
» consists in deciding whether a given union of projections of pointed faces is
disjoint. The « surjection problem » consists in deciding whether a given union
of projections of pointed faces covers Py.

Then, let us first investigate the « injection problem ».

Lemma 4. Let U € {1,2,3}22 be a two-dimensional sequence. The following
assertions are equivalent:

i) The sets mm(e1) + nm(es) + w(Ey,, ), with (m,n) € Z* are relatively dis-
joint.

ii) For every (m,n) € Z2, the sets m'm(
Tm,n ore relatively disjoint.

—
€1

)+n’7r(e_2))—|—7r(EUmm), with (m/,n') €

Hence, we have obtained a necessary and sufficient condition to decide
whether a union of projections of pointed faces is a disjoint union. It remains to
find a similar condition for the « surjection problem ». Since the characterization
problem is local, a disjoint union of projections of pointed faces will cover the
plane Py = {(z,y, 2) € R® | z+y+2 = 0} if and only if each point z of Py will be
covered by the projection of a pointed face close to z. This is a direct consequence
of Lemma 3. Consequently, given a point g = mn(e;) + nn(ez) € I', a union
Ui, nyezz mm(er) + nn(ez) + 7(Eu,, ) of projections of pointed faces will cover



Py if and only if g+7(Es) C U zm(er) + zom(es) + n(Ey

z=(z1,22)€l
doo (2,9)<2

this problem can be reduced to the study of the T-patterns.

). In fact,
21,72

Lemma 5. Let U € {1,2,3}22 be a two-dimensional sequence. The following
assertions are equivalent:

i) for every (mo,ng) € Z2,

(mo+1)m(e7)+nom(es)+m(Es) C U mn(e1) + nn(e3) + n(Ev,,.,.)-

(m>n)67—m0 ng

i) |J mr(E)+nn(e)+w(Eu, ) =Po.
(m,n)€Z?

A simple enumeration gives the permitted T-patterns (see Figure 4). In fact,

n
L m
1 1 1 3 2 1 2 3
1 1 1 1
T1 T2 T3 T4
1 2 2 2 3 1 3 3
2 2 2 2
75 T6 T7 T8
1 2 2 2 3 1 3 3
3 3 3 3
T9 T10 T11 T12

Fig. 4. The set 2 of permitted 7-patterns of a discrete surface

we have proved that:

Theorem 2. Let A be the set of allowed T-patterns (see Figure 4). Let U €

{1,2, 3}22 be a two-dimensional sequence over the three-letter alphabet {1,2,3}.
Then U codes a discrete surface & if and only if L.(U) C 2.



3 A particular case of discrete surfaces: the standard
discrete planes

In this section, we investigate the standard discrete planes with a positive normal
vector and show that they admit a canonical structure of discrete surface. From
now on, we suppose that (a,b,c) € R3.

3.1 Preliminaries

For the moment, we have defined the discrete surfaces via a one-to-one con-
dition on the projection map 7 : & — {(z,9,2) € R® | x +y + 2 = 0}.
In [BV0Ob,ABS04], it is proved that a standard discrete plane is in bijection
with I' = m(Z3). Let P be a plane with equation ax + by + cz = u. To
prove that Pp (see Section 1) is a discrete surface, we have to show that
7 Pp — {(2,9,2) € R® | 2+ y + 2 = 0} is a bijection, or equivalently,
that the coding of Pp codes a discrete surface. Let us recall how to build the
two-dimensional coding of PBp. It is based on Lemma 6.

Lemma 6. [ABS04] Let (v,y,z) € Vp and k € {1,2,3}. Let I, = [0,a], I2 =
[a,a+0b] and I3 = [a+b,a+b+c[. Then, the following assertions are equivalent:

i) the point (x,y,z) is of type k, that is,(x,y,2) + Er C Pp;
i) ar + by +cz —p € Iy;
i) a(x —2)+b(y—2z) —p mod (a+b+c) € I.

The two-dimensional sequence U coding ‘Bp is defined as follows:
Y(m,n) € Z*,Vk € {1,2,3}, Upn =k <= am +bn —p € I.
The discrete surface structure of Bp follows from:

Theorem 3. The set Pp is a discrete surface.

Proof. Let U be the two-dimensional coding of Pp. Let us show that U codes a
discrete surface. Indeed, since U codes Bp, we will deduce that PBp is a discrete
surface. Let k € {1,2,3} and let us consider a T-pattern w such that wgo = 1.
Let (m,n) € Z* be an occurrence of w, that is, Upmtins; = wi,j for (i,7) €
To,0- Let us first suppose that (m,n) = (0,0). Then, we deduce that p € [0,a]
mod (a +b+c¢). Hence p+a+b € [a+b,2a+ b mod (a+b+c¢). If a < ¢,
then p+a+befa+ba+b+c] mod (a+b+c)and wy 1 = 3. Conversely, if
a > ¢, then 2a +b € [0,a] mod (a+b+c¢) and wy; = 1. In all cases, wy,1 # 2.
If (m,n) # (0,0), we similarly prove that wq1 € {1,3}. The other forbidden
T-patterns can be excluded in the same way. |
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3.2 Characterization of the language of a standard discrete plane

In this section, given a standard discrete plane B, we call language of a standard
discrete plane the language of the two-dimensional coding of ‘B.

Let (o, 8) € Ri. The rotation R, of angle o modulo [ is the function R, :
[0, B[— [0, B[ defined as follows:

R+ [0,8] — [0, 8]
r +— r+a mod}f.

From now on, R, (resp. Rp) denotes the rotation of angle a (resp. of angle b)
modulo a 4+ b+ c.

Lemma 7. Let U € {1,2,3}Z2 be the two-dimensional coding of the standard
discrete plane B(a,b,c, u). Letw : 2 — {1,2,3} be a pattern. Then, the following
assertions are equivalent:

i) we L(U), that is, there exists (k, k') € Z* such that:
V(m, n) € {2, Wm,n = Umtkn+k’ -
i) there exists (k,k') € Z* such that:

ak+bk' —pe [ RoR,” (L,,).
(i,5)e2
In [Rév91,And93,VCO0], the authors considered standard discrete planes
L(a,b,c, ) with (a,b, c, ) € Z* and ged(a,b,c) = 1. In [BV00b,Lot02,ABS04],
the authors investigated the standard discrete lines or planes with a Q-free nor-

mal vector. Let us recall that a n-uple (aq,...,a,) € R" is said to be Q-free if
for every (z1,...,2,) € Q™, one has:

> aiw; =0 <= Vie[l,n], z; =0.

i=1
In fact, this two-case division is not necessary to study the language of the

two-dimensional coding of a standard discrete plane. More precisely:

Corollary 1. Let U € {1,2,3} be the two-dimensional coding of the standard
discrete plane P(a, b, c, ). Let w be an 2-pattern. Then,

weLlU) < L= () R oR,” (L,,) #0.
(i,5)€2

A direct consequence of Corollary 1 is:

Corollary 2. Let U € {1,2,3}Zz (resp. U’ € {1,2,3}22) be the two-dimensional
coding of the standard discrete plane P(a,b,c,u) (resp. P(a', v, ', 1')). Let us
suppose that B is parallel to PB', that is, there exits a € R such that (a,b,c) =
ala', b, ). Then L(U) = L(U).
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Since two sequences coding two parallel standard discrete planes have the
same language, it becomes natural to investigate the following problem: given
two standard discrete planes B = B(a,b,c,p) and P = P(a', V', /, 1’) and
given U € {1,2,3}% (resp. U’ € {1,2,3}%") the two-dimensional coding of
(resp. P’). Let us suppose that £L(U) = L(U’). Are the standard discrete planes
B and P’ parallel? The answer is given by the following theorem:

Theorem 4. Let (a,b,c,p) € Z* (resp. (a’,V',c/,u') € Z*). Let U € {1,2,3}Z2
(resp. U’ € {1,2,3}22) be the two-dimensional coding of the standard discrete
plane P = P(a, b, c, n) (resp. P = P(a',b',,1’)). Then, the following asser-
tions are equivalent:

i) the planes ax +by +cz = p and o’z + by + 2 = p' are parallel;
i) there exists (mo,ng) € Z? such that, for every (m,n) € Z?, Unpn =
Urln+mg,n+ng 5

iii) L(U) = L(U").

Proof. Let us first prove that given a square S of edge a + b + ¢, the number of
a (resp. b, ¢) in a subwords w : S — {1,2,3} is a(a + b+ ¢) (resp. b(a + b+ c),
c(a+b+c)). In fact, it is sufficient to study the case S = [0,a+ b+ c— 1]% The
general case is a direct consequence of Corollary 1.

Let us assume that ged(a, b, ¢) = 1. Then, ged(a, b,a+ b+ ¢) = 1. Hence, for
every element k € [0,a — 1], there exists (z,y) € Z? such that ax +by —p=k
mod a + b+ c. Let (m,n) € [0,a+b+c—1]* such that m =z mod a+b+c
andn=y moda+b+c. Thenam+bn—pu=ax+br—p =2z mod (a+b+c)
and Uy, = 1. Let k € [0,a+ b+ ¢ — 1]. Then Up—kp nt+ke = 1. Moreover,
for all (m,n) € [0,a+b+c—1]%, (m,n) = (m — kb,n + ka) mod a + b+ c if
and only if k¥ = 0. Indeed, let us suppose that ka = kb =0 mod a + b+ ¢ and
let (u,v) € Z? such that au+bv =1 mod a + b+ c. Then k = k(au + bv) =
kau 4+ kav = 0 mod a + b + ¢. Since k € [0,a + b+ ¢ — 1], we deduce that
k = 0. Hence |U|, > a(a + b+ ¢). We similarly prove that |Ul], > b(a + b+ ¢)
and |U|. > c(a + b+ ¢). Finally, since |U|, + |U|y + |U|. > (a + b+ ¢)?, one has
the desired result. If ged(a, b, c) = d, then let us define o’ = a/d, b’ = b/d and
¢ = ¢/d. Then, let us denote |Ul, (resp. |Ul, |U|.) the number of a (resp. b,
¢) in the square S = [0, &b+e — 1]]2. Since (0,a + b+ c¢) and (a + b+ ¢,0) are
two periodic vectors of U, that is, for all (k, k") € Z? and for all (m,n) € Z?, we
have Uy n = Uppsk(atbte)ntk (atbie)s then [Ulq = d?|U|q (vesp. [U]y = d?|U|s,

[U|. = d?|U].). By the same way as above, we obtain that |U], = a%thte

(resp. |Ulp = betbte  |U], = ¢2t5E¢) and the desired result follows.

It is sufficient to prove that ii) = iii). Let us suppose that £L(U) = L(U").
Let k =lem(a+b+c,a’+b'+c')/(a+b+c) and k' = lem(a+b+c,a’+b'+) /(o' +
b+ ). Let (a1,b1,c1,p1) = k(a,b,c, ) and (af, by, ch,ph) = KV, 1).
Let V € {1,2, 3}Zz (resp. V' € {1,2, 3}22) be the two-dimensional sequence
coding the standard discrete plane PB(aq, b1, c1, u1) (resp. P(al, by, ¢;, 1})). Then,
V =U and V' = U’. Since a1 + by + ¢1 = a} + b} + ¢} and one has |V|, = |V'|,
(resp. [V = [V'|p, |[V]e = [V'|¢)) (see Lemma T7), we have aq(a; + by +¢1) =
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aj(ar + b1 + c1) (resp. bi(ar + by + c1) = by(a1 + b1 + 1), ci(ar + b1 + 1) =
ci(a1 + b1 + 1)), that is, ka = K'a’, kb= k't and ke = k'c . |

4 An analytic description of the 7-language of the
standard discrete planes

In Theorem 4, we proved that the language of a standard discrete plane with
a positive normal vector does not depend on its translation parameter p and is
completely defined by its normal vector (a,b, ).

In this section, we provide an analytic way to describe the 7-language £ ()
of a standard discrete plane B. This kind of investigation can be compared to
[Col02,Gér99,VC99,Vuios|

Roughly speaking, to each 7-pattern w of 2, we associate the subset of the
triples (a,b,c) of R?, such that w has an occurrence in the two-dimensional
coding of any standard discrete planes with normal vector (a, b, ¢).

Let us recall that we can defined the discrete surface structure of a stan-
dard discrete plane if and only if its normal vector (a,b,c) is positive, that is
min{a,b,c} > 0. In the present section, if it is not mentioned, we will suppose
a, b, ¢ to be positive and ¢ # 0.

Since it is easily checked that P(a, b, ¢, u) = B(a/c,b/c, 1, u/c), let us assume
that ¢ = 1. Hence, to each 7-pattern w of 2, we will associate the subset of the
pairs (a,b) of R?, such that w has an occurrence in the two-dimensional coding
of any standard discrete planes with normal vector (a, b, 1).

For instance, let us consider the following 7-patterns:

Then, following Corollary 1, one has:

weL(P) <= LNR(IL)NR7oR (1) #0
<~ b<a+ec

Then, assuming that ¢ = 1, we associate to w the set {(a,b) € R? | b < a + 1},
representing the pairs (a,b,1) € Ri, such that w occurs in the two-dimensional
coding of any standard discrete plane with normal vector (a,b,1).

Considering the 7-patterns of Figure 4, we obtain the following graphical
representation (see Figure 5):
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()
o ] ®
® ® &
Sydo
D X ®
- |

Fig. 5. Graphical representation of the 7-language of the standard discrete planes.

Zpatterns T1|T2|T3|T4|Ts|T6 | T7 |78 | To |T10|T11|T12
zone

1 X | X[ X|X]|X X

2 X | X | x X X | X

3 X | X X | x| x| X

4 X | X | x| X X X

5 X X | X[ X|x]|X

6 X | X | X X X X

7 X x| x| x| x|x
8 X X X | X | X X

9 X | X | % X X X

10 X X X | X X | X
11 X | X[ X|X]|X X

12 X | X | X X X X

For every k € [1,12], let £ be the set of 2-patterns associated to the k-th
zone of Figure 5. Then, a direct consequence of Corollary 1 and Figure 5 is:

Theorem 5. Let (a,b) € N2, {n1,...,nx} C [1,12] be the finite set of all the
zones of Figure 5 containing (a,b) and L(a,b) be the language of the standard
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discrete plane with normal vector (a,b,1). Then,

k

L(a,b) =) Li.

i=1

Let us call 7-complexity of a standard discrete plane P the 7-complexity of
the two-dimensional coding of ‘B. Then, a direct consequence of Figure 5 and
Theorem 5 is:

Corollary 3. Let U € {1,2,3}Z2 be the two-dimensional coding of a standard
discrete plane with normal vector (a,b,c) € N® with ¢ # 0 and let {ny,...,n} C
[1,12] be the finite set of all the zones of Figure 5 containing (a/c,b/c). Then,

pr(U)=6—-k+1.
Remark 1. Let U € {1,2,3}Z2 be the two-dimensional coding of a standard

discrete plane P(a, b, ¢, u). One can have p,(U) = 6 with while {a,b, ¢} is non-
Q-free. For instance, let a =1, b =3 and ¢ = 5 (see Figure 6).

2|3 3] 3 1 2
1 2 3
2 2 3 1 3|3
3 3 3

Fig. 6. T-patterns of the sequence associated to the standard discrete plane B(1, 3, 5, 0).
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